
Deductive Planning with Temporal Constraints

Martin Magnusson and Patrick Doherty
Department of Computer and Information Science
Linköping University, 581 83 Link̈oping, Sweden
http://www.ucl.ac.uk/commonsense07/
papers/notes/magnusson-and-doherty/

Abstract

Temporal Action Logic is a well established logical formal-
ism for reasoning about action and change using an explicit
time representation that makes it suitable for applications that
involve complex temporal reasoning. We take advantage of
constraint satisfaction technology to facilitate such reasoning
through temporal constraint networks. Extensions are intro-
duced that make generation of action sequences possible, thus
paving the road for interesting applications in deductive plan-
ning. The extended formalism is encoded as a logic program
that is able to realize a least commitment strategy that gener-
ates partial order plans in the context of both qualitative and
quantitative temporal constraints.

1 Introduction
Temporal Action Logic (TAL) (Doherty &Kvarnstr̈om
2006) has proven to be a highly versatile and expressive for-
malism for reasoning about action and change. One of its
distinguishing characteristics is its use of explicit time struc-
tures expressed as sub-theories in a standard classical logic.
Historically, TAL has used integer time, but it would be in-
teresting from a representational perspective and useful in
practical applications to use different temporal structures, or
even combinations, such as timepoints and intervals. A prac-
tical obstacle in doing this is the inefficiency of a straightfor-
ward application of classical theorem proving techniques to
deduce inferences from TAL narratives together with axiom-
atizations of time.

One way to approach this problem is to take advantage of
work done with temporal constraint propagation techniques
and to combine theorem proving techniques with specialized
constraint algorithms for dealing with temporal structures in
TAL narratives. In fact, General Temporal Constraint Net-
works (GTCN) will be used with TAL in order to reason
efficiently with a subset of the full formalism. In this man-
ner, it is also possible to combine both time points and time
intervals. To do this, we will use a form of semantic attach-
ment where intervals are introduced as terms and relations
between intervals as function terms. This makes efficient
reasoning with both time points and intervals in TAL possi-
ble using GTCN constraint propagation algorithms.

In previous work, we used TAL as a formal specifica-
tion language for a very powerful forward-chaining planner
called TALplanner. The idea was to input a goal narrative

formally specified using TAL into the procedural planner
which in turn output a plan narrative whose formal seman-
tics was also based on TAL. One could show the formal cor-
rectness of the input/output behavior of TALplanner using
TAL in this manner.

In contrast, this paper introduces additional extensions to
TAL that enable deductive planning at the object level rather
than meta-theoretically. In order to do this both action oc-
currences and sets of action occurrences (a form of plan or
narrative) will be introduced as terms and sets in the object
language, respectively. In this manner, one may generate
partially ordered plans deductively in TAL by appealing to
the use of GTCNs together with the TAL deductive mecha-
nism implemented as a logic program.

2 Temporal Action Logic
TAL is a narrative based formalism for reasoning about ac-
tion and change where narratives include action type speci-
fications, causal or dependency constraints, observations at
specific points in time, and action occurrences through du-
rations. A high-level macro language is normally used to
specify narratives that are compiled into a first-order the-
ory. Circumscription is then used to provide solutions to the
frame, qualification and ramification problems. For the pur-
poses of this paper, we will provide narrative examples in
first-order logic to describe our extensions and also exclude
some details of the full formalism.

In the standard TAL formalism, the predicateOcclude
plays a prominent role in the solution to the frame, ram-
ification, qualification and other problems that arise when
reasoning about action and change in incomplete contexts.
To assertOcclude(t,f ) in a theory, provides a constraint that
basically states that a fluentf is allowed to change value
from timepointt− 1 to t when using integer time as the ba-
sic temporal structure. What value it takes, or if it changes
value at all, is determined by additional assertions in the the-
ory such as action occurrences or causal or dependency con-
straints which are part of TAL narratives. A form of filtered
preferential entailment is used where that part of the theory
involving the use of theOcclude predicate is first circum-
scribed, providing a definition ofOcclude. This provides a
succinct characterization of all timepoint/fluent pairs where
change is allowed. Some of the models for this part of the
theory may contain spurious change not supported by any



assertions in the theory. These models are filtered by con-
joining a persistence formula1 of the following form:

¬Occlude(t + 1,f ) → (Holds(t,f ) ↔ Holds(t + 1,f )) (1)

Action occurrences in a TAL narrative are asserted by using
an Occurs predicate, whereOccurs(t1,t2,a) asserts that an
actiona occurs during the interval[t1, t2]. This predicate is
also circumscribed, providing a definition ofOccurs.

Consider a reasoning domain involving the flight of an
Unmanned Aerial Vehicle (UAV) between two locations, ex-
pressed in the following TAL narrative, where variables are
in italics and free variables are assumed universally quanti-
fied:

Holds(0,atuav(base)) (2)

Occurs(3,8,fly(loc1)) (3)

Occurs(t1,t2,fly(x)) → (Holds(t1,atuav(y)) → (4)
Holds(t2,atuav(x)) ∧ ¬Holds(t2,atuav(y)) ∧
∀t,z [t1 < t ≤ t2 → Occlude(t,atuav(z))])

¬Occlude(t + 1,atuav(x)) → (5)
(Holds(t,atuav(x)) ↔ Holds(t + 1,atuav(x)))

The basic modelling primitives arefluents, such asatuav in
formula 2, that represent properties of the world that might
hold different truth values over time. Formula 3 is an action
occurrence formula. A fluent’s truth value is influenced by
actions (or causal constraints) as defined by action specifi-
cation formulas (and dependency constraint formulas). For-
mula 4 states that the effect of flying the UAV to locationx
between timepointst1 andt2 is that at timepointt2 it will be
at locationx but no longer be aty, provided that it actually
started aty at timepointt1. Note also that the fluentatuav is
occluded during the actions duration.

CircumscribingOccurs in the narrative results in a defini-
tion characterized by formula 6. CircumscribingOcclude in
the action specification formula subset of the narrative (for-
mula 4) results in a definition characterized by formula 7.

Occurs(t1,t2,f ) ↔ t1 = 3 ∧ t2 = 8 ∧ f = fly(loc1) (6)

∃t1,t2,y,z [t1 < t ≤ t2 ∧ Occurs(t1,t2,fly(z)) ∧
Holds(t1,atuav(y))] ↔ Occlude(t,atuav(x)) (7)

Formula 5 is a persistence formula foratuav which together
with formula 7 may be used to prove persistence and non-
persistence of the fluentatuav on the time-line. Given the
example narrative we can prove that the UAV will be atloc1
at timepoint8 by proving that it remains atbase until thefly
action takes it toloc1 between timepoints3 and8.

This short introduction to TAL serves as a basis for under-
standing the extensions described in this paper but is by no
means a complete feature list. Some topics that have been
dealt with in other publications are e.g. ramifications, qual-
ifications, context-dependent effects, side effects, and non-
deterministic actions. For a more detailed presentation of
TAL the reader is referred to (Doherty &Kvarnström 2006).

1Actually, in the current version of TAL, a number of persis-
tence formulas are used, one per fluent specified as being persis-
tent. Moreover, theHolds predicate is usually generalized to in-
clude non-boolean fluents using a third argument from the fluents’
value domain. For the purposes of this paper, these details are not
important.

3 Reified Action Occurrences
TAL action occurrences are specified using theOccurs pred-
icate. Hypothesizing new instances of this predicate given a
goal would require abductive techniques or the use of some
special-purpose planning algorithm such as TALplanner. In
order to experiment withdeductiveplanning techniques us-
ing TAL, it is necessary to reify action occurrences as terms
in the language so one can reason with and quantify over
actions.

We introduce a functionocc and replace action occur-
rencesOccurs(t1,t2,a) by terms of the formocc(t1,t2,a). A
set of action occurrences is a collection of such terms and,
since their order in the collection is unrelated to their actual
temporal order determined by their relations to the explicit
time line, the collection behaves like a regular mathemati-
cal set. Additionally, a vital property is incompleteness. A
reasoning problem involving a fully specified set of action
occurrences often corresponds to a prediction or postdiction
problem while an under-specification often gives rise to a
planning problem.

We would like to add individual action occurrence terms
to action occurrence sets. We adopt the (infix) fluent compo-
sition function◦, used to represent world states in the Fluent
Calculus as described in e.g. (Thielscher 2005), to represent
TAL action occurrence sets as terms. So, ifa is an action
occurrence term andp is an action occurrence set, thena◦p,
although a term, essentially represents the set of action oc-
currences{a} ∪ p. E.g. a setp involving a fly action and
possibly other actions can be written as:

∃p′ [p = occ(3,8,fly(loc1)) ◦ p′]

Thielscher provides axioms that characterize the behaviour
of ◦ in (2005), but we will be content with introducing a
new Occurs predicate, the meaning of which is understood
through semantic attachment as follows:

Occurs(t1,t2,a,p) def
= occ(t1,t2,a) ∈ p, p is formed using ◦

The old Occurs predicate had direct logical consequences
through action specifications such as formula 4 above. We
can deduce the same logical consequences from reified oc-
currences by adding an action set argument to theHolds and
Occlude predicates. E.g. formula 4 is rewritten as:

Occurs(t1,t2,fly(x),p) → (Holds(t1,atuav(y),p) →
Holds(t2,atuav(x),p) ∧ ¬Holds(t2,atuav(y),p) ∧
∀t,z [t1 < t ≤ t2 → Occlude(t,atuav(z),p)])

When using persistency of fluents it becomes necessary to
prove non-occurrence of actions with effects that might oth-
erwise modify the fluent’s value. The TAL circumscription
policy usually makes this possible by circumscribing theOc-
curspredicate. With reified action occurrences, assumptions
made about the plan argumentp can be expressed as formu-
las. E.g. the formula¬∃t1,t2,l [Occurs(t1,t2,fly(l),p)] ex-
cludesfly actions from a specific action occurrence setp.
Such assumptions can be proven to hold when any unbound
plan variables have been instantiated. However, the logic
programming methodology presented in Section 6 uses a set
of constraint handling rules to continually track and resolve
potential conflicts between action effects and persistency.



4 Interval Occlusion
The TAL occlusion concept provides a means to control at
which timepoints fluents may change value. But in our expe-
rience, occlusionbetweenspecific timepoints is often just as
usueful as occlusionat specific timepoints. In fact, one may
think of negated occlusion (persistence) of a fluent in terms
of intervals. Introducing intervals as first-class citizens in
TAL makes interval-based temporal constraint formalisms
applicable for temporal reasoning, and they simultaneously
provide a meaning for the intervals through semantic attach-
ment, relating interval and timepoint primitives.

As a first step in this direction we introduce the predicate
Occlude(t1,t2,f ) to assert what we will callinterval occlu-
sion for a fluentf . The intended meaning is that fluentf is
interval occluded over(t1, t2] if it is occluded at some time-
point in that interval. Conversely, if we manage to prove
that fluentf is not interval occluded fort1 andt2, then we
know that its value will persist. Formally, we define interval
occlusion in terms of the regular timepoint occlusion as:

Occlude(t1,t2,f ) ↔ ∃t [t1 < t ≤ t2 ∧ Occlude(t,f )] (8)

It is not difficult to construct a proof through induction over
the length of intervals that (8) together with the persistence
formula for timepoint occlusion (1) entails aninterval per-
sistenceformula:

¬Occlude(t1,t2,f ) → (9)
∀t [t1 < t ≤ t2 → (Holds(t− 1,f ) ↔ Holds(t,f ))]

Note that even if a fluent is interval occluded over a given
interval, it might still be unoccluded in sub-intervals. How-
ever, if the fluent is interval persistent over the interval it
must also be persistent in all sub-intervals.

Formulas 8 and 9 entail the following formula:

¬Occlude(t1,t2,f ) → (Holds(t1,f ) ↔ Holds(t2,f )) (10)

Using (10), the truth value of a fluent can be made to “jump”
any number of timepoints in a single proof step. This tech-
nique is essential in the implementation that is described in
section 6. Though not much has been gained if we still need
to prove timepoint occlusion false at each individual time-
point before being able to prove interval occlusion false us-
ing its definition formula 8. Instead, we would like to intro-
duce interval occlusion directly in the occlusion formula 7
of our UAV example, repeated here for convenience:

∃t1,t2,y,z [t1 < t ≤ t2 ∧ Occurs(t1,t2,fly(z)) ∧
Holds(t1,atuav(y))] ↔ Occlude(t,atuav(x)) (11)

By substituting the timepoint occlusion predicate in the def-
inition of interval occlusion in formula 8 by its definition in
(11), with timepoint variables renamed and existential quan-
tifiers rearranged, we get:

∃t3,t4,y,z [∃t [t1 < t ≤ t2 ∧ t3 < t ≤ t4] ∧
Occurs(t3,t4,fly(z)) ∧ Holds(t3,atuav(y))] ↔

Occlude(t1,t2,atuav(x))

The sub-formula∃t [t1 < t ≤ t2 ∧ t3 < t ≤ t4] asserts the ex-
istence of a timepoint that is common to the intervals(t1, t2]
and(t3, t4]. Hence, the fluent expressing the location of the
UAV is interval occluded in(t1, t2] iff a fly action, which is

the only action affecting the UAV’s location in our example,
occurs in an interval thatoverlapswith (t1, t2] in any way,
given that the precondition of the fly action is satisfied.

5 Temporal Constraint Networks
The second step towards introducing intervals as first-class
citizens in TAL is the application of an interval-based tem-
poral constraint formalism. By adopting the general tempo-
ral constraint networks, developed by Meiri (1996), we gain
a temporal formalism that is complete for a large class of
temporal reasoning problems. Generalizing Allen’s interval
algebra (1983), Vilain and Kautz’ point algebra (1986), and
formalisms based on metric constraints, the GTCN facili-
tates both qualitative and quantitative reasoning with incom-
plete information and includes both interval and timepoint
primitives that provide a natural fit with our requirements.

We replace timepoint pairs by intervals in the
Occurs(t1,t2,a) and Occlude(t1,t2,f ) predicates to ob-
tain an Occurs(i,a) and anOcclude(i,f ) predicate. The
Holds predicate still accepts timepoint arguments and
these timepoints are related to intervals byPoint-Interval
(PI) relations, timepoints are related to each other by
Point-Point (PP) relations, and intervals to each other by
Interval-Interval (II) relations. When action occurrences
are temporally ordered by the PI, PP, and II relations,
instead of relying on integers and their inherent ordering,
we need to represent those relations as a fundamental
part of the action occurrences. To this end we introduce
pi(t,i,r), pp(t1,t2,r), and ii(i1,i2,r) functions that are used
to represent the possible relationsr given in (Meiri 1996).
These functions are incorporated into the formalism by
extending action occurrence sets to include both action
occurrence terms and interval relation terms. For example,
the following action occurrence set represents afly action
that takes place during intervali1, which starts at timepoint
tp1 and ends at timepointtp2.

occ(i1,fly(loc1)) ◦ pi(tp1,i1,[starts]) ◦ pi(tp2,i1,[finishes])

To make use of this representation we introduce new predi-
cates where the GTCN constraints expressed in thep argu-
ment on the left hand side encodes the PI and II relations on
the right hand side:

Starts(t,i,p)
def= t{s}i

Finishes(t,i,p)
def= t{f}i

Overlaps(i1,i2,p)
def= i1{o, s, d, f,=, fi, di, si, oi}i2

TheOverlap predicate, in effect, implements the interval oc-
clusion overlap sub-formula∃t [t1 < t ≤ t2 ∧ t3 < t ≤ t4]
using the constraint network.

6 Planning as Deduction
Consider a logistics scenario, extending the UAV example
from Section 2. The task is to delivercrate1 andcrate2 from
homebase to another locationloc1. The UAV needs help
from an unmanned ground vehicle (UGV) that attaches the
crates to the UAV while it is hovering to remain absolutely



still. The TAL enhancements introduced above pave the way
for deductive planning in scenarios similar to this.

We introduce a Prolog implementation of a reasoning sys-
tem for a subset of TAL, called PARADOCS, that views
Planning And Reasoning As DeductiOn with ConstraintS. It
supports prediction from a fully instantiated set of actions,
planning from the empty set of actions, and anything in be-
tween. PARADOCS can be used to reason about a subset of
TAL narratives that can be encoded using Horn clauses that
are in close correspondence with the first-order TAL axioms.
Temporal relations are managed by a general temporal con-
straint network implemented by a set of constraint handling
rules (CHR) (Fr̈uhwirth 1994) (Fr̈uhwirth 1998). Encoding
the above scenario using the PARADOCS framework results
in a quite compact program. The entire implementation, ex-
cluding the code for the GTCN solver, is presented and ex-
plained below.

We start with the semantic attachments. The composition
function comp(a,p,p′), borrowed from Thielscher’s FLUX
implementation (Thielscher 2005), denotes the composition
p = a ◦ p′. The other predicates use the GTCN to link
intervals with their start and end timepoints, to give intervals
duration, and to relate intervals with each other.

occurs(I,A,P) :-
comp(occ(I,A),P,Pp), circ_occurs(I,A).

comp(A,[A|Pp],Pp).
comp(A,P,[A1|Pp]) :-

nonvar(P), P = [A1|P1], A \== A1,
comp(A,P1,Pp).

duration(I,T1,T2,Tmin,Tmax) :-
arc(T1,I,[starts],p-i),
arc(T2,I,[finishes],p-i),
arc(T1,T2,[Tmin-Tmax],p-p).

not_overlap(I,I2) :-
arc(I,I2,[after,before,meets,met_by],i-i).

covers(I,I2) :-
arc(I,I2,[contains,equals,

finished_by,started_by],i-i).

Next we deal with persistence. While planning, one is con-
tinually using non-occlusion to prove fluent value persis-
tence while, at the same time, actions are added to the reified
action occurrence set that threaten to affect and modify the
very same occlusion. Consequently, we need to continually
ensure that considered actions do not violate any persistence
proofs that have already been assumed. The CHR frame-
work together with the temporal constraint network make a
flexible solution to this problem possible.

Whenever a non-occlusion assumption is used to prove
the persistence of a fluent value over an interval, this is noted
using thenot occlude constraint. Additionally, whenever
an action is added to the plan, acirc occurs constraint is
added, which serves as a representation of the circumscrip-
tion of action occurrences added so far. The definition of
occlusion, obtained through circumscription of theOcclude
predicate in the original narrative, is compiled into a set of
CHR rules. These trigger on potential non-occlusion/action-
occurrence conflicts, enforcing new temporal constraints in
the network that resolve the conflict by making sure the ac-
tion interval does not overlap any part of the persistence in-
terval. If such a resolution is not possible the network be-
comes inconsistent, triggering a backtrack in the planning

process that will consider other actions or other ways of
proving the fluent value. By expressing occlusion using con-
straint handling rules we ensure that assumptions are auto-
matically triggered and reevaluated whenever needed.

In our case every fluent is persistent exceptstill , adu-
rational fluent that is true while the UAV is hovering and re-
verts to false as soon as it stops hovering. Formula 10 is put
in Horn form to express persistence in the forward direction.
We excludestill , add apersist constraint (explained in
the next paragraph), and abridge the temporal relations us-
ing duration , to get the persistence formula and conflict
resolution rules:
holds(T2,F,P) :-

F \== still, persist(I,F),
inf(Inf), duration(I,T1,T2,0,Inf),
holds(T1,F,P), not_occlude(I,F).

not_occlude(I,atuav(Y)), circ_occurs(I2,fly(X))
==> not_overlap(I,I2).

not_occlude(I,at(X,Y)), circ_occurs(I2,attach(X))
==> not_overlap(I,I2).

not_occlude(I,at(X,Y)), circ_occurs(I2,drop(X))
==> not_overlap(I,I2).

There are potential problems with infinite looping given the
depth-first search strategy of Prolog. This is especially true
concerning the persistence formula. A fluent is true at a
timepoint if it is true at an earlier timepoint and is not oc-
cluded during the interval in between. It is true at the earlier
timepoint if it is true at an even earlier timepoint, and so on.
We see that the looping is correct but unwanted behaviour.
But the observation that if a fluent is persistent over two in-
tervals that meet, then it must be persistent over the union
of the intervals, provides the key to a simple solution. To
gain completeness in the general case we would be forced to
add a plan length or search depth limit, but here we get by
with adding a constraint rule that prohibits two consecutive
persistence intervals:
persist(I1,F), persist(I2,F),

path(_,I2,I1,[met_by],i-i,_) ==> fail.

The initial state can be specified after resolving one compli-
cation. The GTCN works exclusively with variables so we
can not use a dedicated constant to denote a first timepoint.
Instead we use a constraintnow that makes sure all refer-
ences to the initial timepoint are equal. Recognizing that the
initial state holds regardless of what actions are in the action
set argument we get:
now(T1) \ now(T2) <=> T1 = T2.
holds(Now,atuav(base),P) :- now(Now).
holds(Now,atugv(base),P) :- now(Now).
holds(Now,at(crate1,base),P) :- now(Now).
holds(Now,at(crate2,base),P) :- now(Now).

Moving on to the action specification formulas one might
wonder how negative action effects are realized without reg-
ular negation. The answer is that the conflict resolution con-
straints, introduced previously, prevent the application of
fluent persistency over an interval where an action with a
negative effect for that fluent value overlaps. E.g. if a nar-
rative contains an action that flies the UAV from the base to
another location, we can no longer use persistence to prove
the UAV is still at the base at some timepoint after or during



the flight. The only way of proving that the UAV is at the
base would be by flying it back.

We encode the action formulas tofly the UAV, to use
the UGV toattach a crate to the UAV while it executes a
hover , and todrop a crate at the current location, adding
two constraints on the concurrency of flying and hovering:
holds(T2,atuav(X),P) :-

occurs(I,fly(X),P), holds(T1,atuav(Y),P),
traveltime(X,Y,T), duration(I,T1,T2,T,T).

holds(T2,carrying(X),P) :-
occurs(I,attach(X),P),
holds(T1,at(X,Y),P), holds(T1,atugv(Y),P),
holds(T1,atuav(Y),P), holds(I2,still,P),
covers(I2,I), duration(I,T1,T2,60,60).

holds(I,still,P) :-
occurs(I,hover,P),
inf(Inf), duration(I,T1,T2,0,Inf).

holds(T2,at(X,Y),P) :-
occurs(I,drop(X),P), holds(T1,carrying(X),P),
holds(T1,atuav(Y),P), not_occlude(I,atuav(Y)),
duration(I,T1,T2,10,10).

circ_occurs(I,hover), circ_occurs(I2,fly(X))
==> not_overlap(I,I2).

circ_occurs(I,fly(X)), circ_occurs(I,fly(Y))
==> X = Y.

Note that the precondition ofattach requires the fluent
still to hold at all timepoints during the operation. In
first-order logic this is solved with a universal quantifier, but
Prolog is less expressive. Instead we take advantage of the
fact that all timepoints between two timepoints, taken to-
gether, constitute an interval. Thehover action thus causes
the still fluent to be true over the interval during which
the hover is active.

One of the distinguishing qualities of deductive planning
is the potential for a seamless use of background knowledge.
Knowledge about actions and knowledge about other things
are expressed in a unified declarative format that is oper-
ated upon using the same deductive mechanisms. Although
this description might not be a complete fit with present-day
deductive planning systems, it still provides a strong and ap-
pealing intuition. As a tiny gesture towards this possibility
we provide the system with some “background knowledge”
expressing the duration of travel given the speed of the UAV
and the distance between locations:
speed(25).
coord(base,20000,12000).
coord(loc1,26000,20000).
coord(loc2,26000,12000).
dist(A,B,D) :-

coord(A,Ax,Ay), coord(B,Bx,By),
D is sqrt(exp(Bx - Ax,2) + exp(By - Ay,2)).

traveltime(X,Y,T) :-
dist(X,Y,D), speed(S),T is (D / S) * 1.5.

Finally, for completeness of this presentation, we include the
last three constraint rules that remove redundant constraints:
not_occlude(I,F) \ not_occlude(I,F) <=> true.
circ_occurs(I,A) \ circ_occurs(I,A) <=> true.
persist(I,F) \ persist(I,F) <=> true.

6.1 Plans are Temporal Networks
Using the encoding we can solve the UAV scenario by letting
Prolog prove a goal such as the following:

?- now(Now), P = [occ(Id,drop(crate1))|P2],
arc(Td,Id,[finishes],p-i),
arc(Now,Td,[600-900],p-p),
holds(Tn,at(crate1,loc1),P),
holds(Tn,at(crate2,loc1),P).

In addition to the declarative goals that the crates should be
at loc1 we state that the resulting plan will involve dropping
crate1 and that this action should be completed within 10
to 15 minutes from now.

After a pause of 17 seconds SICStus Prolog 3.12.5, run-
ning the above program on an Intel Pentium M 1.8 GHz,
produces a plan in the form of a set of actions and eight
pages of constraints that relate them temporally. The plan is
visualized using a graphical interface that displays a diagram
approximately like the one in Figure 1.

The diagram is a convenient overview of the plan but does
not necessarily reflect the full extent of uncertainty in the
corresponding GTCN. Through interaction with the graph-
ical interface we discover that the twoattach actions, as
well as the twodrop actions, can be ordered in whatever
way seems best, that thehover action is constrained only to
be before thefly action while covering theattach actions,
and that there is flexible room for pauses between actions
during execution. The quantitative constraint oncrate1 has
been propagated and shows e.g. that the UAV needs to leave
base at 4:50 at the latest, and that the drop can be made at
11:10 at the earliest.

Let us now suppose that the plan is executed, the UGV at-
taches the crates and the UAV flies toloc1 . However, when
it arrives a UAV operator pauses the execution and views the
remaining parts of the plan, the two drop actions that have
not yet been executed. The operator changes the goal of de-
livering crate2 at loc1 to another location,loc2 .
?- now(Now), P = [occ(Id,drop(crate1)),

occ(Id2,drop(crate2))|P2],
holds(Tn,at(crate1,loc1),P),
holds(Tn,at(crate2,loc2),P).

The persistence intervals ensure a large amount of flexibility
in the plan. PARADOCS takes advantage of this and elabo-
rates the plan fragment to fit the goals by introducing a new
fly action in between thedrop actions. New actions can be
inserted in the middle of the plan without first backtracking
on later actions, thereby reducing the search space. In fact,
the UAV problem just discussed was solved without back-
tracking on any action choices.

7 Related Work
Much of the inspiration to PARADOCS comes from other
research groups with similar approaches. We only have
space to compare our approach with the most important in-
fluences and start with Shanahan’s abductive event calcu-
lus planner (2000). It is based on the Event Calculus, an-
other explicit time formalism, but produces its partially or-
dered plans using abduction onOccurs and temporal rela-
tions through an abductive meta-interpreter, which is (we
think) slightly more complex than our deduction with rei-
fied action occurrences.

Unlike Shanahan’s use of timepoint relations the expres-
sive power of the GTCN does not force us to adopt the



at(crate1,loc1) 

at(crate2,loc1) drop(crate2) 
carrying(crate2) 

atuav(loc1) 

fly(loc1) 

attach(crate2) 

at(crate2,base) 
atugv(base) 
atuav(base) 

atuav(base) 

at(crate1,base) 
atugv(base) 
atuav(base) 

hover 

attach(crate1) carrying(crate1) 

12:00:00 –inf–3:50 0:00–3:50 0:00–3:50 1:00–4:50 1:00–4:50 1:00–4:50 11:00–14:50 11:00–14:50 11:00–inf 11:10–inf 11:10–inf 11:10–inf 1:00–4:50 

atuav(loc1) 

drop(crate1) 

Figure 1: A plan diagram.

promote/demote strategy from partial order planning algo-
rithms when faced with possible “protected link” threats. In-
stead, persistence/action conflicts can be detected even with
incomplete temporal information. We have in fact experi-
mented with weaker constraint solvers similar to simple tem-
poral networks, but found the much added complexity of the
implementation that results from the introduction of promo-
tion and demotion to detract from the clarity of presentation
of the basic PARADOCS mind set.

In a feature comparison, the event calculus planner ex-
tends our basic planning capabilities with hierarchical plan-
ning and a form of knowledge producing sensing actions
based on abduction (Shanahan &Witkowski 2001).

Another deductive planning framework is Golog
(Levesqueet al. 1997), based on the Situation Calculus
from where the idea of reified action occurrences passed
around using an extra predicate argument originates. But
Golog’s situation terms contain linearly ordered action
sequences without explicit temporal information. This
fact prevents the generation of partially ordered plans,
but note that such shortcomings can be overcome through
various extensions, as is done e.g. in Congolog (Giacomo,
Lesperance, &Levesque 2000).

Finally, the Fluent Calculus serves as the formal basis
for FLUX (Thielscher 2005), another logic programming
methodology that supports deductive planning with linear
plans. Constraint handling rules are used in FLUX, but not
for temporal reasoning. Instead, they enable the representa-
tion and planning with some forms of incomplete informa-
tion.

8 Conclusions
The explicit time formalism of Temporal Action Logic ex-
poses qualitative and quantitative temporal primitives that
are particularly amenable to reasoning using temporal con-
straint networks. This paper takes the first steps in that direc-
tion through extensions to TAL and a concise but expressive
logic program for deductive planning. The concept of oc-
clusion and the use of general temporal constraint networks
enable a novel solution to persistency threats where a set
of constraint handling rules implements a strategy of min-
imal commitment by taking advantage of disjunctive and
incompletely specified temporal constraints. Furthermore,
non-occlusion constraints in solution plans represent fluent
value dependencies that can be monitored during execution,

and partially executed plans with failed dependencies can be
reasoned with and completed in the same deductive frame-
work.

Acknowledgements
This work is funded in part by a grant from the Swedish Re-
search Council (VR) and from the Swedish National Aero-
nautics Research Program (NFFP).

References
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals.Communications of the ACM26(11):832–843.
Doherty, P., and Kvarnström, J. 2006.The Handbook of
Knowledge Representation. Elsevier. chapter 18. To ap-
pear.
Frühwirth, T. 1994. Temporal reasoning with constraint
handling rules. Technical Report ECRC-94-05, Munich,
Germany.
Frühwirth, T. 1998. Theory and practice of constraint han-
dling rules. Journal of Logic Programming, Special Issue
on Constraint Logic Programming37(1-3):95–138.
Giacomo, G. D.; Lesperance, Y.; and Levesque, H. J. 2000.
Congolog, a concurrent programming language based on
the situation calculus.Artificial Intelligence121(1-2):109–
169.
Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains.Journal of Logic Program-
ming31(1-3):59–83.
Meiri, I. 1996. Combining qualitative and quantitative con-
straints in temporal reasoning.Artificial Intelligence87(1–
2):343–385.
Shanahan, M., and Witkowski, M. 2001. High-level robot
control through logic.Lecture Notes in Computer Science
1986.
Shanahan, M. 2000. An abductive event calculus planner.
Journal of Logic Programming44(1-3):207–240.
Thielscher, M. 2005. FLUX: A logic programming method
for reasoning agents.Theory and Practice of Logic Pro-
gramming5(4–5):533–565.
Vilain, M., and Kautz, H. 1986. Constraint propagation al-
gorithms for temporal reasoning. InProceedings of AAAI-
86, 377–382.


