
Exploiting Bipartiteness to IdentifyYet Another Tractable Subclass of CSPMarcus Bj�areland?Peter Jonsson??Dept. of Comp. and Info. Sci.Link�opings universitetS-581 83 Link�oping, Swedenfmarbj, petejg@ida.liu.seAbstract. The class of constraint satisfaction problems (CSPs) over �nite domains hasbeen shown to be NP-complete, but many tractable subclasses have been identi�ed in theliterature. In this paper we are interested in restrictions on the types of constraint relationsin CSP instances. By a result of Jeavons et al. we know that a key to the complexity of classesarising from such restrictions is the closure properties of the sets of relations. It has beenshown that sets of relations that are closed under constant, majority, a�ne, or associative,commutative, and idempotent (ACI) functions yield tractable subclasses of CSP. However,it has been unknown whether other closure properties may generate tractable subclasses.In this paper we introduce a class of tractable (in fact, SL-complete) CSPs based on bipartitegraphs. We show that there are members of this class that are not closed under constant,majority, a�ne, or ACI functions, and that it, therefore, is incomparable with previouslyidenti�ed classes.1 IntroductionIn general, the class of constraint satisfaction problems (CSPs) over �nite domains is NP-complete.However, much more is known about the complexity of CSP and its variants. For example, Schae-fer [14] provided a complete complexity classi�cation of subproblems of CSP with domains of size2. Other examples of complexity analyses of CSPs can be found in [12, 4, 5], and in more recentwork, such as [1, 10, 3].By looking at subclasses of CSP restricted by the types of constraint relations allowed, Jeav-ons et al. [8] showed that the complexity of such subclasses can be characterized by the functionsunder which the respective sets of relations are closed. In particular, sets of relations closed underconstant, majority, a�ne, or associative, commutative, and idempotent (ACI) functions are shownto be tractable. It has been unknown whether any tractable CSP subclass exists that is not closedunder any of those four types of functions. In this paper we introduce such a class, which is basedon a strong result in graph theory by Hell and Ne�set�ril [6] stating that the H-coloring problem(that is, the problem of �nding homomorphisms from graphs to a �xed graph H) is tractableif H is bipartite, and NP-complete otherwise (discussed in Sect. 2). This result is relevant sincea solution to a CSP can be seen as a homomorphism from the structure of variables in a CSPinstance to the constraint relations [9]. Thus, for CSPs with only one binary relation we havetractability if the relation de�nes a bipartite graph, and NP-completeness otherwise. In fact, thisresult does by itself yield a new class of tractable CSPs. We show that the bipartite graph C6,that is, the cycle of length 6, is a counterexample to each of the four closure functions (Sect. 4.1).However, for CSPs with more than one constraint relation bipartiteness alone does not provide? This research has been supported in parts by Swedish Research Council for the Engineering Sciences(TFR) and the Knut and Alice Wallenberg Foundation?? This research has been supported by the Swedish Research Council for the Engineering Sciences (TFR)under grant 97-301.



tractability. We identify (in Sect. 4) three global properties on the sets of relations (seen as graphs)in a CSP, namely that every relation is in itself bipartite (local bipartiteness), that all relationshave the same partitions (partition equivalence), and that all relations have at least one edge incommon (non-disjoint). The class of all sets of relations with these three properties is denotedlpn. We show (in Theorem 4) that the problem CSP(� ) for � 2 lpn is tractable. In Corollary 1we strengthen this by showing that this problem in fact is complete for the complexity class SL(Symmetric Logspace).In Sect. 5 we show that any attempt to remove any of the three restrictions results in NP-completeness, and here we again rely on Hell and Ne�set�ril's theorem.As a result of the work presented in this paper we have identi�ed a number of open questions,which we state in Sect. 6.2 PreliminariesIn this section we de�ne the concepts that will be used in this paper.De�nition 1. Let � = fR1; : : : ; Rng be a set of relations over a domain D, such that Ri hasarity ki. An instance of the constraint satisfaction problem over � , P, is a tuple,P = hV;D;R1(S1); : : : ; Rn(Sn)iwhere{ V is a �nite set of variables;{ D is the �nite domain;{ Each pair Ri(Si) is a constraint, where Ri 2 � , and Si is an ordered list of ki variables.De�nition 2 (Solution). A solution to P = hV;D;R1(S1); : : : ; Rn(Sn)i is a function h : V ! Dsuch that h(Si) 2 Ri for all i, where h(Si) denotes the coordinate-wise application of h to thevariables in Si (i.e. if Si = hv1; : : : ; vkii, then h(Si) = hh(v1); : : : ; h(vki)i). The set of solutionsto an instance P is denoted Sol(P).Given a �nite set of relations � , we de�ne the computational problem CSP(� ) as follows: given aCSP instance over � , does it have a solution?Following the work on constraints and universal algebra in [9] we can equivalently de�ne asolution to an instance as a homomorphism between two algebraic structures.De�nition 3 (CSP Homomorphism). Let P = hV;D;R1(S1); : : : ; Rn(Sn)i be a CSP whereeach relation Ri has arity ki. Then construct � = hV; fS1g; : : : ; fSngi and �0 = hD;R1; : : : ; Rni.A CSP homomorphism is a function g : V ! D such that for all i = 1; : : : ; n,hv1; : : : ; vkii 2 fSig ) hg(v1); : : : ; g(vki)i 2 Ri:The set of all homomorphisms for P is denoted Hom(P).We establish the relation between the solutions to a CSP instance and CSP homomorphism.Proposition 1 ([9]). Sol(P) = Hom(P);for an instance P.As we will rely heavily on viewing binary relations as graphs, we de�ne the necessary conceptshere.



De�nition 4. A graph, G, is a tuple, G = hV;Ei where V is a (non-empty) set of vertices, and Ea set of edges, hvi; vji, such that vi; vj 2 V . Two vertices vi; vj 2 V are adjacent if hvi; vji 2 E orhvj ; vii 2 E. A cycle in a graph is a sequence of vertices, vi1 ; vi2 ; : : : ; vim such that hvij ; vij+1 i 2 Efor j = 1; : : : ; n� 1, and hvin ; vi1 i 2 E. The natural number m is the length of the cycle. A graphis undirected if, whenever hvi; vji 2 E, then hvj ; vii 2 E. A graph is bipartite if it is possible topartition V into two disjoint sets X and Y , such that every edge with the left vertex in one of thepartitions has the right vertex in the other partition, and no edges contain vertices from the samepartition. Equivalently, a bipartite graph is a graph without cycles of odd length.Unless otherwise stated, we will assume that graphs are irre
exive, that is, that for any v 2 V ,hv; vi 62 E. Moreover, all isolated vertices (that is, vertices that does not belong to any edge) areassumed to belong to one partition.De�nition 5 (Graph Homomorphism). Let G = hV;Ei and G0 = hV 0; E0i be two graphs. Agraph homomorphism from G to G0 is a function f : V ! V 0 such that, if vi and vj are adjacentvertices in G, then f(vi) and f(vj) are adjacent vertices in G0.For graphs, the k-coloring problem, for natural numbers k, is de�ned as the problem of �nding afunction f : V ! f0; 1; : : : ; k � 1g such that adjacent vertices in the graph are not mapped to thesame number. We will use the fact that 2-coloring is a tractable problem.A more general problem, for a �xed graph H , is the problem of deciding whether there existsa graph homomorphism from a graph G to H . This problem is called is called H � coloring.For H-coloring we have the following strong complexity result, proven in [6]. Note that for anon-irre
exive graph H , H-coloring is trivial.Theorem 1 ([6]). Let H be a �xed undirected graph. If H is bipartite then the H-coloring problemis in P. If H is not bipartite then the H-coloring problem is NP-complete.We can now proveProposition 2. For a symmetric binary relation, R, CSP(fRg) is tractable if the graph hD;Ri,where D is the domain of R, is bipartite, and NP-complete otherwise.Proof. Follows immediately from Proposition 1 and Theorem 1.For instances with more than one constraint, it does not su�ce that every relation is bipartite fortractability. As we will show in Sect. 5, it is necessary to impose global restrictions on the set ofrelations.Since we only consider binary constraint relations in this paper, we will use the words \graph"and \relation" interchangeably.3 Closure and complexityWe will be interested in closure properties of sets of binary relations, which motivates the followingde�nition.De�nition 6. Given a binary relation R, and a function � : Dn ! D, we say that R is closedunder �, if for all sets of tuples hd11; d12i 2 R...hdn1 ; dn2 i 2 Rthe tuple h�(d11; : : : ; dn1 ); �(d12; : : : ; dn2 )ialso belongs to R.



Below we will assume that � is a set of relations over a �nite set D with at least two elements.The set of all functions � : Dn ! D, any n, under which every member of � is closed, will bedenoted Fun(� ).If we de�ne �(R) to be the binary relationf�(d1; d2) j hd1; d2i 2 Rg;we can equivalently de�ne R to be closed under � i� �(R) � R. From this de�nition it is easy toproveTheorem 2 ([8]). For any set of �nite relations � , and any � 2 Fun(� ), there is a polynomialreduction from CSP(� ) to CSP(�(� )), with �(� ) = f�(R) jR 2 �g. That is, under the polynomialreduction CSP(� ) is satis�able i� CSP(�(� )) is satis�able.From Theorem 2 it follows that if Fun(� ) contains a non-injective unary function, then CSP(� )can be reduced to a problem with smaller domain. We say that � is reduced if Fun(� ) does notcontain any non-injective unary functions.Theorem 3 ([8]). For any reduced set of relations � over a �nite set D the set Fun(� ) mustcontain at least one of the following six types of functions:1. A constant function;2. A binary idempotent function, that is, a function � such that �(d; d) = d for all d 2 D;3. A ternary majority function, that is, a function � such that �(d; d; d0) = �(d; d0; d) = �(d0; d; d) =d for all d; d0 2 D;4. A ternary a�ne function, that is, a function � such that �(d1; d2; d3) = d1 � d2 + d3 for alld1; d2; d3 2 D, where hD;+i is an abelian group;5. A semiprojection, �, that is, for n � 3, there exists i 2 f1; : : : ; ng such that for all d1; : : : ; dn 2D with jfd1; : : : ; dngj < n, we have �(d1; : : : ; dn) = di;6. An essentially unary function, that is, a function � of arity n such that �(d1; : : : ; dn) = f(di)for some i and some non-constant unary function f , for all d1; : : : ; dn 2 D.The complexity and closure function results in [8] can be summarized as follows:{ If Fun(� ) contains a constant function, then CSP(� ) is tractable.{ If Fun(� ) contains a binary function that is associative, commutative, and idempotent (ACI),then CSP(� ) is tractable.{ If Fun(� ) contains a majority function, then CSP(� ) is tractable.{ If Fun(� ) contains an a�ne function, then CSP(� ) is tractable.{ If Fun(� ) contains only semiprojections, then CSP(� ) is NP-complete.{ If Fun(� ) contains only essentially unary functions, then CSP(� ) is NP-complete.Classes of problems that are tractable due to the closure properties have been extensively studiedin the literature. For instance, the class of max-closed constraints [10] are closed under an ACIfunction [8], and the class of CRC constraints [2] are closed under a majority function [7].In [8] Jeavons et al. state thatIt is currently unknown whether there are tractable sets of relations closed under somecombination of semiprojections, unary operations, and binary operations which are notincluded in any of the tractable classes above.Below, we will introduce a class that is not closed under constant, ACI, majority, or a�ne functions.



R1 R2 R1 �R2Fig. 1. Composition of the two bipartite relations R1 and R2 yielding a non-bipartite relation R1 �R2.4 A new tractable subclassWe saw in Proposition 2 that for a single binary and bipartite constraint relation CSP wastractable. However, if we introduce more relations it is easy to see that bipartiteness alone onthe union of the relations does not yield tractability.De�nition 7. Intersection and union of relation is de�ned as set theoretic intersection and union.Composition of binary relations R1 and R2 is de�ned as R1�R2 = fhx; zi j 9y:hx; yi 2 R2 ^ hy; zi 2 R1g.We often write R2 instead of R �R.Note that if CSP(fR1 �R2g) is NP-complete, then CSP(fR1; R2g) is too, since we can go backand forth from fR1 �R2g to fR1; R2g in polynomial time. This also holds for intersection.Example 1. In Fig. 1 two bipartite relations, R1 and R2, are depicted. By composing them we geta relation R1 � R2 that contains cycles of odd length, which means that the composition is notbipartite. Thus, by Theorem 2, CSP(fR1; R2g) is NP-complete.De�nition 8 (lpn). Let � = fR1; : : : ; Rng be a set of binary symmetric relations over a �nitedomain D, and construct the graphs G1 = hD;R1i; : : : ; Gn = hD;Rni. � is said to be locallybipartite if Gi is bipartite, for all i. If � is locally bipartite, with partitions Xi; Yi for Gi we saythat � is partition equivalent if X1 = X2 = : : : = Xn and Y1 = Y2 = : : : = Yn. Furthermore, � issaid to be non-disjoint if R1 \ : : : \ Rn 6= ;.We will refer to the class of locally bipartite, partition equivalent, non-disjoint sets of relations aslpn.Henceforth, when we write CSP(� ), we assume that � 2 lpn.Theorem 4. CSP(� ) is tractable.Proof. Given P = hV;D;R1(x1; x01); : : : ; Rn(xn; x0n)i 2 CSP(� ) we show that there exists a solu-tion to P i� the graph GV = hV; fhx1; x01i; : : : ; hxn; x0nigi is 2-colorable.(). Assume that GV is 2-colorable, and choose hd; d0i 2 Tni=1Ri (which exists since the set ofrelations is non-disjoint). Color GV with d and d0. Clearly, this coloring is a solution to P .)). Let h : V ! D be a solution to P . Since the set of relations is bipartite and partitionequivalent we name the partitions X and Y and construct a function f : V ! f0; 1g, as follows:f(v) = (0 if h(v) 2 X;1 if h(v) 2 Y .Clearly, f is a 2-coloring of GV .It is known that 2-coloring is co � SL-complete [11], that is, it is complete for the complementof the class of symmetric logspace problems. Moreover, Nisan and Ta-Schma have shown thatSL = co� SL [13], which gives us the following:Corollary 1. CSP(� ) is SL-complete.Proof. In the proof of Theorem 4, CSP(� ) is trivially reduced to 2-colorability (and vice versa).Thus we can immediately apply Reif's result [11] followed by Nisan and Ta-Schma's result [13].



4.1 Non-closure properties of lpnIn this section we will show that some sets of relations in lpn are not closed under constant,majority, ACI, or a�ne functions. Consider the graph C6 in Fig. 2 representing a bipartite relationijkabcFig. 2. The graph C6, with partitions fa; b; cg and fi; j; kg.R. Since the graph is irre
exive, we can immediately see that fRg is not closed under a constantfunction.For the existence of a majority function d we can note thatd(a; a; b) = ad(b; a; b) = bd(b; c; c) = cd(i; j; k) = x;with x 2 fa; b; c; i; j; kg. We will show that x cannot be chosen such that C6 is closed under amajority function. Consider the following three edges of C6: ha; ii; ha; ji; hb; ki we can see that ifwe apply d to the edges component-wise, we get that x 2 fi; jg for C6 to be closed under anymajority function. For the following three edges: hb; ii; ha; ji; hb; ki, we get x 2 fi; kg. Finally, forhb; ii; hc; ji; hc; ki we get x 2 fj; kg. Thus, there is no choice of x that satis�es the three tripletssimultaneously, and therefore there cannot exist a majority function under which C6 is closed.Next, we turn our attention to ACI functions. We can easily see that undirected and irre
exivegraphs are not closed under any commutative function, that is, if d is commutative then d(x; y) =d(y; x), for all x; y 2 D. If the graph is undirected there exists a pair of edges, hx; x0i and hx0; xi,and if we apply d component-wise to the edges we get hd(x; x0); d(x0; x)i = hy; yi, for some y 2 D.Since the graph was irre
exive, it cannot be closed under an ACI function.Finally, we prove that C6 is not closed under a�ne functions. Consider the three edges of C6:ha; ii; ha; ji; hc; ji. Choose + so that hD;+i is an abelian group, and let �x denote the inverse ofthe element x 2 D. Next, we consider ha+ (�a) + c; i+ (�j) + ji which is the component-wiseapplication of any a�ne function on the three edges. Since hD;+i is associative and that thereexists a neutral group element, we haveha+ (�a) + c; i+ (�j) + ji = h(a+ (�a)) + c; i+ ((�j) + j)i = hc; ii;which is not an edge in C6. Thus, we have showed the followingProposition 3. Members in lpn are not in general closed under constant, majority, ACI, ora�ne functions.We have shown that members of lpn do not have closure properties that are known to yieldtractable CSP instances. However, in similar spirit as the proof of Theorem 4, we can construct aunary non-injective function under which members of lpn are closed.Let � = fR1; : : : ; Rng 2 lpn, X and Y be the two partitions, and hdX ; dY i 2 Tni=1 Ri, suchthat dX 2 X and dY 2 Y . Then, construct the unary function f : D ! Df(d) = (dX if d 2 X;dY if d 2 Y .



Since every edge in any relation has one vertex in X , and the other in Y , � is closed under f .Whenever the domain of � is larger than 2, f is non-injective. If we then look at f(� ) we can seethat the remaining domain only contains 2 elements, namely dX and dY , and that there are no non-injective unary functions under which this new relation is closed. The relation fhdX ; dY i; hdY ; dXigis thus reduced, and it is a trivial exercise to �nd a majority function under which it is closed.5 The restrictions on lpn cannot be removedThe tractability proof of CSP(� ) (Theorem 4) relies on the locally bipartite, partition equivalent,and non-disjoint properties of the sets of relations of the instances. We will now show that wecannot remove any of the three properties and still maintain tractability. The arguments will besimilar to that in Example 1, that is, we start with some graphs, put them together somehow andend up with a non-bipartite result on which we can apply Hell and Ne�set�ril's theorem (Theorem1). Clearly, if we remove the local bipartiteness property, we have an NP-complete problem, so wedirect the attention to the other two cases.5.1 Disjoint relationsIn Example 1 we saw an example of two bipartite and partition equivalent relations, without anycommon edge (that is, disjoint relations). By composition we constructed a non-bipartite relation,which by Proposition 2 gives us NP-completeness.5.2 Non-partition equivalent relationsab abR1 R2Fig. 3. Two relations R1 and R2 that are bipartite and non-disjoint, but does not have the same partitions.In Fig. 3 we can see two relations that are locally bipartite and non-disjoint, but that does nothave the same partitions (the two vertices a and b cannot belong to the same partition of bothrelations). In Fig. 4 we see that by composing R1 with itself, we get a re
exive relation (remember
R21 �R2R21

d1d3 d2
Fig. 4. R1 composed with itself, and the result of R21 � R2, which is not bipartite due to the odd cyclebetween d1, d2, and d3.



that the corresponding CSP then is trivially tractable), but when R21 is composed with R2 we getan odd cycle between the vertices d1, d2, and d3. Note that the second graph in Fig. 4 is directed.We can, however, easily restore the undirectedness by intersecting the graph with its complement.NP-completeness then follows from Proposition 2.6 Conclusion and open problemsIn this paper we have exploited the notion of bipartite graphs to identify a new class of tractableCSPs. For a deeper understanding of the results presented in this paper a number of open prob-lems need to solved. Here, we state some of the more interesting of them.How do we extend CSP(� ) to a maximal tractable class?It is easy to see that CSP(� ) is not a maximal tractable class, since we, for example, can add non-irre
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