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Abstract

While model checking algorithms are in theory e��
cient� they are in practice hampered by the explosive
growth of system models� We show that for certain
speci�cations the model cheking problem reduces to a
question of reachability in the system state�transition
graph� and apply a simple� randomized algorithm to
this problem�

Introduction

The model checking approach to automated ver�cation
of �nite state systems appears the most successfull to
date� At the heart of the method are e�cient algo�
rithms for deciding if a system model� described as a
transition system� satis�es a speci�cation� expressed
in temporal logic �Clarke� Emerson� 	 Sistla 
��
��
While the theoretical time and space complexities of
the algorithms are low order polynomial� they are in
practice often time consuming� because the system
model grows exponentially with the number of system
components�

For certain classes of speci�cation formulas� the
model checking problem reduces to a problem of reach�
ability in the state�transition graph� For certain classes
of graphs� random walks can be used to create a poly�
nomial algorithm for deciding reachability with sigle�
sided� controllable probability of error� Allthough the
time complexity of this algorithm is no better than
that of other model checking algorithms �in fact� it is
worse� two properties of the random walk algorithm
make it interesting for use in veri�cation� First� it uses
extremely little space� Since veri�cation is mostly an
�o��line� activity� space� which is de�nitely limited�
can be considered a more critical resource than time�
Second� it is highly parallelizable� the expected run�
time decreasing linearly with the number of parallel
processes�

Basics

This section brie�y introduces the model checking ap�
proach to veri�cation� the theory of Markov chains and
the random walk algorithm� For more thorough intro�
ductions� see for instance �Clarke� Grumberg� 	 Peled

����� �Hoel� Port� 	 Stone 
���� and �Motwani 	
Raghavan 
����� respectively�

Markov Chains

Markov chains model discrete state� discrete time�
stochastic processes� A Markov chain consists of a
�nite or countably in�nite set of states� X and a se�
quence X�� X�� � � � of stochastic variables over X � The
distribution of Xi� for all i � 
� is such that it satis�es
the Markov property�

P �Xi � xi jX� � x�� � � � � Xi�� � xi���
� P �Xi � xi jXi�� � xi���

�
�

i�e� the probability of a certain state x materializing at
time i depends only on the state of the process at time
i � 
� and not on its previous history� The probabili�
ties P �Xi � xi jXi�� � xi��� are called the transition

probabilities� If

P �Xi � xi jXi�� � xi���
� P �Xj � xj jXj�� � xj���

���

for all i� j � 
� i�e� the transition probabilities are
independent of time� the chain is said to be station�

ary� We will in sequel consider only stationary chains�
and can therefore abbreviate P �Xi � x jXi�� � y� as
Px�y� A probability distribution over the state space
X of a Markov chain is called a distribution of the
chain� A stationary Markov chain is characterized by
the transition probabilities and the initial distribution

���X� � x�� x � X �
Denote by E���� expectation taken under the as�

sumption that the initial distribution is �� We will
also write Ex��� for the case when

��x�� �

�

 when x� � x

� elsewhere



i�e� the initial distribution is concentrated to a single
state x� The hitting time of a state x � X is de�ned
as Tx � minfn � � jXn � xg� i�e� Tx is a stochastic
variable denoting the �rst time that the chain enters
state x� The mean return time of x is de�ned as mx �
Ex�Tx�� Let rx�y � P �Ty � �jX� � x�� i�e� rx�y
is the probability of a chain starting in state x ever
reaching state y� A set of states C � X is closed i�
rx�y � � for all x � C and y �� C� A closed set C is
irreducible i� rx�y � � for all x� y � C�

A distribution � over X is said to be stationary i�

��y� � �x�X��x�P �x� y� ���

That is� if the state of a chain at time n� Xn� is drawn
at random according to a stationary distribution �� the
distribution of Xi for all i � n will also be �� It can
be shown that if X is �nite� closed and irreducible� the
chain has a unique stationary distribution and this is
given by

��x� �



mx

���

Random Walks on Graphs

A graph� G� consists of a ��nite� set of vertices� V �
and a binary edge relation E over V � For a ver�
tex v � V � the neighbourhood of v is de�ned as
N�v� � fv� j �vi� v

�� � Eg and the outdegree of v is
de�ned as dout�v� � jN�v�j� The indegree of v is
din�v� � jfv� j �v�� v� � Egj� When din�v� � dout�v� for
all v we call the graph Eulerian and write only d�v��
A special class of Eulerian graphs are graphs with sy�
metric edge relation� i�e� for all v� v� if �v� v�� � E then
also �v�� v� � E� Such graphs are called undirected� A
closed component of G is a graph consisting of a sub�
set of vertices C 	 V and the edge relation restricted
to C such that there exists no path� from any vertex
v � C to any vertex v� �� C� A component is strongly

connected i� there exists a path from v to v� for every
v� v� � C�

A walk on G �of length n� is a sequence of ver�
tices v�� v�� � � � � vn such that �vi� vi��� � E� for i �
�� � � � � n�
� The walk is random i� each vi�� is drawn
at random with equal probability from the neighbour�
hood of vi� Let G be a graph consisting of a single
strongly connected component� and denote by Tv�v� the
length of a random walk starting at vertex v and end�
ing at the �rst time vertex v� is reached� The following
result by Aleliunas et�al� �
���� is at the heart of the
random walk algorithm�

E�Tv�v� �
�jEj

d�v�
���

�A path is a walk without repeated vertices�

A random walk on G forms a Markov chain with state
space V and transition probabilities P �v� v�� � �

d�v�

when v� � N�v�� and P �v� v�� � � elsewhere� It is
easily veri�ed that the distribution

��v� �
d�v�

�jEj

sati�es equation ���� that is� is a stationary distribution
of the chain� Because the state space is �nite� closed
and irreducible� the stationary distribution is unique
and therefore

mv �



��v�
�

�jEj

d�v�

which� since mv � Ev�Tv� is only another way of say�
ing E�Tv�v�� yields ���� Furthermore� for any pair of
vertices� v� v� in G�

E�Tv�v�� � jV jjEj �
�

Because G is strongly connected� there is a path
v�� v�� � � � � vn from v to v�� and because a path con�
tains no repeated vertices� n � jV j� Whenever the
walk is in a vertex vi which lies on this path� the next
step in the walk will with probability �

d�vi�
be a step

�in the right direction�� i�e� to the next vertex in the
path� If any other neighbour of vi is chosen� the walk

will after on average �jEj
d�vi�

steps return once more to v�

and try again� and after on average �
�d�vi� tries it will

chose the �right� neighbour of vi� Thus� the expected
number of steps needed to take one step along the path
is jEj� and �
� follows�

We can now describe the random walk algoritm� Let
G be a graph consisting of closed� strongly connected
components� and let v and v� be two vertices in G�
Choose the probability of error� � 
 � 
 
� and make
a random walk of length




�
jV jjEj

on G� starting in vertex v�� Then�

�i� if the random walk reaches v�� then there exists a
path from v to v��

�ii� if the random walk does not reach v�� then with prob�
ability at least 
� � there is no path from v to v��

�It is in fact su�cient that the component to which v

belongs is closed and strongly connected�
�To be exact� we should in place of jV j and jEj have the

number of vertices and edges� respectively� in the compo�
nent in which the walk begins�



Claim �i� is trivial� if the random walk reaches v�� then
there has to exist a path from v to v��

To show claim �ii�� assume that there exists a path
from v to v�� Recall that Tv�v� denotes the stochastic
variable telling us how many steps the random walk
will take before reaching v�� Because Tv�v� is a random
variable taking only non�negative values it holds for
any k � � that

P �Tv�v� � kE�Tv�v��� 




k
���

�this is known as Markovs inequality�� Therefore

P �Tv�v� �



�
E�Tv�v��� 
 �

and from equation �
� we have that

P �Tv�v� �



�
jV jjEj� 
 ��

That is� the probability that the random walk must
take more than �

�
jV jjEj steps to reach v� is less than

�� Thus� if the random walk does not reach v�� there is
with probability at least 
� � no path from v to v��

Lastly� we need to characterise the class of graphs to
which the algorithm is applicable� The following theo�
rem provides only a su�cient condition� but one more
readily checked than the requirement that the closed
component containing the initial vertex is strongly con�
nected�

Theorem �

A Eulerian graph G consists of closed� strongly con�
nected components�
Proof� By induction on the number of vertices� jV j�
Note �rst that an edge �v� v� �a loop� adds one to both
din�v� and dout�v�� and thus the presence or absence of
loops does not a�ect whether the graph is Eulerian or
not� Neither can a loop a�ect whether a component is
strongly connected or closed� We therefore can assume
that G is free of loops�

For jV j � 
� G consists obviously of a single� strongly
connected component� Assume any Eulerian graph
with jV j � n vertices is divisible into k closed� strongly
connected components� and consider a graph G� with
jV j � n� 
� We can think of G� as being constructed
from the previous graph by adding a vertex vn�� and a
number of edges� If no edges are added� vn�� is closed
and the graph consists of k � 
 closed� strongly con�
nected components�

If we add one edge to vn�� from one of the compo�
nents� say Ci� we must also add an edge from vn���
since the graph should be Eulerian� If this edge goes
back to Ci� Ci�fvn��g still forms a closed and strongly

connected component� If the edge goes to another com�
ponent� Cj � this will cause an imbalance in degrees�
For� the sum

�v�Ci
dout�v�� din�v�

was �� the graph being Eulerian� but is now 
 since
we have added an edge from Ci� Similarly� the corre�
sponding sum for Cj will now be �
� The only way
to right the imbalance is to add an edge from Cj to
Ci� Adding an edge to Ci from another component�
or from Cj to another component� only moves the ex�
cess� or shortage� elsewhere �where we can of course
resolve it by adding an edge between those two com�
ponents� or by connecting the edges to Ci and from
Cj to the same component�� In the resulting graph�
Ci � Cj � fvn��g �and possibly other components as
well� form an closed� strongly connected component�
�

Model Checking

The system model employed in model checking is a
transition system �also often described as a Kripke
structure�� A transition system consists of a set of
states� S� a binary transition relation� R� on S� and a
labeling function� L� which maps each state to a set
of atomic propositions that hold in the state� A sub�
set of states� S� 	 S are designated as initial states�
Since a transition system is� in fact� a labeled graph�
we sometimes refer to it as a state�transition graph�

The speci�cation language is most commonly some
form of temporal logic� We describe brie�y Compu�

tation Tree Logic �CTL�� which is used by the system
described in the next section�

A CTL formula is built from the atomic propositions
of the system model� propositional connectives and the
temporal operators AX� EX� AF� EF� AG� EG� AU
and EU� A CTL formula is evaluated with respect to
a transition system� M � and a state s � S� as follows�

� A formula � not containing any temporal operator
is evaluated as a normal propositional logic formula
in L�s��

� A formula of the form EX� is true i� � holds in
some state s� such that �s� s�� � R�

� A formula of the form AG� is true i� � holds in ev�
ery state of every walk on the state�transition graph
of M that starts from s�

� A formula of the form E�	U��� holds i� there is a
path from s to some state s� in which � holds� such
that 	 holds in every state along the path up to s��

�TheAU andEU operators are written in this notation�



The remaining operators can be expressed in terms
of these three by means of equalities� In particular�
EF� 
 E�trueU���

The model checking problem is the problem of de�
ciding if the speci�cation formula holds in every ini�
tial state s � S� of the system model� The time� and
space� complexity of the best known model checking
algorithm for CTL is linear in the product of the sizes
of the system model and the speci�cation� The use of
symbolic representation techniques �Burch et al� 
����
can reduce the space required� but in the worst case it
is still linear�

Model Checking by Random Walk

From the de�nition of the interpretation of CTL for�
mulas� it is clear that the model checking problem for
certain formulas reduces to a question of reachability
in the state�transition graph�

�i� A formula EF�� where � contains no temporal op�
erators� holds in state s if some state s� in which �

holds is reachable from s�

�ii� A formula AG�� where � contains no temporal op�
erators� holds in state s if no state s� in which �

holds is reachable from s�

�iii� A formula E�	U��� where neither 	 nor � contains
temporal operators� holds in state s if some state s�

in which � holds is reachable from s in the restriction
of the state�transition graph consisting only of states
in which 	 holds�

When the state�transition graph is Eulerian� questions
of reachability can be decided by the random walk al�
gorithm� Systems with a non�singleton set of initial
states can be dealt with by extending the transition
relaition with a complete set of edges on the set of ini�
tial states� Clearly then� a target state is reachable
from some initial state if and only if it is reachable
from any initial state�

Representation and Complexity

For even moderately sized system models� it is infea�
sible to represent the state�transition graph explicitly�
Therefore� we assume that the state set� S� is the set
of interpretations over a collection of p propositions�
which also gives a natural de�nition of L� and that the
transition relation� R� is represented by a set of func�
tions ti�s�� i � 
� � �k� from states to successor states
�another common representation of R is as a logic for�
mula 
�s� s�� which holds when and only when s� is a
successor of s��

The random walk algorithm requires knowledge of
jV j and jEj� With the assumed representation� we have

that jV j � �p� that jEj � jV j� and that jEj � kjV j
�k is typically much smaller than jV j�� Because these
are overestimates of jV j and jEj� we can apply them
in the random walk algorithm without increasing the
probability of error� This makes the time complexity
of the algorithm





� �
k�p��

The space requirement is only what is required to store
a single state� p� and O��p� bits to represent a counter�

Verifying Symmetry

The random walk algorithm is applicable when the
state�transition graph is Eulerian� but not necessarily
when the graph is not� Deciding if a state�transition
graph� in the representation we have assumed� is Eule�
rian requires time on the order of kjV j� �to determine
the indegree of a state s we have to enumerate all states
and count the number of them that have s as a succes�
sor��

However� deciding if the state�transition graph is
undirected can be done in the course of the random
walk� with a time overhead of only k� Whenever a suc�
cessor ti�s� of s is chosen to be the next state in the
walk� check that for some 
 � j � k� tj�ti�s�� � s�

Experiments

We have implemented a model checker based on the
random walk algorithm� It accepts a system descrip�
tion in a restricted form of the syntax used by the SMV
model checker �SMV � and a speci�cation formula in
CTL of one of the three forms listed in section � We
have used it for comparisons with SMV� and to explore
some properties of random walks�

The Semaphore Example

In the semaphore example� adapted from �McMillan

����� the system consists of two concurrent processes�
P� and P�� each of which can be in one of the four
states idle� entering� critical and exiting� and a
boolean variable semaphore� Each process is initially
idle� and can change from idle to entering� and
from entering to critical� but only if semaphore is
false� When a process changes to state critical� it
also changes semaphore to true� From state critical
each process can change to exiting� and from exiting

back to idle� at the same time changing semaphore

back to false� The state�transition graph is shown
in �gure 
� The graph is not Eulerian� but the closed
component that contians the initial state is strongly
connected�



Figure 
� State�Transition graph for the semaphore
system� The initial state is drawn solid�

We ran the random walk checker and SMV on the
speci�cation formulas

	� � AG��P��critical� P��critical�

	� � AG���P��entering� P��exiting�

��P��exiting� P��entering��

The �rst formula holds in the initial state� For a prob�
ability of error � � ��
� the estimated number of steps
required is �
���� which the random walk checker com�
pletes in slightly less than a second	� The second for�
mula is false in the initial state� and the system re�
peatedly �nds a counterexample in time too small to
measure� SMV also solves both problems in a fraction
of a second�

The Tile Puzzle

The tile puzzle� more commonly known as the ���
puzzle� or �
��puzzle� for the special cases m � n � �
and m � n � � respectively� is a standard example in
AI� The puzzle consists of m � n squares �m�n � ��
and mn � 
 labeled tiles positioned on the squares�
Thus� one square is left empty� and a tile in an adjacent
square can be moved into the empty square �horizon�
tally or vertically� not diagonally�� While the puzzle is
a �toy example�� it happens to have some convenient
properties�

�i� The state�transition graph is undirected and con�
tains mn� states� divided into two closed compo�
nents�

�ii� There exists an e�ective procedure to decide whether
two given states belong to the same component�

We ran the example with m � n � �� a �xed initial
state and a speci�cation formula of the form

EF�square� � t� � � � � � square
 � t
�

�The experiments where carried out on a SUN Ultra ��
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Figure �� �a� Empirical distribution of 
��� sample
runtimes �b� Exponential distribution with best��t pa�
rameter

where� t�� � � � � t
 is some permutation of ���� �the tile
labels� � representing �blank��� i�e� with the ques�
tion of whether a particular state is reachable� Figure
��a� shows the empirical distribution of 
��� samples
of the random walk checkers runtime for a true spec�
i�cation� For � � ��
� the estimated number of steps
required is �����
���� The system completes approx�
imately 
���
�� steps each second� which would place
the runtime for a false speci�cation around �����
��	

seconds �around �� million years�� SMV� by compari�
son� solves the problem in �� minutes and �� seconds�
regardless of whether the speci�cation holds or not�

Reducing Expectations

Figure � easily leads to the conjecture that the run�
time� and hence also the number of steps� Tv�v� � is ex�
ponentially distributed� The exponential distribution
function is

F �x� � 
� e�
x
� ���

where � is a parameter of the distribution� From a set
of 
��� samples of Tv�v� �using a somewhat di�erent
system model�� we compute a ��� con�dence interval�
����
�	� ��
�
�	� and a most likely estimate of ����
�	

for �� This means that with probability ���� the true
value of � lies in this interval and that the most likely
value is ����
�	� assuming the variable is in fact expo�
nentially distributed�

The expected value of an exponentially distributed
variable is �� From the estimate of � � ����
�	� we
compute an expected ��th percentile of ����
�	� This
means that if we run the random walk checker on in�
stances of the � � � tile puzzle with the initial and
goal states in the same component� and a step limit of



����
�	 �which takes a little over a second to walk�� it
should fail to �nd a solution in about 
�� of the cases�

By property �ii� above� we can randomly generate
solvable problem instances in a way which is indepen�
dent of any bias the random walk may have� We ran
the system on �ve batches of 
��� such instances each�
with a step limit of ������� The result was failure in


� � 
�� of the cases� indicating that the estimate
of � is a little low� A possible explanation for this is
that the estimate is based on samples from only one
problem instance� which may have happened to be an
easy one�

Discussion

The discrepancy between the computed number of
steps needed for a random walk to reach a speci�c state
and the empirical results indicates that the derived ex�
pectation is an overestimate� This is not only because
we overestimate jV j and jEj� even if we apply the cor�
rect values for the �� � tile puzzle� jV j � 
�
��� and
jEj � ������� the step limit for � � ��
 is ����
����
Equation �
� is the expected number of steps for walk�
ing one particular path� it assumes the walk does not
in its wanderings encounter the sought vertex �by ac�
cident��

Denote by Hn�x� y� the expected number of visits to
state y in the �rst n steps of a Markov chain starting
in state x� For a recurrent state y� it can be shown
that

limn��
Hn�x� y�

n
�
rx�y

my

���

Since in the random walk chain� rv�v� � 
 for all ver�
tices v� v�� this places the expected number of steps un�
til the probability of encountering any reachable vertex

v is �
� at mv � i�e� �jEj

d�v� � which is a signi�cantly lower

number� Unfortunately� this expectation is asymp�
totic� We have no indication of how large n must be for
it to hold with probability �� The estimate of ����
�	

derived above is far greater than �jEj
d�v� � 
���
� �the

degree of the sought vertex is ���

Parallel Walks

Suppose� for a given graph G and vertices v� v�� we run
r random walks� all starting in v and ending when v�

is reached� Let T i
v�v� denote the number of steps taken

by the ith walk� and let Tmin
v�v� denote the minimum of

T i
v�v� � for i � 
� � �r� Assume each T i

v�v� is exponentially
distributed� with expectation �� Then�

P �T i
v�v� � x� � e�

x
�

and therefore

P �Tmin
v�v� � x� � �e�

x
� �r � e

� x
�
r

i�e� Tmin
v�v� is exponentially distributed with an expected

value of �
r

�
Thus� if we run several walks in parallel� stopping

when the �rst reaches v�� the expected runtime de�
creases linearly with the number of parallel walks� In
other words� we can trade processors for time without
loss�

Related Work

The application of random walks to model checking is
not new� For instance the SPIN model checking system
�SPIN � can perform �random simulation� of the sys�
tem model� but does not seem to use such simulations
for actual veri�cation� On the theoretical side� Mihail
and Papadimitrou �
���� have shown a severely re�
stricted class of system models to have state�transition
graphs that are so called �rapid expanders�� Such
graphs are particularly well suited for exploration by
random walks�

The above sketched approach to model checking
seems to have more in common with statistical meth�
ods used in software testing �Miller et al� 
����� In�
puts to the program are chosen at random according
to a distribution that corresponds to normal use of the
program and from the number of successfully executed
test cases� a probability of program failure can be es�
timated� In the case of reactive programs� the kind
normally dealt with in model checking� a �program in�
put� corresponds to a combination of state and event�
which can lead to a prohibitively large input space�
Markov chains have also been used to model the �ex�
pected use� of the system� i�e� to describe the test case
distribution �Whittaker 	 Thomason 
�����

It should also be mentioned that the random walk
algorithm is far from the only method of deciding
reachability in graphs� Reachability questions for ar�
bitrary graphs can be decided in space O�log�n� by
Savitch s algorithm �
����� and for undirected graphs
in space O�log��	n� �Nisan� Szemer!edi� 	 Widgerson

����� Search algorithms such as BFS and IDA� have
lower time complexities� but require more space�

Conclusions and Questions for Further

Research

The preliminary experiments we have reported indicate
that the random walk algorithm may� in cases where
it is applicable� be an e�cient alternative to determin�
istic model checking algorithms� There are� however�
two central obstacles to practical application of the
method�



First� it manages only certain kinds of speci�cations�
This restriction may be possible to circumvent� since
veri�cation of any LTL formula can be reduced to a
question of reachability� using a tableuax construction
�Gerth et al� 
����� More troublesome is the fact
that it applies only to certain classes of system models�
Whether realistic veri�cation problems can be made to
�t within these restrictions is an open question�

Second� the theoretical bound on the expected value
of Tv�v� � that is� the number of steps needed to reach
a target state from the initial state� has to be brought
closer to the actual value� The experiments show this
to be far lower than the derived bound of jV jjEj�
though not as low as equation ��� promises� Also� since
the expectation depends only on the closed component
in which the walk starts� methods for estimating the
size of this component could aid in reducing the bound�

Lastly� the implemented random
walk model checker is available at
http���www�ida�liu�se��pahas�stocplan�html�
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