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Abstract. The class of constraint satisfaction problems (CSPs) over finite domains has
been shown to be NP-complete, but many tractable subclasses have been identified in the
literature. In this paper we are interested in restrictions on the types of constraint relations
in CSP instances. By a result of Jeavons et al. we know that a key to the complexity of classes
arising from such restrictions is the closure properties of the sets of relations. It has been
shown that sets of relations that are closed under constant, majority, affine, or associative,
commutative, and idempotent (ACI) functions yield tractable subclasses of CSP. However,
it has been unknown whether other closure properties may generate tractable subclasses.
In this paper we introduce a class of tractable (in fact, SL-complete) CSPs based on bipartite
graphs. We show that there are members of this class that are not closed under constant,
majority, affine, or ACI functions, and that it, therefore, is incomparable with previously
identified classes.

1 Introduction

In general, the class of constraint satisfaction problems (CSPs) over finite domains is NP-complete.
However, much more is known about the complexity of CSP and its variants. For example, Schae-
fer [14] provided a complete complexity classification of subproblems of CSP with domains of size
2. Other examples of complexity analyses of CSPs can be found in [12, 4, 5], and in more recent
work, such as [1, 10, 3].

By looking at subclasses of CSP restricted by the types of constraint relations allowed, Jeav-
ons et al. [8] showed that the complexity of such subclasses can be characterized by the functions
under which the respective sets of relations are closed. In particular, sets of relations closed under
constant, majority, affine, or associative, commutative, and idempotent (ACI) functions are shown
to be tractable. It has been unknown whether any tractable CSP subclass exists that is not closed
under any of those four types of functions. In this paper we introduce such a class, which is based
on a strong result in graph theory by Hell and Nesetfil [6] stating that the H-coloring problem
(that is, the problem of finding homomorphisms from graphs to a fixed graph H) is tractable
if H is bipartite, and NP-complete otherwise (discussed in Sect. 2). This result is relevant since
a solution to a CSP can be seen as a homomorphism from the structure of variables in a CSP
instance to the constraint relations [9]. Thus, for CSPs with only one binary relation we have
tractability if the relation defines a bipartite graph, and NP-completeness otherwise. In fact, this
result does by itself yield a new class of tractable CSPs. We show that the bipartite graph Cg,
that is, the cycle of length 6, is a counterexample to each of the four closure functions (Sect. 4.1).
However, for CSPs with more than one constraint relation bipartiteness alone does not provide
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tractability. We identify (in Sect. 4) three global properties on the sets of relations (seen as graphs)
in a CSP, namely that every relation is in itself bipartite (local bipartiteness), that all relations
have the same partitions (partition equivalence), and that all relations have at least one edge in
common (non-disjoint). The class of all sets of relations with these three properties is denoted
Ipn. We show (in Theorem 4) that the problem CSP(I") for I' € lpn is tractable. In Corollary 1
we strengthen this by showing that this problem in fact is complete for the complexity class SL
(Symmetric Logspace).

In Sect. 5 we show that any attempt to remove any of the three restrictions results in NP-
completeness, and here we again rely on Hell and Nesetfil’s theorem.

As a result of the work presented in this paper we have identified a number of open questions,
which we state in Sect. 6.

2 Preliminaries

In this section we define the concepts that will be used in this paper.

Definition 1. Let I' = {Ry,... ,R,} be a set of relations over a domain D, such that R; has
arity k;. An instance of the constraint satisfaction problem over I', P, is a tuple,

P=(V,D,R1(51),...,Rn(Sn))
where

— V is a finite set of variables;
— D is the finite domain;
— FEach pair R;(S;) is a constraint, where R; € I', and S; is an ordered list of k; variables.

Definition 2 (Solution). 4 solution to P = (V, D, Ry(S1), ..., R,(Sn)) is a functionh : V — D
such that h(S;) € R; for all i, where h(S;) denotes the coordinate-wise application of h to the
variables in S; (i.e. if Si = (v1,...,vk,;), then h(S;) = (h(v1),...,h(vk,;))). The set of solutions
to an instance P is denoted Sol(P).

Given a finite set of relations I', we define the computational problem CSP(I") as follows: given a
CSP instance over I', does it have a solution?

Following the work on constraints and universal algebra in [9] we can equivalently define a
solution to an instance as a homomorphism between two algebraic structures.

Definition 3 (CSP Homomorphism). Let P = (V, D, Ri(S1),-.. ,R.(Sn)) be a CSP where
each relation R; has arity k;. Then construct ¥ = (V,{S1},...,{Sn}) and X' = (D, Ry,... ,R,).
A CSP homomorphism is a function g : V — D such that for alli =1,... ,n,

(vi,...,0k;) € {Si} = (g(v1),... ,9(v;)) € R;.
The set of all homomorphisms for P is denoted Hom(P).
We establish the relation between the solutions to a CSP instance and CSP homomorphism.
Proposition 1 ([9]).
Sol(P) = Hom(P),
for an instance P.

As we will rely heavily on viewing binary relations as graphs, we define the necessary concepts
here.



Definition 4. A graph, G, is a tuple, G = (V, E) where V is a (non-empty) set of vertices, and E
a set of edges, (v;,v;), such that v;,v; € V. Two vertices v;,v; € V are adjacent if (v;,v;) € E or
(vj,v;) € E. A cycle in a graph is a sequence of vertices, vi,,Vi,, . .. ,v;,, such that (v;;,v;,,,) € E
forj=1,...,n—1, and (v;,,v;,) € E. The natural number m is the length of the cycle. A graph
is undirected if, whenever (v;,v;) € E, then (v;,v;) € E. A graph is bipartite if it is possible to
partition V into two disjoint sets X andY, such that every edge with the left verter in one of the
partitions has the right vertezr in the other partition, and no edges contain vertices from the same
partition. Equivalently, a bipartite graph is a graph without cycles of odd length.

Unless otherwise stated, we will assume that graphs are irreflexive, that is, that for any v € V,
(v,v) € E. Moreover, all isolated vertices (that is, vertices that does not belong to any edge) are
assumed to belong to one partition.

Definition 5 (Graph Homomorphism). Let G = (V, E) and G' = (V', E') be two graphs. A
graph homomorphism from G to G' is a function f:V — V' such that, if v; and v, are adjacent
vertices in G, then f(v;) and f(v;) are adjacent vertices in G'.

For graphs, the k-coloring problem, for natural numbers k, is defined as the problem of finding a
function f: V — {0,1,... ,k — 1} such that adjacent vertices in the graph are not mapped to the
same number. We will use the fact that 2-coloring is a tractable problem.

A more general problem, for a fixed graph H, is the problem of deciding whether there exists
a graph homomorphism from a graph G to H. This problem is called is called H — coloring.
For H-coloring we have the following strong complexity result, proven in [6]. Note that for a
non-irreflexive graph H, H-coloring is trivial.

Theorem 1 ([6]). Let H be a fized undirected graph. If H is bipartite then the H -coloring problem
is in P. If H is not bipartite then the H-coloring problem is NP-complete.

We can now prove

Proposition 2. For a symmetric binary relation, R, CSP({R}) is tractable if the graph (D, R),
where D is the domain of R, is bipartite, and NP-complete otherwise.

Proof. Follows immediately from Proposition 1 and Theorem 1.

For instances with more than one constraint, it does not suffice that every relation is bipartite for
tractability. As we will show in Sect. 5, it is necessary to impose global restrictions on the set of
relations.

Since we only consider binary constraint relations in this paper, we will use the words “graph”
and “relation” interchangeably.

3 Closure and complexity

We will be interested in closure properties of sets of binary relations, which motivates the following
definition.

Definition 6. Given a binary relation R, and a function ¢ : D™ — D, we say that R is closed
under ¢, if for all sets of tuples

(di,d;) € R

(di,d3) € R
the tuple

(@(dy,- .. ,d7), é(dy, - .. ,d3))

also belongs to R.



Below we will assume that I' is a set of relations over a finite set D with at least two elements.
The set of all functions ¢ : D™ — D, any n, under which every member of I" is closed, will be
denoted Fun(I').

If we define ¢(R) to be the binary relation

{¢(d1,d2) | <d1ad2> € R}a

we can equivalently define R to be closed under ¢ iff ¢(R) C R. From this definition it is easy to
prove

Theorem 2 ([8]). For any set of finite relations I', and any ¢ € Fun(I'), there is a polynomial
reduction from CSP(I") to CSP(¢(I")), with ¢(I') = {¢(R) | R € I'}. That is, under the polynomial
reduction CSP(I) is satisfiable iff CSP(¢(I")) is satisfiable.

From Theorem 2 it follows that if Fun(I") contains a non-injective unary function, then CSP(I")
can be reduced to a problem with smaller domain. We say that I" is reduced if Fun(I') does not
contain any non-injective unary functions.

Theorem 3 ([8]). For any reduced set of relations I' over a finite set D the set Fun(Il') must
contain at least one of the following siz types of functions:

1. A constant function;

2. A binary idempotent function, that is, a function ¢ such that ¢(d,d) = d for all d € D;

3. A ternary majority function, that is, a function ¢ such that ¢(d,d,d') = ¢(d,d',d) = ¢(d’',d,d) =
d for all d,d' € D;

4. A ternary affine function, that is, a function ¢ such that ¢(dy,d2,ds) = di — d2 + ds for all
di,ds,d3 € D, where (D,+) is an abelian group;

5. A semiprojection, @, that is, for n > 3, there existsi € {1,... ,n} such that for alldy,...,d, €
D with |{dy,... ,d,}| <n, we have ¢(d1,... ,d,) = d;;

6. An essentially unary function, that is, a function ¢ of arity n such that ¢(dy,... ,d,) = f(d;)
for some i and some non-constant unary function f, for all dy,... ,d, € D.

The complexity and closure function results in [8] can be summarized as follows:

If Fun(I") contains a constant function, then CSP(I") is tractable.

If Fun(I") contains a binary function that is associative, commutative, and idempotent (ACI),
then CSP(I) is tractable.

— If Fun(I") contains a majority function, then CSP(I") is tractable.

— If Fun(I") contains an affine function, then CSP(I") is tractable.

If Fun(I") contains only semiprojections, then CSP(I") is NP-complete.

— If Fun(I") contains only essentially unary functions, then CSP(I") is NP-complete.

Classes of problems that are tractable due to the closure properties have been extensively studied
in the literature. For instance, the class of max-closed constraints [10] are closed under an ACI
function [8], and the class of CRC constraints [2] are closed under a majority function [7].

In [8] Jeavons et al. state that

It is currently unknown whether there are tractable sets of relations closed under some
combination of semiprojections, unary operations, and binary operations which are not

included in any of the tractable classes above.

Below, we will introduce a class that is not closed under constant, ACI, majority, or affine functions.



R, R, Ri o R,

Fig. 1. Composition of the two bipartite relations R1 and R, yielding a non-bipartite relation R; o R».

4 A new tractable subclass

We saw in Proposition 2 that for a single binary and bipartite constraint relation CSP was
tractable. However, if we introduce more relations it is easy to see that bipartiteness alone on
the union of the relations does not yield tractability.

Definition 7. Intersection and union of relation is defined as set theoretic intersection and union.
Composition of binary relations Ry and R is defined as RioRy = {{(z, 2) | Jy.(z,y) € Ry A {y,2) € R1}.
We often write R? instead of R o R.

Note that if CSP({R; o R2}) is NP-complete, then CSP({R1, R2}) is too, since we can go back
and forth from {R; o Ry} to {R1, Rz} in polynomial time. This also holds for intersection.

Ezample 1. In Fig. 1 two bipartite relations, R; and R, are depicted. By composing them we get
a relation R, o Ry that contains cycles of odd length, which means that the composition is not
bipartite. Thus, by Theorem 2, CSP({R;1, R2}) is NP-complete.

Definition 8 (lpn). Let I' = {Ry,... ,Rn} be a set of binary symmetric relations over a finite
domain D, and construct the graphs G1 = (D,R1),...,G, = (D,R,). I' is said to be locally
bipartite if G; is bipartite, for all i. If I' is locally bipartite, with partitions X;,Y; for G; we say
that I' is partition equivalent if X; = Xo =... =X, and Y, =Y = ... =Y,,. Furthermore, I is
said to be non-disjoint if Ry N...N R, # 0.

We will refer to the class of locally bipartite, partition equivalent, non-disjoint sets of relations as
lpn.

Henceforth, when we write CSP(I"), we assume that I" € lpn.
Theorem 4. CSP(I") is tractable.

Proof. Given P = (V,D, Ry(z1,2}),-.. ,Ru(zn,z.)) € CSP(I') we show that there exists a solu-
tion to P iff the graph Gy = (V, {{z1,z}), ..., (zn, z!,)}) is 2-colorable.

<). Assume that Gy is 2-colorable, and choose (d,d') € (!, R; (which exists since the set of
relations is non-disjoint). Color Gy with d and d’'. Clearly, this coloring is a solution to P.

=). Let h : V — D be a solution to P. Since the set of relations is bipartite and partition
equivalent we name the partitions X and Y and construct a function f: V — {0,1}, as follows:

)0 ifh(v) € X,
f(”){l if h(v) € Y.

Clearly, f is a 2-coloring of Gy .

It is known that 2-coloring is co — SL-complete [11], that is, it is complete for the complement
of the class of symmetric logspace problems. Moreover, Nisan and Ta-Schma have shown that
SL = co — SL [13], which gives us the following;:

Corollary 1. CSP(I') is SL-complete.

Proof. In the proof of Theorem 4, CSP(I") is trivially reduced to 2-colorability (and vice versa).
Thus we can immediately apply Reif’s result [11] followed by Nisan and Ta-Schma’s result [13].



4.1 Non-closure properties of lpn

In this section we will show that some sets of relations in lpn are not closed under constant,
majority, ACI, or affine functions. Consider the graph Cg in Fig. 2 representing a bipartite relation

a 7
b J
c k

Fig. 2. The graph Cg, with partitions {a,b,c} and {3, j, k}.

R. Since the graph is irreflexive, we can immediately see that {R} is not closed under a constant
function.
For the existence of a majority function d we can note that

d(a,a,b) = a
d(b,a,b) =b
d(b,c,c) =c
d(i, j, k) = z,

with z € {a,b,¢,1,j,k}. We will show that z cannot be chosen such that Cs is closed under a
majority function. Consider the following three edges of Cs: (a,i), (a,j), (b, k) we can see that if
we apply d to the edges component-wise, we get that z € {i,j} for Cs to be closed under any
majority function. For the following three edges: (b, 1), (a, ), (b, k), we get = € {3, k}. Finally, for
(b,1), (¢, ), {c, k) we get = € {j,k}. Thus, there is no choice of z that satisfies the three triplets
simultaneously, and therefore there cannot exist a majority function under which Cjy is closed.
Next, we turn our attention to ACI functions. We can easily see that undirected and irreflexive
graphs are not closed under any commutative function, that is, if d is commutative then d(z,y) =
d(y, z), for all z,y € D. If the graph is undirected there exists a pair of edges, (z,z') and (z', z),
and if we apply d component-wise to the edges we get (d(z,z'),d(z',z)) = (y,y), for some y € D.
Since the graph was irreflexive, it cannot be closed under an ACI function.

Finally, we prove that (s is not closed under affine functions. Consider the three edges of Cg:
(a,1),{a,7),{c, 7). Choose + so that (D, +) is an abelian group, and let —z denote the inverse of
the element z € D. Next, we consider {(a + (—a) + ¢,i + (—j) + j) which is the component-wise
application of any affine function on the three edges. Since (D, +) is associative and that there
exists a neutral group element, we have

(a+(=a) +ci+ (=5)+7) =((a+(=a)) + i+ ((—4) + 7)) = (),
which is not an edge in Cg. Thus, we have showed the following

Proposition 3. Members in lpn are not in general closed under constant, majority, ACI, or
affine functions.

We have shown that members of Ipn do not have closure properties that are known to yield
tractable CSP instances. However, in similar spirit as the proof of Theorem 4, we can construct a
unary non-injective function under which members of lpn are closed.

Let I' = {Ry,... ,R,} € lpn, X and Y be the two partitions, and (dx,dy) € (|, R;, such
that dx € X and dy € Y. Then, construct the unary function f: D — D

dx ifde X,
fd)y=3""%
dy ifdeY.



Since every edge in any relation has one vertex in X, and the other in Y, I' is closed under f.
Whenever the domain of I" is larger than 2, f is non-injective. If we then look at f(I") we can see
that the remaining domain only contains 2 elements, namely dx and dy, and that there are no non-
injective unary functions under which this new relation is closed. The relation {(dx,dy), (dy,dx)}
is thus reduced, and it is a trivial exercise to find a majority function under which it is closed.

5 The restrictions on lpn cannot be removed

The tractability proof of CSP(I") (Theorem 4) relies on the locally bipartite, partition equivalent,
and non-disjoint properties of the sets of relations of the instances. We will now show that we
cannot remove any of the three properties and still maintain tractability. The arguments will be
similar to that in Example 1, that is, we start with some graphs, put them together somehow and
end up with a non-bipartite result on which we can apply Hell and Negetiil’s theorem (Theorem
1). Clearly, if we remove the local bipartiteness property, we have an NP-complete problem, so we
direct the attention to the other two cases.

5.1 Disjoint relations

In Example 1 we saw an example of two bipartite and partition equivalent relations, without any
common edge (that is, disjoint relations). By composition we constructed a non-bipartite relation,
which by Proposition 2 gives us NP-completeness.

5.2 Non-partition equivalent relations

R1 R2

Fig. 3. Two relations R; and R, that are bipartite and non-disjoint, but does not have the same partitions.

In Fig. 3 we can see two relations that are locally bipartite and non-disjoint, but that does not
have the same partitions (the two vertices a and b cannot belong to the same partition of both
relations). In Fig. 4 we see that by composing R; with itself, we get a reflexive relation (remember

Ry

Fig.4. R; composed with itself, and the result of R} o Ry, which is not bipartite due to the odd cycle
between di, dz2, and ds.



that the corresponding CSP then is trivially tractable), but when R? is composed with R, we get
an odd cycle between the vertices dq, d2, and ds. Note that the second graph in Fig. 4 is directed.
We can, however, easily restore the undirectedness by intersecting the graph with its complement.
NP-completeness then follows from Proposition 2.

6 Conclusion and open problems

In this paper we have exploited the notion of bipartite graphs to identify a new class of tractable
CSPs. For a deeper understanding of the results presented in this paper a number of open prob-
lems need to solved. Here, we state some of the more interesting of them.

How do we extend CSP(I') to a mazimal tractable class?

It is easy to see that CSP(I") is not a maximal tractable class, since we, for example, can add non-
irreflexive relations to the sets of relations and still have tractability. However, Hell and NeSettil’s
theorem hints that we are quite “close” to a maximal tractable class, but it remains to be inves-
tigated how close we really are.

Can the results be generalized to relations with higher arity?

In our tractability proof we rely on 2-coloring. However, for hypergraphs (that is, relations with
arity > 2) it is known that 2-coloring is NP-complete. Thus, a generalization would have to rely
on some other concept.
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