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Abstract— A key requirement of autonomous vehicles is the
capability to safely navigate in their environment. However,
outside of controlled environments, safe navigation is a very
difficult problem. In particular, the real-world often contains
both complex 3D structure, and dynamic obstacles such as
people or other vehicles. Dynamic obstacles are particularly
challenging, as a principled solution requires planning trajec-
tories with regard to both vehicle dynamics, and the motion of
the obstacles. Additionally, the real-time requirements imposed
by obstacle motion, coupled with real-world computational
limitations, make classical optimality and completeness guar-
antees difficult to satisfy. We present a unified optimization-
based motion planning and control solution, that can navigate
in the presence of both static and dynamic obstacles. By
combining optimal and receding-horizon control, with temporal
multi-resolution lattices, we can precompute optimal motion
primitives, and allow real-time planning of physically-feasible
trajectories in complex environments with dynamic obstacles.
We demonstrate the framework by solving difficult indoor 3D
quadcopter navigation scenarios, where it is necessary to plan
in time. Including waiting on, and taking detours around, the
motions of other people and quadcopters.

I. INTRODUCTION

Safe navigation for autonomous vehicles is an area un-
der intense research. As automotive companies are making
strides towards full autonomy in structured street environ-
ments, unmanned aerial vehicles (UAVs) such as quadcopters
are also increasingly being looked towards for autonomous
inspection, monitoring, search, and even delivery tasks. To
efficiently solve such tasks in unstructured environments,
often requires the capability to both safely navigate in static
environments, while at the same time taking into account
other moving agents in the area. Such dynamic obstacles
may include, e.g., ground vehicles, UAVs and even people.

This is a difficult motion planning problem, where a
principled solution requires planning over time, with regard
to both vehicle and obstacle dynamics. Additionally, moving
obstacles will impose real-time constraints on planning,
while real-world autonomous vehicles have computational
limitations.

We propose a principled solution to this problem by using
a unified optimization-based motion planning and control
architecture, where both layers use the system dynamics
to generate and execute feasible trajectories in real-time.
In particular, we present a novel receding-horizon motion

1Division of Artificial Intelligence and Integrated Com-
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Fig. 1: Example indoor 3D warehouse scenario with both
static and dynamic obstacles, including humans (red) on the
ground, and other quadcopters (orange) flying at varying
altitudes. The faded spheres are predictions of future motion.

planner which has similarities to multi-resolution state lat-
tices [1], [2]. Motion primitives, a set of dynamically feasible
trajectories, are generated offline by the use of numerical
optimal control. These are then used in an online graph-
search to find a dynamically-feasible and cost efficient
solution to the dynamic motion planning problem. Chosen
motion primitives are efficiently tracked by a receding-
horizon controller.

As benchmark domain we use a challenging class of
indoor quadcopter 3D navigation scenarios seen in Fig. 1,
populated by both people and other vehicles. To the authors’
knowledge, this remains largely an unsolved problem.

Planning with respect to time is essential to be able to wait
for, or move out of the way of, moving obstacles. However,
by discretizing the state space and time, and generating
optimal motion primitives with boundary constraints on both
states, controls and time will interfere with minimum cost
objectives in the motion planner. To circumvent this issue we
instead propose an augmented multi-resolution state and time
lattice where a wait-time state takes the place of time. The
wait-time state allows the vehicle to remain in equilibrium
points for short time durations, e.g. hovering for a quadcopter
or zero longitudinal velocity for a ground vehicle. To manage
the complexity of graph search in high-dimensional lattices,
we formalize a framework for multi-resolution lattice plan-
ning by drawing on similarities to receding-horizon control.
In this context, the cost-to-go is approximated by a finalizing
search in a graph with low-resolution and moving obstacles
can be neglected.

We refer to our motion planning approach as receding-
horizon lattice planning to stress that the motion planner is
operating in a receding-horizon fashion, where the cost-to-go
is estimated in a finalizing search in a low-resolution state
lattice. The efficacy of the proposed approach is illustrated



on difficult quadcopter navigation tasks in dynamic 3D
indoor environments, using simulations of a commonly used
quadcopter research platform.

A. Related Work
Motion planning with moving obstacles is a difficult

problem as the robot needs to plan trajectories with regard
to both its own motion, and that of the obstacles. While
simpler avoidance behaviors exist, e.g. velocity obstacles
[3], to efficiently navigate a cluttered corridor with moving
obstacles actually requires planning around obstacles. This
would suggest an optimization-based approach, where at
each point in time the predicted positions of obstacle ge-
ometry are included as constraints on the feasible trajectory.
Such obstacle geometry make the feasible set non-convex,
which poses a significant challenge under the real-time
requirements of autonomous robots.

By using receding-horizon control formulations, e.g.,
Model Predictive Control (MPC), it has previously been
demonstrated that finding good local solutions is possible
in open environments with a small number of obstacles [4].
Unfortunately, including geometric constraints for complex
indoor environments, with both static and dynamic obstacles,
makes the optimization problem prohibitively expensive to
solve in real-time. This stems both from the number of
added obstacle constraints, increasing the iteration cost of
MPC solvers, and the extra non-convexity making it hard
to find good local solutions. Our proposed approach avoids
geometric constraints in the control layer by leaving collision
checking and obstacle avoidance to the motion planner.

On the quadcopter control side, with the surging interest
in quadcopters, fast trajectory planning methods tailored
to quadcopter dynamics have also enjoyed increased atten-
tion [5], [6], [7]. A popular trick is to exploit differential
flatness to be able to perform the trajectory generation in
the flat outputs, i.e. the position and yaw angle of the
quadcopter [6]. The trajectory generation problem then boils
down to finding piece-wise higher-order polynomial spline
in the flat outputs, while satisfying boundary conditions
and minimizing a performance measure, e.g. minimal jerk
or snap [5]. These methods are faster and scale better in
planning horizon compared to general-purpose MPC solvers,
but including obstacles still requires an outer optimization
procedure and does not address the obstacle avoidance
problem, which is typically handled by geometric motion
planning [6], [7]. Furthermore, including time and collision
constraints to handle moving obstacles is an open problem.

Motion planning using state lattices originates from the
ground vehicle domain [8], [9]. The lattice framework re-
lies on precomputation of a large set of feasible motions
connecting the nodes. The motion planning problem can
then be solved online by applying efficient graph search
methods on the motion primitives. They have also been
used with randomized tree-search approaches [10], however
these generally require a closed-form controller to efficiently
connect the nodes.

Lattice-based motion planning framework also been ex-
tended to plan in both structured [11] and unstructured
dynamic environments [1]. It has also been used off-road
in [12], which employs a multi-resolution state lattice with a

lattice graph of high resolution in the vicinity of the vehicle,
but time and dynamical obstacles are not considered.

In [1], time is included in the discretization of the
lattice graph, however, rather than using an optimization-
based approach for motion primitive generation, the motion
primitives are generated via constant control signals and a
massive number of simulations of the system. This method
for generating motion primitives is not suitable for systems
with complex dynamics, especially not unstable systems. As
in [13] we use an optimization-based approach to generate
optimal motion primitives. Numerical optimal control [14] is
utilized in order to satisfy the system dynamics, physically
imposed constraints, ensure smooth control signals, and
minimize a desired performance measure.

Recently, lattice-based motion planning for quadcopters
where motion primitives are generated offline via differen-
tially flatness have also been suggested [15], [16], however,
these do not include moving obstacles or time. The former
found that their state lattice approach outperformed the pop-
ular sampling-based Rapidly-exploring Random Tree (RRT)
algorithm [17].

The remainder of the paper is structured as follows.
In Section II the receding-horizon motion planning prob-
lem is formally explained and in Section III the receding-
horizon lattice planner is presented. Finally, in Section IV
the framework is applied to a quadcopter with a trajectory
tracking MPC controller, together with simulation results on
challenging dynamic 3D indoor navigation scenarios.

II. PROBLEM FORMULATION

Consider a vehicle that is modeled as a time-invariant
nonlinear system

ẋ(t) = f (x(t),u(t)) (1)

where x(t) ∈ Rn denotes the vehicle’s states and u(t) ∈
Rm its control signals. The vehicle is assumed to have
physically imposed constraints on its states x(t) ∈ X and
control signals u(t)∈U . Furthermore, the vehicle is assumed
to operate in a 2D or 3D-world W(t) where both static and
moving obstacles exist. The regions which are occupied with
obstacles Oobs(t) are separated into static obstacles Os,obs
and dynamic obstacles Od,obs(t). The free-space where the
vehicle is not in collision with any obstacle at time t is
defined as Xfree(t)=X \Oobs(t). The objective of the motion
planner is to generate a feasible and collision-free reference
trajectory (x0(t),u0(t)), t ∈ [tI , tG] that moves the vehicle
from its current position xI to a desired goal position xG,
while optimizing a given performance measure JD, e.g.,
minimum time, minimum energy or maximum smoothness.
Define the Dynamic Motion Planning Problem (DMPP) as

minimize
u0(·), tG

JD =
∫ tG

tI
L(x0(t),u0(t), t)dt

subject to ẋ0(t) = f (x0(t),u0(t)), (2)
x0(tI) = xI , x0(tG) = xG,

x0(t) ∈Xfree(t), ∀t ∈ [tI , tG]
u0(t) ∈ U , ∀t ∈ [tI , tG]

which is a nonlinear optimal control problem that is most
often intractable to even find a feasible solution to, and



motion planning algorithms are instead utilized in order to
achieve real-time performance [17].

An optimal solution to the DMPP in (2) is not only hard
to find, there is a high probability that the solution will
become infeasible during the trajectory execution due to
the fact that the longterm motion of moving obstacles are
hard to predict exactly. In order to safely navigate close to
dynamic obstacles, the motion planner needs to be reactive
to unpredicted motions of other agents and replan at a
sufficiently high rate, while also keeping the longterm goal
in mind. In order to achieve these two sometimes competing
goals we deploy a receding-horizon search-based motion
planning framework.

A. Receding-horizon motion planning
Similarly to receding horizon control, the DMPP in (2)

is relaxed by replacing the fixed final constraint x0(tG) = xG
in (2) with a terminal cost Φ(x0(tH)),xG, tH), and the motion
planning problem is solved in a receding horizon fashion.
Define the Receding Horizon Motion Planning Problem
(RHMPP) as

minimize
u0(·), tH

JH = Φ(x0(tH)),xG, tH)+
∫ tH

tI
L(x0(t),u0(t), t)dt

subject to ẋ0(t) = f (x0(t),u0(t)), (3)
x0(tI) = xI ,

x0(t) ∈Xfree(t), ∀t ∈ [tI , tH ]
u0(t) ∈ U , ∀t ∈ [tI , tH ]

where tH denotes the end of the planning horizon and is
an optimization variable. As in receding horizon control, the
terminal cost, i.e. cost-to-go, plays a key role and is intended
to estimate the remaining cost to the goal xG from the state
at the end of planning horizon x0(tH), i.e.,

Φ(x0(tH)),xG, tH)≈
∫ tG

tH
L(x0(t),u0(t), t)dt (4)

However, estimating the cost-to-go (4) is not a simple task,
especially not in maze-like environments where there are
plenty of different routes to the goal.

Furthermore, if the planning horizon is short and the
terminal cost is severely underestimated, there is a high risk
that the motion planner chooses a trajectory such that the
vehicle ends up in a bad local minimum, e.g., an alley, from
which it is incapable of recovering from. An example is
illustrated in Fig. 2. In the top figure, a bad local minimum to
the planning problem is found since the Euclidean distance
from the position of the vehicle at tH to the goal is used as
terminal cost.

The RHMPP in (3) can be separated into two distinct
subproblems. The first subproblem is to find dynamically
feasible trajectories towards the goal that are safe, e.g. does
not collide with any static nor dynamic obstacle. The second
part of the problem is to calculate the cost-to-go (4) in a
systematic way. Choosing between the possible solutions
such that it reflects the cost-to-go, and thus avoiding poor
longterm trajectory selections. For this purpose, collisions
with moving obstacles are also not as important as static
obstacles, since motions further in the future are harder to
predict, and a real vehicle has limited sensor range. In the

Fig. 2: Examples of a bad (top) and a good (bottom)
solution to the receding-horizon motion planning problem
for a quadcopter that is operating in an indoor environment.
The top figure is when relevant terminal cost (cost-to-go)
is underestimated, and the bottom figure when the terminal
cost is calculated in a systematic way.

next section, a principle solution to the RHMPP in (3) is
proposed.

III. RECEDING-HORIZON LATTICE PLANNER

This section presents an extension of the basic state-lattice
motion planning framework [8] to also handle dynamic
obstacles in cluttered environments, e.g. other vehicles or
people. This is done by augmenting the state-lattice graph
with an additional wait-time state, allowing a previously
explored state to be visited multiple times. The standard
state-lattice motion planning framework [8] is resolution
optimal and resolution complete when an admissible heuris-
tic function is used during online planning, and no time
constraint is imposed on the search process. However, since
temporal planning with dynamic obstacles is a computation-
ally heavy task that has real-time requirements, we plan in a
receding-horizon fashion. This sacrifices resolution optimal-
ity and completeness guarantees for real-time performance
and safety.

The framework is based on the multi-resolution state-
lattice framework [2], where a graph with both high reso-
lution and connectivity is searched through during a primary
planning phase, in the vicinity of the vehicle. Later a sec-
ondary search is performed with a graph of lower resolution
with less connectivity, as illustrated in the lower picture
in Fig. 2. The secondary search is used to estimate the
remaining cost to the goal, and in order to make this search
extremely fast, only static obstacles are collision checked.

A. Temporal state-lattice planning
The first and primary part of the planning cycle uses

an augmented version of the state lattice motion planning
framework [8]. This augmented lattice graph includes an
extended state vector xt = (x,wt), where a wait-time state
wt ∈ Z+ is included in the representation of the graph.
The wait time wt is a positive integer that can be viewed



as a non-decreasing counter. Similarly to state-lattices [8],
the temporal state-lattice planner searches for a resolution
optimal solution to the DMPP in (2) by discretizing the state-
space of the vehicle in a regular fashion, and constraining
the motion of the vehicle to a lattice graph G = 〈V ,E〉. Each
vertex v ∈ V denotes a discrete wait-time enhanced state
xt,d = (xd ,wt), where the subscript d denotes that the states
are discrete, and each edge e ∈ E encodes a motion which
respects the system dynamics (1) and its physically imposed
constraints.

In this work, the wait-time counter wt will be counted up
by one if a ”wait action” is used, and this is only allowed to
be used if the vehicle is standing in an equilibrium point. This
results in a state trajectory where the vehicle state remains
fixed and the wait time wt is counted up by one. Unlike
normal state-lattices, this augmented lattice graph allows the
vehicle to wait in the same spot for a certain time duration, or
revisit previously explored vehicle states, since the extended
state vector xt,d can differ even though the vehicle states
xd are identical. This flexibility is crucial for planning safe
and collision free trajectories to avoid moving obstacles in
congested areas of the environment. Moreover, compared to
discretizing the time in the lattice graph [2], the time duration
of a motion primitive is a free parameter and when, e.g.,
minimum time problems are considered, the time duration
of a motion primitive can be an optimization variable in the
motion primitive generation.

B. Lattice creation
Moreover, the discretization of the lattice graph defines

which discrete wait-time enhanced states the vehicle can
reach xt,d ∈Xd×Z+, and the allowed motions of the vehicle
are encoded in the motion primitive set P . The size of the
motion primitive set is M, i.e., |P | = M, which is a finite
number of possible transitions from one discrete state to
neighboring states in a bounded neighborhood in free space,
and thus determines the connectivity of the graph. The pro-
cedure of selecting which states to connect is application de-
pendent and is typically performed by a system expert [13].
As in earlier state lattice planning frameworks [8], we exploit
assumptions of position and time-invariance of the vehicle
dynamics when generating the motion primitives pi ∈ P .

The motion primitives are generated offline by solving
a finite number of Two-Point Boundary Value Problems
(TPBVPs) to connect a discrete set of initial states xd,i ∈Xd
to a discrete set of neighboring states xd, f ∈Xd in a bounded
neighborhood in free space. The TPBVP solver guarantees
that the motion primitives respect the system dynamics
and its physically imposed constraints. Moreover, the time
and position-invariance properties guarantee that a motion
primitive pi ∈P is translatable to other discrete states in the
graph. A motion primitive pi ∈P is a trajectory (xi

0(t),u
i
0(t)),

t ∈ [0, t i
f ] that satisfies the following properties:

ẋi
0(t) = f (xi

0(t),u
i
0(t)) (5a)

xi
0(0) = xi

s ∈ Xd , xi
0(t

i
f ) = xi

f ∈ Xd (5b)

x0(t) ∈ X , u0(t) ∈ U , ∀t ∈ [0, t i
f ] (5c)

where xi
s and xi

f denote the initial and final state of the
vehicle, respectively. An example of a motion primitive set
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Fig. 3: Motion primitives for a quadcopter from where the
vehicle is hovering to different neighboring states on the
high resolution lattice grid that is used during the temporal
planning phase.

for a quadcopter from an initial state xi
s where the vehicle is

hovering to neighboring states xi
f ∈ Xd can be seen in Fig. 3.

Similarly to [13] the motion primitives pi ∈ P are gener-
ated offline using numerical optimal control [14]. However,
instead of using different objective functions during the
motion primitive generation and online planning, the same
objective function is used and each motion primitive pi ∈ P
is assigned the resulting objective function value JD,i.

C. Online planning
During online planning, a suboptimal solution to the

DMPP in (2) is searched for using dynamic programming,
where efficient graph-search algorithms, s.a. A∗ with an
admissible heuristic, can be used. Since the system dynamics
and its physically imposed constraints have been taken care
of during the motion primitive generation, what remains
during online planning is to find the best sequence of motion
primitives that together generate a trajectory (x0(t),u0(t)),
t ∈ [tI , tG] that does not collide with any obstacle in Oobs(t),
and moves the vehicle from its current position xI towards
the desired goal xG. However, in order to be able to quickly
react to changes in the environment, the temporal planning
time is bounded to be less than tT seconds, e.g., half of the
overall planning time. If a solution to the goal has been found
within its allowed time slot, the resulting trajectory is sent
for trajectory execution.

Otherwise, the DMMP in (2) is solved in a receding
horizon fashion (3) and a secondary search towards to goal
is initiated. The secondary planning phase is intended to
estimate the remaining cost-to-go Φ(x0(tH)),xG, tH) from the
frontier of explored states in the lattice graph that satisfies
a certain minimum plan duration criteria tmin, i.e., tH ≥ tmin
in (3). The minimum plan duration constraint is included
in order to guarantee that the vehicle does not collide with
any moving obstacle tmin seconds into the future, such that
a trajectory tracking controller can safely start the execution
of the partly computed plan towards the goal. Note that tmin
is intuitive to tune based on the sensor range of the vehicle
in a practical application.

D. Estimation of cost-to-go
The secondary planning phase continues the search for

a plan towards to goal and is designed to be very fast,



and therefore only considers static obstacles. It is intended
to act as an estimation of the cost-to-go Φ(x0(tH)),xG, tH)
in (4) for the set of collision free plans that satisfy the
minimum time duration criteria that have been found during
the computationally intense temporal planning phase. In the
secondary planning phase, the resolution of the lattice graph
is reduced and the introduced wait-time state wt is neglected.

Moreover, the motion primitive set P is thus also signif-
icantly reduced to Pred ⊂ P such that the lattice planner is
still able to find a feasible plan to reach the desired goal po-
sition of the vehicle with short computation time. Estimation
of terminal cost is critical such that the motion planner does
not choose a trajectory that lead to a bad local minimum, as
in Fig. 2. When a solution to the goal is found, the temporal
part of the best plan is sent for trajectory execution, and
the motion planner keeps continuously replanning the search
for a complete dynamically-feasible and collision-free plan
towards the goal.

IV. RESULTS

To evaluate the performance of the proposed receding-
horizon lattice-based motion planning framework, it is eval-
uated on trajectory planning for a quadcopter in dynamic 3D
indoor environments. All modules that are presented here are
implemented in C++ using ROS [18]. We assume that a task
planner is feeding the motion planner with a fly-to command,
where the desired goal xG is assumed to be an equilibrium
point, i.e., the quadcopter is hovering. The motion planning
and control architecture is schematically illustrated in Fig. 4
and will now be explained in detail.

A. Quadcopter model

We use a model of the DJI Matrice 100, a common
commercial quadcopter research platform1. Denote the co-
ordinates of the center of gravity for the quadcopter in the
world frame W as p = (x,y,z) ∈ R3 and its velocities as
v=(vx,vy,vz)∈R3. Moreover, let φ , θ and ψ denote the roll,
pitch and yaw angle of the vehicle, respectively. The attitude
angles are assumed to be controlled by low-level attitude
controllers that are able to track desired attitude angles, φre f
and θre f , with a first-order system behavior. These first-order
systems can be identified using classical system identification
techniques as described in [19].

By defining R(φ ,θ ,ψ) as the rotation matrix from the
body frame B of the vehicle to the world frame W, the
quadcopter can be modeled as:

ṗ(t) = v(t) (6a)

v̇(t) = R(φ ,θ ,ψ)

0
0
T

−Kdragv(t)+

 0
0
−g

 (6b)

φ̇(t) =
1
τφ

(Kφ φref(t)−φ(t)) (6c)

θ̇(t) =
1
τθ

(Kθ θref(t)−θ(t)) (6d)

ψ̇(t) = 0 (6e)

1www.dji.com/matrice100

Fig. 4: Illustration of the motion planning and control archi-
tecture that is used for the quadcopter platform. The modules
that are colored in blue are considered in this work.

where g is the gravitational acceleration, T is the mass
normalized thrust, Kdrag = diag(Ax,Ay,Az) is the mass nor-
malized drag coefficient matrix, τφ , Kφ and τθ , Kθ are the
time constant and gain of the first-order system behavior of
the inner loop for roll and pitch, respectively.

It is assumed that the yaw angle ψ of the vehicle is
controlled such that it is approximately zero. Define the
state vector as x(t) = (p,v,φ ,θ ,ψ), the control signals as
u(t) = (φref,θref,T ) and represent (6) as ẋ(t) = f (x(t),u(t)).
The vehicle has physical limitations in thrust, and it is unsafe
to fly with too large attitude angles. These limitations are
formulated as constraints on the control signals:

Tmin ≤ T (t)≤ Tmax (7a)
|φref(t)| ≤ φmax (7b)
|θref(t)| ≤ θmax (7c)

Represent the constraints in (7) as u ∈ U . These constraints
have to be taken into account during motion primitive
generation and will also be embedded in the MPC controller
used for trajectory tracking.

B. Receding-horizon lattice planner

To generate the receding-horizon lattice planner, the state
space of the vehicle has to be discretized. In the primary
temporal planning phase, the allowed states of the vehicle
are chosen such that (φd ,θd ,ψd) = (0,0,0) and ud = (0,0,g).
This means that the acceleration of the vehicle is approxi-
mately zero at each vertex in the lattice graph. Only the
position pd , the velocity vd and the wait-time state wt can
change between each vertex in the graph. Thus, at a valid
wait-time enhanced state in the lattice graph, the vehicle can
be represented by a seven-dimensional vector s=(pd ,vd ,wt).
The position of the vehicle pd is given a grid resolution
r = 0.5m in all three directions, and the velocity is discretized
as vd ∈V which is a finite set of triples where the Euclidean
norm of the velocity vector is either 0, 1 or 2. The wait-time
state is a positive integer that can only be used when the
quadcopter is hovering.

In the secondary planning phase, the velocity vd of the
vehicle is constrained to zero and the wait-time state is
ignored. Thus, in the secondary planning phase, a vertex in
the low-resolution lattice graph is represented only by the
position pd of the vehicle, with the same resolution as in the
temporal planning phase.

1) Motion primitive generation: In a similar fashion as
in [13], the motion primitive sets for the primary temporal
P and secondary Pred ⊂ P planning phases are generated
offline using numerical optimal control. In order to gener-
ate physically feasible trajectories for the quadcopter, the
model in (6), the physical constraints in (7) and additional



constraints on the first and second order derivatives of the
control signals are added to the optimal control problem. The
objective function JD that is used for both motion primitive
generation and during online motion planning is

JD = t f +
∫ t f

0
||(u, u̇, ü)||2Qdt (8)

where the block-diagonal matrix Q ∈ S9
+ is a design pa-

rameter that acts as a weight between smoothness and plan
duration. Formally, the optimal control problem that is used
for motion primitive generation is

minimize
ü(·),t f

JD (9)

subject to ẋ(t) = f (x(t),u(t)),

x(0) = xd
i , x(t f ) = xd

f ,

u(0) = ud
i , u(t f ) = ud

f ,

u̇(0) = u̇(t f ) = 0,
|u̇(t)| ≤ u̇max, |ü(t)| ≤ ümax,

u ∈ U.

Since the time duration t f is not discretized in the lattice
graph, it can be a continuous optimization variable in the
motion primitive generation, which is crucial when gener-
ating optimal motion primitives for minimal time problems.
The initial state xd

i and the final state xd
f in (9) are fixed

design parameters that have to obey the chosen discretization
of the lattice graph. We use the open source solver ACADO
Toolkit [14] to solve the OCP in (9) and generate the motion
primitive set P which is a procedure that is done offline and
can easily be parallelized. The size of the motion primitive
set |P | = M and the boundary constraints in (9) for each
motion primitive pi ∈ P are manually specified such that:
• Each discrete state s is reachable in the graph
• Each resulting maneuver is a smooth and intuitive

motion
• The online graph search problem remains tractable to

solve in real-time
As illustration, all possible motion primitives from si =
(0,0,0) to different neighboring states on the lattice grid
for the temporal planning phase are presented in Fig. 3 and
in Fig. 5, all motion primitives from si = (0,vd,i(0),0) for
different initial velocities vd,i(0) are visualized. The size of
the motion primitive set dedicated to the primary temporal
planning phase is |P |= 282. In each vertex s, the number of
possible motion primitives vary between 8 and 86. Moreover,
in a valid grid point in the secondary planning phase, the
number of motion primitives are |Pred| = 10 where eight
of the motion primitives achieve full connectivity to its
closest neighbors in the horizontal plane and two are vertical
movements.

2) Online planning: During online planning, the primary
temporal planning phase initiate the search for a solution to
the dynamic motion planning problem in (3) by searching
through the temporal high-resolution lattice graph using the
A∗ graph search algorithm with the admissible heuristic
function

H(s) =
1

vmax
||pd−pG||2 (10)
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Fig. 5: High resolution motion primitives from si =
(0,vd,i(0),0) to different states on the lattice grid. The
blue, red and black trajectories are from vd,i(0) = (0,−2,0),
vd,i(0) = (0,0,1) and vd,i(0) = (0,1/
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2), respec-
tively.

which is the Euclidean distance to the goal pG from the
current position of the vehicle pd divided by the maximum
average speed vmax of all motion primitives pi ∈ P . This
heuristic is admissible since it is an underestimate of the
remaining plan duration to the goal, and hence it is an
underestimate of the remaining cost-to-go. If the temporal
planning phase is unable to find a complete plan to the goal,
within its allowed time budget, the dynamic motion planning
problem (2) is solved in a receding horizon fashion (3) and
the secondary planning phase continues the search in the
low-resolution lattice graph from vertices that satisfy the
minimal time duration criteria tH ≥ tmin = 5s. In this planning
phase, the same heuristic function as in (10) is used, but
the maximum average speed vmax is of all motion primitives
pi ∈Pred. When a solution is found, the temporal part of the
trajectory is sent for trajectory execution.

C. Trajectory Tracking MPC controller

A nonlinear MPC controller that is based on the work
in [19] is used for trajectory tracking of the reference
trajectory (x0(t),u0(t)), t ∈ [tI , tH ] calculated by the receding
horizon lattice planner. The objective of the nonlinear MPC
controller is to track the desired reference trajectory with
a small tracking error x̄ = x(t)− x0(t), while not deviating
too far from the feed-forward control signal u0(t). The
continuous-time nonlinear MPC problem is formulated as

minimize
u(·)

||x̄(T )| |2PN
+
∫ T

0

(
||x̄(t)| |2R1

+ ||u(t)−u0(t)| |2R2

)
dt

subject to ẋ(t) = f (x(t),u(t)), (11)
u(t) ∈ U,
x(0) = x(t0)

where R1, R2 and PN are positive-definite weight matrices
that are design parameters. The prediction horizon is T = 4s
and the terminal cost matrix PN is chosen as the solution
to the Continuous-time Algebraic Riccati Equation (CARE)
for the linearizion of (6) around hovering. The ACADO
code generation tool [20] is used to automatically generate



C-code for a highly efficient discrete-time nonlinear MPC
controller with the specified sampling time Ts = 0.1s. The
generated code solves a sequence of quadratic programs
using qpOASES [21], an active-set solver with warm-starts.

D. Simulation results

Here we examine simulation results of the proposed
optimization-based receding-horizon lattice planner on chal-
lenging scenarios with moving obstacles, using the DJI
Matrice 100 quadcopter model in (6). In the experiments, we
run the receding-horizon planner with a maximal planning
time of 1s, where the primary planning phase was allocated
tT = 0.33s. We first demonstrate the usefulness and capabil-
ity of our approach to plan in time.

Consider the example in Fig. 6, a moving obstacle moves
right-to-left in a narrow corridor with a small cranny. The
quadcopter starts on the left side and is given a goal behind
the obstacle. In this scenario, the planning time was only
0.02s and thus only a small portion of the primary planning
phase was used. This scenario illustrates a case that requires
planning in time to realize it has to wait in the cranny for
the obstacle to pass before it can reach its goal. A planning
approach that does not take obstacle motion into account,
or cannot plan in time, cannot reliably solve this problem.
For example, if we were to plan in pure position-velocity
lattice, we could not plan to stay in the same cranny with
zero velocity for two time steps, as that would be the same
state. For a real-time demonstration of the planner we highly
recommend the supplemental video material2.

We have shown that planning with some notion of time
can be important for safe motion planning in confined spaces
with moving obstacles. Computational considerations are
also crucial to allow autonomous vehicles to plan trajec-
tories among moving obstacles in real-time. In Fig. 7 we
demonstrate the computational cost of different approaches
to temporal planning. We can see that the proposed wait-
augmented lattice is considerably faster than naive temporal
planning where accumulated time is added to the state. The
right plot also shows that, on a scenario such as this that do
not require temporal planning, the proposed temporal lattice
only imposes a small overhead over not planning in time at
all.

Finally, to demonstrate real-time performance in a setting
representative of the real-world, we consider the warehouse
scenario in Fig 1 (c.f. video material2). The quadcopter is
given a random sequence of random destinations in this
warehouse, for example to inspect the inventory. These result
in difficult indoor 3D navigation problems, spanning several
rooms containing dynamic obstacles. Both humans on the
ground, and other quadcopters flying at varying altitudes,
also given random destinations. What makes this instance
particularly challenging is that we use a simple conservative
model of the other agents, where they are non-cooperative
and do not react to the quadcopter at all. As the future
motions of other agents are imperfectly known, here esti-
mated under a constant velocity assumption, the quadcopter
may get boxed-in. Safety is impossible to guarantee under
these circumstances. Modeling realistic interactions in crowd

2https://sites.google.com/view/rhlmp

Fig. 6: This figure show a scenario where the UAV has to
find a safe spot to move to, and wait at, until an approaching
obstacle has passed by. Such situations necessitates a tempo-
ral lattice planner with a possible stand-still or wait action.

behavior is an open research problem on its own, nevertheless
these conservative scenarios can offer insight on the relative
performance of different algorithms.

The results of the proposed receding-horizon lattice plan-
ner (RHLP) on this difficult scenario are shown in Tab. I.
We compare the full algorithm, as presented in Section III,
to three variants representing common assumptions in motion
planning literature. The first is without obstacle predictions,
and therefore no consideration of time or moving obstacles.
As can be seen this generates considerably more collisions.

The second variant is with the receding horizon tH fixed
only allow one high-resolution motion primitive. This repre-
sents a more reactive avoidance behavior for moving obsta-
cles. We can clearly see that a longer horizon contributes to

Fig. 7: The number of state evaluations required to plan
around an obstacle (wall of increasing length) using different
approaches. A baseline lattice grid without time (Yellow), a
grid with wait time (Blue) and a grid with time (Red). Right:
Proportion between the two time-based variants against the
baseline.



safety. The average time to goal is also longer as the low-
resolution primitives Pred used beyond the horizon do not
admit planning with regard to velocity.

The third and perhaps most relevant variant is to instead
let the horizon tH → ∞, such that high-resolution primitives
P are used all the way to the goal. It was too slow for
real-time operation, taking over a minute to generate a plan
and expanded 3505800 nodes. This clearly demonstrates
the benefit of a receding-horizon approach to the motion-
planning problem.

TABLE I: Results from 100min of the difficult indoor
warehouse scenario with moving non-cooperative obstacles
in 3D. Ablation study of proposed Receding Horizon Motion
Planner (RHLP) against three restricted baselines. Time to
goal and Nodes evaluated are averages per randomized goal,
and plan, respectively.

Motion planner Collisions/min Time to goal [s] Nodes eval.

RHLP 0.24 57.3 36394
RHLPno prediction 0.96 85.0 40769
RHLPhorizon=1prim. 1.12 127.2 2745
RHLPhorizon=∞ not real-time not real-time 3505800

V. CONCLUSIONS AND FUTURE WORK

We proposed a general optimization-based receding-
horizon lattice-based motion planning framework with col-
lision avoidance functionality for both complex 3D environ-
ments and moving obstacles. This includes planning with
both dynamics and time, such that the quadcopter can plan
trajectories around, and move out of the way of, other agents.
This was highlighted by the narrow corridor example, where
the quadcopter has to use crannies or side passages, to wait
for other agents to pass. We also demonstrated real-time
performance on a difficult warehouse scenario with multiple
moving obstacles, both people and other UAVs flying at
varying altitudes. To the best of our knowledge, no other
optimization-based and dynamically-feasible approach has
demonstrated this capability in real-time.

As future work we would like to increase robustness by
explicitly considering uncertainty in obstacle motion, as well
as to implement the proposed framework on real quadcopter
hardware.
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