Model Checking by Random Walk

P@trik Haslum
Department of Computer Science, Link6ping University
pahas@ida.liu.se

Abstract

While model checking algorithms are in theory effi-
cient, they are in practice hampered by the explosive
growth of system models. We show that for certain
specifications the model cheking problem reduces to a
question of reachability in the system state-transition
graph, and apply a simple, randomized algorithm to
this problem.

Introduction

The model checking approach to automated verfication
of finite state systems appears the most successfull to
date. At the heart of the method are efficient algo-
rithms for deciding if a system model, described as a
transition system, satisfies a specification, expressed
in temporal logic (Clarke, Emerson, & Sistla 1986).
While the theoretical time and space complexities of
the algorithms are low order polynomial, they are in
practice often time consuming, because the system
model grows exponentially with the number of system
components.

For certain classes of specification formulas, the
model checking problem reduces to a problem of reach-
ability in the state-transition graph. For certain classes
of graphs, random walks can be used to create a poly-
nomial algorithm for deciding reachability with sigle-
sided, controllable probability of error. Allthough the
time complexity of this algorithm is no better than
that of other model checking algorithms (in fact, it is
worse) two properties of the random walk algorithm
make it interesting for use in verification: First, it uses
extremely little space. Since verification is mostly an
“off-line” activity, space, which is definitely limited,
can be considered a more critical resource than time.
Second, it is highly parallelizable, the expected run-
time decreasing linearly with the number of parallel
processes.

Basics

This section briefly introduces the model checking ap-
proach to verification, the theory of Markov chains and
the random walk algorithm. For more thorough intro-
ductions, see for instance (Clarke, Grumberg, & Peled
1999), (Hoel, Port, & Stone 1972) and (Motwani &
Raghavan 1995), respectively.

Markov Chains

Markov chains model discrete state, discrete time,
stochastic processes. A Markov chain consists of a
finite or countably infinite set of states, X and a se-
quence Xo, X1,... of stochastic variables over X. The
distribution of X;, for all ¢ > 1, is such that it satisfies
the Markov property:

P(X; =z;| Xo =20,...,Xi—1 =Ti_1) (1)
=PX;=a;| X;_1 = zi—1)

i.e. the probability of a certain state £ materializing at
time ¢ depends only on the state of the process at time
¢ — 1, and not on its previous history. The probabili-
ties P(X; = z; | X;_1 = ;1) are called the transition
probabilities. If

P(X;==z; | Xi—1 = x4-1) (2)
= .P()(‘7 = :L‘j |Xj,1 = J)jfl)

for all i,j5 > 1, i.e. the transition probabilities are
independent of time, the chain is said to be station-
ary. We will in sequel consider only stationary chains,
and can therefore abbreviate P(X; =z | X;_1 = y) as
P, ,. A probability distribution over the state space
X of a Markov chain is called a distribution of the
chain. A stationary Markov chain is characterized by
the transition probabilities and the initial distribution
mo(Xo =), z € X.

Denote by E,(-) expectation taken under the as-
sumption that the initial distribution is 7. We will
also write E,(-) for the case when

(@) = { 1 whenz' =z

0 elsewhere

i.e. the initial distribution is concentrated to a single
state . The hitting time of a state z € X is defined
as T, = min{n > 0| X,, = ¢}, i.e. T, is a stochastic
variable denoting the first time that the chain enters
state z. The mean return time of x is defined as m, =
E,(T;). Let rpy = P(Ty < 00| Xo =), @.e. Tgy
is the probability of a chain starting in state z ever
reaching state y. A set of states C C X is closed iff
rgy = 0forallz € Candy € C. A closed set C is
irreducible iff v,y > 0 for all z,y € C.
A distribution 7 over X is said to be stationary iff

m(y) = Beexn(z)P(z,y) (3)

That is, if the state of a chain at time n, X, is drawn
at random according to a stationary distribution 7, the
distribution of X; for all ¢ > n will also be w. It can
be shown that if X is finite, closed and irreducible, the
chain has a unique stationary distribution and this is
given by

m(z) = — (4)

Random Walks on Graphs

A graph, G, consists of a (finite) set of vertices, V,
and a binary edge relation E over V. For a ver-
tex v € V, the neighbourhood of v is defined as
N(v) = {v'|(v;,v") € E} and the outdegree of v is
defined as dyut(v) = |N(v)|. The indegree of v is
din(v) = |{v"| (v',v) € E}|. When d;,(v) = doput(v) for
all v we call the graph Fulerian and write only d(v).
A special class of Eulerian graphs are graphs with sy-
metric edge relation, i.e. for all v,v' if (v,v') € E then
also (v',v) € E. Such graphs are called undirected. A
closed component of G is a graph consisting of a sub-
set of vertices C C V and the edge relation restricted
to C such that there exists no path! from any vertex
v € C to any vertex v' ¢ C. A component is strongly
connected iff there exists a path from v to v' for every
v,v' € C.

A walk on G (of length n) is a sequence of ver-
tices vo,v1,...,V, such that (v;,v;11) € E, for ¢ =
0,...,n—1. The walk is random iff each v;;1 is drawn
at random with equal probability from the neighbour-
hood of v;. Let G be a graph consisting of a single
strongly connected component, and denote by T, ,» the
length of a random walk starting at vertex v and end-
ing at the first time vertex v’ is reached. The following
result by Aleliunas et.al. (1979) is at the heart of the
random walk algorithm.

E(T,.) % (5)

YA path is a walk without repeated vertices.

A random walk on G forms a Markov chain with state
space V and transition probabilities P(v,v') =)
when v' € N(v), and P(v,v') = 0 elsewhere. It is
easily verified that the distribution

_ d(v)
7['(’1)) = m

satifies equation (3), that is, is a stationary distribution
of the chain. Because the state space is finite, closed
and irreducible, the stationary distribution is unique
and therefore

1 _ 2|
m(v) d(v)

m, =

which, since m, = E,(T,) is only another way of say-
ing E(T,), yields (5). Furthermore, for any pair of
vertices, v,v’ in G,

E(Ty) < |V||E| (6)

Because G is strongly connected, there is a path
vg,V1,...,V, from v to v', and because a path con-
tains no repeated vertices, n < |V|. Whenever the
walk is in a vertex v; which lies on this path, the next
step in the walk will with probability ﬁ be a step

“in the right direction”, i.e. to the next vertex in the
path. If any other neighbour of v; is chosen, the walk

. 2[E
will after on average % steps return once more to v’

and try again, and after on average d(v;) tries it will
chose the “right” neighbour of v;. Thus, the expected
number of steps needed to take one step along the path
is |E|, and (6) follows.

We can now describe the random walk algoritm: Let
G be a graph consisting of closed, strongly connected
components? and let v and v’ be two vertices in G.
Choose the probability of error, 0 < e < 1, and make
a random walk of length

1
V|||

on G, starting in vertex v3. Then,

(7) if the random walk reaches v', then there exists a
path from v to v';

(#9) if the random walk does not reach v', then with prob-
ability at least 1 — € there is no path from v to v'.

Tt is in fact sufficient that the component to which v
belongs is closed and strongly connected.

3To be exact, we should in place of |[V| and |E| have the
number of vertices and edges, respectively, in the compo-
nent in which the walk begins.

Claim (%) is trivial; if the random walk reaches v', then
there has to exist a path from v to v'.

To show claim (i), assume that there exists a path
from v to v'. Recall that T, , denotes the stochastic
variable telling us how many steps the random walk
will take before reaching v'. Because T, . is a random
variable taking only non-negative values it holds for
any k > 0 that

P(Tv,v’ Z kE(Tv,v’)) S (7)

x| =

(this is known as Markovs inequality). Therefore
1
P(Tv,v’ > EE(Tv,v’)) <e
and from equation (6) we have that
1
P(Tyw > LV||B]) <

That is, the probability that the random walk must
take more than 1|V||E| steps to reach v’ is less than
€. Thus, if the random walk does not reach v', there is
with probability at least 1 — € no path from v to v'.

Lastly, we need to characterise the class of graphs to
which the algorithm is applicable. The following theo-
rem provides only a sufficient condition, but one more
readily checked than the requirement that the closed
component containing the initial vertex is strongly con-
nected.

Theorem 1

A FEulerian graph G consists of closed, strongly con-
nected components.

Proof: By induction on the number of vertices, |V]|.
Note first that an edge (v,v) (a loop) adds one to both
din(v) and d,yt(v), and thus the presence or absence of
loops does not affect whether the graph is Eulerian or
not. Neither can a loop affect whether a component is
strongly connected or closed. We therefore can assume
that G is free of loops.

For |V| = 1, G consists obviously of a single, strongly
connected component. Assume any Eulerian graph
with |V| = n vertices is divisible into k closed, strongly
connected components, and consider a graph G’ with
|[V| =n+ 1. We can think of G’ as being constructed
from the previous graph by adding a vertex v,,+1 and a
number of edges. If no edges are added, v, is closed
and the graph consists of k£ + 1 closed, strongly con-
nected components.

If we add one edge to v,,41 from one of the compo-
nents, say C;, we must also add an edge from v,1,
since the graph should be Eulerian. If this edge goes
back to C;, C;U{vp41} still forms a closed and strongly

connected component. If the edge goes to another com-
ponent, C;, this will cause an imbalance in degrees.
For, the sum

EvEC,' dout (’U) - dzn (’U)

was 0, the graph being Eulerian, but is now 1 since
we have added an edge from C;. Similarly, the corre-
sponding sum for C; will now be —1. The only way
to right the imbalance is to add an edge from C; to
C;. Adding an edge to C; from another component,
or from C; to another component, only moves the ex-
cess, or shortage, elsewhere (where we can of course
resolve it by adding an edge between those two com-
ponents, or by connecting the edges to C; and from
C; to the same component). In the resulting graph,
C; UCj U {vp+1} (and possibly other components as
well) form an closed, strongly connected component.
O

Model Checking

The system model employed in model checking is a
transition system (also often described as a Kripke
structure). A transition system consists of a set of
states, S, a binary transition relation, R, on S, and a
labeling function, L, which maps each state to a set
of atomic propositions that hold in the state. A sub-
set of states, Sy C S are designated as initial states.
Since a transition system is, in fact, a labeled graph,
we sometimes refer to it as a state-transition graph.

The specification language is most commonly some
form of temporal logic. We describe briefly Compu-
tation Tree Logic (CTL), which is used by the system
described in the next section.

A CTL formula is built from the atomic propositions
of the system model, propositional connectives and the
temporal operators AX, EX, AF, EF, AG, EG, AU
and EU. A CTL formula is evaluated with respect to
a transition system, M, and a state s € S, as follows:

A formula % not containing any temporal operator
is evaluated as a normal propositional logic formula
in L(s).

e A formula of the form EX1) is true iff ¥ holds in
some state s’ such that (s,s’) € R.

e A formula of the form AGq is true iff ¥ holds in ev-
ery state of every walk on the state-transition graph
of M that starts from s.

e A formula of the form E(pUv)* holds iff there is a
path from s to some state s’ in which v holds, such
that ¢ holds in every state along the path up to s'.

“The AU and EU operators are written in this notation.

The remaining operators can be expressed in terms
of these three by means of equalities. In particular,
EFy = E(TRUEUY).

The model checking problem is the problem of de-
ciding if the specification formula holds in every ini-
tial state s € Sp of the system model. The time, and
space, complexity of the best known model checking
algorithm for CTL is linear in the product of the sizes
of the system model and the specification. The use of
symbolic representation techniques (Burch et al. 1992)
can reduce the space required, but in the worst case it
is still linear.

Model Checking by Random Walk

From the definition of the interpretation of CTL for-
mulas, it is clear that the model checking problem for
certain formulas reduces to a question of reachability
in the state-transition graph.

() A formula EF1), where ¢ contains no temporal op-
erators, holds in state s if some state s’ in which
holds is reachable from s.

(i) A formula AG4), where ¢ contains no temporal op-
erators, holds in state s if no state s’ in which o
holds is reachable from s.

(#) A formula E(pU4v), where neither ¢ nor ¢ contains
temporal operators, holds in state s if some state s’
in which v holds is reachable from s in the restriction
of the state-transition graph consisting only of states
in which ¢ holds.

When the state-transition graph is Eulerian, questions
of reachability can be decided by the random walk al-
gorithm. Systems with a non-singleton set of initial
states can be dealt with by extending the transition
relaition with a complete set of edges on the set of ini-
tial states. Clearly then, a target state is reachable
from some initial state if and only if it is reachable
from any initial state.

Representation and Complexity

For even moderately sized system models, it is infea-
sible to represent the state-transition graph explicitly.
Therefore, we assume that the state set, S, is the set
of interpretations over a collection of p propositions,
which also gives a natural definition of L, and that the
transition relation, R, is represented by a set of func-
tions t;(s), ¢ = 1...k, from states to successor states
(another common representation of R is as a logic for-
mula 7(s, s') which holds when and only when s’ is a
successor of s).

The random walk algorithm requires knowledge of
|V| and | E|. With the assumed representation, we have

that |[V| = 2P, that |E| < |V|? and that |E| < k|V|
(k is typically much smaller than |V|). Because these
are overestimates of |V| and |E|, we can apply them
in the random walk algorithm without increasing the
probability of error. This makes the time complexity
of the algorithm

1

k2p+1
1—c¢

The space requirement is only what is required to store
a single state, p, and O(ep) bits to represent a counter.

Verifying Symmetry

The random walk algorithm is applicable when the
state-transition graph is Eulerian, but not necessarily
when the graph is not. Deciding if a state-transition
graph, in the representation we have assumed, is Eule-
rian requires time on the order of k|V|? (to determine
the indegree of a state s we have to enumerate all states
and count the number of them that have s as a succes-
sor).

However, deciding if the state-transition graph is
undirected can be done in the course of the random
walk, with a time overhead of only k. Whenever a suc-
cessor t;(s) of s is chosen to be the next state in the
walk, check that for some 1 < j < k, t;(ti(s)) = s.

Experiments

We have implemented a model checker based on the
random walk algorithm. It accepts a system descrip-
tion in a restricted form of the syntax used by the SMV
model checker (SMV) and a specification formula in
CTL of one of the three forms listed in section . We
have used it for comparisons with SMV, and to explore
some properties of random walks.

The Semaphore Example

In the semaphore example, adapted from (McMillan
1992), the system consists of two concurrent processes,
P1 and P2, each of which can be in one of the four
states idle, entering, critical and exiting, and a
boolean variable semaphore. Each process is initially
idle, and can change from idle to entering, and
from entering to critical, but only if semaphore is
false. When a process changes to state critical, it
also changes semaphore to true. From state critical
each process can change to exiting, and from exiting
back to idle, at the same time changing semaphore
back to false. The state-transition graph is shown
in figure 1. The graph is not Eulerian, but the closed
component that contians the initial state is strongly
connected.

Figure 1: State-Transition graph for the semaphore
system. The initial state is drawn solid.

We ran the random walk checker and SMV on the
specification formulas

¢1 : AG-(Pl.critical AP2.critical)
¢2 : AG-((Pl.entering A P2.exiting)
V(Pl.exiting A P2.entering))

The first formula holds in the initial state. For a prob-
ability of error € = 0.1, the estimated number of steps
required is 51200, which the random walk checker com-
pletes in slightly less than a second®. The second for-
mula is false in the initial state, and the system re-
peatedly finds a counterexample in time too small to
measure. SMV also solves both problems in a fraction
of a second.

The Tile Puzzle

The tile puzzle, more commonly known as the “8-
puzzle” or “15-puzzle” for the special casesm =n =3
and m = n = 4 respectively, is a standard example in
AL The puzzle consists of m x n squares (m,n > 2)
and mn — 1 labeled tiles positioned on the squares.
Thus, one square is left empty, and a tile in an adjacent
square can be moved into the empty square (horizon-
tally or vertically, not diagonally). While the puzzle is
a “toy example”, it happens to have some convenient
properties:

(7) The state-transition graph is undirected and con-
tains mn! states, divided into two closed compo-
nents.

(#%) There exists an effective procedure to decide whether
two given states belong to the same component.

We ran the example with m = n = 3, a fixed initial
state and a specification formula of the form

EF(square; = t; A... A squarey, = tg)

’The experiments where carried out on a SUN Ultra 10

(a) Empirical distribution

0.8

0.6

0.4

0.2

L L L L L
0 5 10 15 20 25 30

(b) Exponential distribution with = 3.28
1 T === T

0.8

0.6

0.4

0.2f/

.
[5 10 15 20 25 30
seconds

Figure 2: (a) Empirical distribution of 1000 sample
runtimes (b) Exponential distribution with best-fit pa-
rameter

where, t1,... ,t9 is some permutation of 0..8 (the tile
labels, 0 representing “blank”), i.e. with the ques-
tion of whether a particular state is reachable. Figure
2(a) shows the empirical distribution of 1000 samples
of the random walk checkers runtime for a true spec-
ification. For € = 0.1, the estimated number of steps
required is 3.04-102!. The system completes approx-
imately 1.3-10° steps each second, which would place
the runtime for a false specification around 2.34-10%°
seconds (around 30 million years). SMV, by compari-
son, solves the problem in 30 minutes and 20 seconds,
regardless of whether the specification holds or not.

Reducing Expectations

Figure 2 easily leads to the conjecture that the run-
time, and hence also the number of steps, Ty ., is ex-
ponentially distributed. The exponential distribution
function is

T8

Flz)=1-¢" (8)
where p is a parameter of the distribution. From a set
of 1000 samples of T, , (using a somewhat different
system model), we compute a 99% confidence interval,
3.9-10% — 4.6-10%, and a most likely estimate of 4.2-10°
for p. This means that with probability .99, the true
value of y lies in this interval and that the most likely
value is 4.2-10°, assuming the variable is in fact expo-
nentially distributed.

The expected value of an exponentially distributed
variable is u. From the estimate of pu = 4.2-10%, we
compute an expected 90th percentile of 9.7-10°. This
means that if we run the random walk checker on in-
stances of the 3 x 3 tile puzzle with the initial and
goal states in the same component, and a step limit of

9.7-10° (which takes a little over a second to walk), it
should fail to find a solution in about 10% of the cases.

By property (i) above, we can randomly generate
solvable problem instances in a way which is indepen-
dent of any bias the random walk may have. We ran
the system on five batches of 1000 such instances each,
with a step limit of 970000. The result was failure in
11% — 13% of the cases, indicating that the estimate
of p is a little low. A possible explanation for this is
that the estimate is based on samples from only one
problem instance, which may have happened to be an
easy one.

Discussion

The discrepancy between the computed number of
steps needed for a random walk to reach a specific state
and the empirical results indicates that the derived ex-
pectation is an overestimate. This is not only because
we overestimate |V | and |E|; even if we apply the cor-
rect values for the 3 x 3 tile puzzle, |V| = 181440 and
|E| = 483840, the step limit for e = 0.1 is 8.7-10'!.
Equation (6) is the expected number of steps for walk-
ing one particular path; it assumes the walk does not
in its wanderings encounter the sought vertex “by ac-
cident”.

Denote by H,(z,y) the expected number of visits to
state y in the first n steps of a Markov chain starting
in state z. For a recurrent state y, it can be shown
that

H,
lim,, o0 n(m,y) = o (9)
n my

Since in the random walk chain, r, ., = 1 for all ver-
tices v, v', this places the expected number of steps un-
til the probability of encountering any reachable vertex

s 1 . M
v is 5 at my, G.e. oy which is a significantly lower
number. Unfortunately, this expectation is asymp-
totic. We have no indication of how large n must be for
it to hold with probability e. The estimate of 4.2-10°

derived above is far greater than % = 120960 (the

degree of the sought vertex is 4).

Parallel Walks

Suppose, for a given graph G and vertices v, v', we run
r random walks, all starting in v and ending when v’
is reached. Let Tg,v, denote the number of steps taken
by the sth walk, and let T;f‘viP denote the minimum of
Tj,v,, for 4 = 1...r. Assume each th,v, is exponentially
distributed, with expectation u. Then,

P(T} , > 1) = e w

and therefore

3efs

P(T;f‘f,‘? >z)=(e ») =e

i.e. T;‘,‘Ii,? is exponentially distributed with an expected
value of £.

Thus, if we run several walks in parallel, stopping
when the first reaches v, the expected runtime de-
creases linearly with the number of parallel walks. In
other words, we can trade processors for time without
loss.

Related Work

The application of random walks to model checking is
not new. For instance the SPIN model checking system
(SPIN) can perform “random simulation” of the sys-
tem model, but does not seem to use such simulations
for actual verification. On the theoretical side, Mihail
and Papadimitrou (1995) have shown a severely re-
stricted class of system models to have state-transition
graphs that are so called “rapid expanders”. Such
graphs are particularly well suited for exploration by
random walks.

The above sketched approach to model checking
seems to have more in common with statistical meth-
ods used in software testing (Miller et al. 1992). In-
puts to the program are chosen at random according
to a distribution that corresponds to normal use of the
program and from the number of successfully executed
test cases, a probability of program failure can be es-
timated. In the case of reactive programs, the kind
normally dealt with in model checking, a “program in-
put” corresponds to a combination of state and event,
which can lead to a prohibitively large input space.
Markov chains have also been used to model the “ex-
pected use” of the system, i.e. to describe the test case
distribution (Whittaker & Thomason 1994).

It should also be mentioned that the random walk
algorithm is far from the only method of deciding
reachability in graphs. Reachability questions for ar-
bitrary graphs can be decided in space O(logn) by
Savitch’s algorithm (1970), and for undirected graphs
in space O(log'®n) (Nisan, Szemerédi, & Widgerson
1992). Search algorithms such as BFS and IDA* have
lower time complexities, but require more space.

Conclusions and Questions for Further
Research

The preliminary experiments we have reported indicate
that the random walk algorithm may, in cases where
it is applicable, be an efficient alternative to determin-
istic model checking algorithms. There are, however,
two central obstacles to practical application of the
method:

First, it manages only certain kinds of specifications.
This restriction may be possible to circumvent, since
verification of any LTL formula can be reduced to a
question of reachability, using a tableuax construction
(Gerth et al. 1995). More troublesome is the fact
that it applies only to certain classes of system models.
Whether realistic verification problems can be made to
fit within these restrictions is an open question.

Second, the theoretical bound on the expected value
of Ty, that is, the number of steps needed to reach
a target state from the initial state, has to be brought
closer to the actual value. The experiments show this
to be far lower than the derived bound of |V||E|,
though not as low as equation (9) promises. Also, since
the expectation depends only on the closed component
in which the walk starts, methods for estimating the
size of this component could aid in reducing the bound.

Lastly, the implemented random
walk model checker is available at
http://www.ida.liu.se/~pahas/stocplan.html.

References

Aleliunas, R.; Karp, R.; Lipton, R.; Lovasz, L.; and
Rackoff, C. 1979. Random walks, universal traversal
sequences and the complexity of maze problems. In
Proceedings of the 20th Annual Symposium on Foun-
dations of Computer Science, 218 — 223.

Burch, J.; Clarke, E.; McMillan, K.; Dill, D.; and
Hwang, L. 1992. Symbolic model checking: 102°

states and beyond. Information and Computation
98(2):142 - 170.

Clarke, E.; Emerson, E.; and Sistla, A. 1986. Auto-
matic verification of finite-state concurrent systems
using temporal logic specifications. ACM Trans-

actions on Programming Languages and Systems
8(2):244 - 263.

Clarke, E.; Grumberg, O.; and Peled, D. 1999. Model
checking. MIT Press.

Gerth, R.; Peled, D.; Vardi, M.; and Wolper, P. 1995.
Simple on-the-fly automatic verification of linear tem-
poral logic. In Proceedings of the 15th Workshop

on Protocol Specification, Testing and Verification.
North-Holland.

Hoel, P.; Port, S.; and Stone, C. 1972. Introduction
to stochastic processes. Houghton Mifflin.

McMillan, K. 1992. The SMV system. Included in
the SMV distribution.

Mihail, M., and Papadimitrou, C. 1995. On the ran-
dom walk method for protocol testing. In Computer
Aided Verification ’95.

Miller, K.; Morell, L.; Noonan, R.; Park, S.; Nicol,
D.; Murrill, B.; and Voas, J. 1992. Estimating the
probability of failure when testing reveals no failures.
IEEFE Transactions on Software Engineering 18(1).

Motwani, R., and Raghavan, P. 1995. Randomized
Algorithms. Cambridge University Press.

Nisan, N.; Szemerédi, E.; and Widgerson, A. 1992.
Undirected connectivity in 2(log"®n) space. In Pro-
ceedings of the 33rd IEEE Symposium on Foundations
of Computer Science, 24 — 29.

Savitch, W. 1970. Relationship between nondeter-
ministic and deterministic tape complexities. Journal
of Computer and System Sciences 4:177 — 192.

SMV homepage.
~modelcheck/smv.html.

http://www.cs.cmu.edu/

SPIN homepage. http://netlib.bell-labs.com/
netlib/spin/whatispin.html.

Whittaker, J., and Thomason, M. 1994. A markov
chain model for statistical software testing. IEFE
Transactions on Software Engineering 20(10).

