
Annals of Mathematics and Arti�cial Intelligence 0 (2001) ?{? 1

TALplanner:

A Temporal Logic Based Forward Chaining Planner

Jonas Kvarnstr�om and Patrick Doherty

Dept. of Computer and Information Science, Link�oping University, SE-581 83 Link�oping, Sweden

E-mail: fjonkv,patdog@ida.liu.se

This article has been accepted for publication (Nov. 2000) in the Annals of
Mathematics and Arti�cial Intelligence, 2001.

We present TALplanner, a forward-chaining planner based on the use of domain-
dependent search control knowledge represented as formulas in the Temporal Action
Logic (TAL). TAL is a narrative based linear metric time logic used for reasoning
about action and change in incompletely speci�ed dynamic environments. TAL
is used as the formal semantic basis for TALplanner, where a TAL goal narrative
with control formulas is input to TALplanner which then generates a TAL narrative
that entails the goal and control formulas. The sequential version of TALplanner is
presented. The expressivity of plan operators is then extended to deal with an inter-
esting class of resource types. An algorithm for generating concurrent plans, where
operators have varying durations and internal state, is also presented. All versions
of TALplanner have been implemented. The potential of these techniques is demon-
strated by applying TALplanner to a number of standard planning benchmarks in
the literature.
Keywords: Planning, Temporal Logics, Action and Change, Knowledge Representation

1. Introduction

Recently, Bacchus and Kabanza et al. [9{11,22] have been investigating the
use of modal temporal logics to express domain-speci�c search control knowledge
for forward-chaining planners. This approach, implemented in the TLplan sys-
tem, has demonstrated impressive improvements in e�ciency when compared to
many recent state-of-the-art planners such as BLACKBOX [25] and IPP [28], two
of the leading competitors in the the AIPS'98 planning competition [1] (see [11]
for comparisons).

TLplan uses modal temporal formulas in a �rst-order version of LTL (Lin-
ear Temporal Logic [17]) to express domain-speci�c search control knowledge.
The forward chaining planner progresses the control formulas speci�ed for a par-
ticular planning domain through each state generated by the operator sequence
currently being investigated. Whenever progression returns the formula false, the
control formula is guaranteed to be violated in all descendant search nodes, and

2 J. Kvarnstr�om and P. Doherty / TALplanner

the current search node and its descendants can immediately be pruned from the
search tree (Figure 1). In many common benchmark domains, a small number of
simple, intuitive control rules provides su�cient pruning that the remaining part
of the search tree can simply be searched depth �rst, sometimes even without
backtracking.

The present work on TALplanner is inspired by TLplan and may also be
characterized as a forward chaining planner using domain-dependent knowledge
to control search. On the other hand, there are also a number of signi�cant
di�erences between the planners.

� While TLplan uses a temporal logic only for specifying control knowledge,
the formal basis for TALplanner originates from Temporal Action Logics
(TAL) [14], a family of narrative-based logics for reasoning about action and
change in dynamic and incompletely speci�ed environments. TALplanner ac-
cepts a TAL goal narrative as input and generates a TAL plan narrative as
output. Thus, TAL serves as a reference formalism for TALplanner, where
the language used to represent narratives in TAL may be viewed as a rich
plan representation language. All aspects of planning domains and problem
instances are formally characterized in TAL and provided with a formal se-
mantics, including goal statements, control formulas, operator de�nitions, and
information regarding the initial state.

� Unlike LTL, TAL is not a modal logic. It is a non-monotonic �rst-order linear
metric time logic originally developed for reasoning about action and change.
It includes the use of circumscription and predicate completion techniques.

� Due to the use of modal temporal formulas in TLplan and the character of
LTL semantics, the use of a formula progression algorithm as a basis for the
forward chaining planner is a natural and powerful technique. A similar ap-
proach can be used with TALplanner: Modal formulas can be emulated by
de�ning macros which are reduced to standard TAL formulas, and the for-
mula progression algorithm can be extended to allow for TAL operators with
duration and internal state changes within the duration. However, TALplan-

filtering

Control

A11

formula

A3

A2

A1 A7

Goal
node

Initial
node

Figure 1. Pruning a Forward Chaining Search Space

J. Kvarnstr�om and P. Doherty / TALplanner 3

ner can also use direct evaluation of TAL control formulas without formula
progression, which enables the use of certain formula optimization techniques
described briey in Section 4.4.

� TALplanner has an extensive analysis phase where TAL control formulas and
operator de�nitions are analyzed in order to increase performance during the
planning phase. Some of the techniques being used will be discussed briey in
Section 4.4; the details will be presented in a forthcoming paper.

� Whereas TLplan generates sequential plans using single-step operators,
TALplanner can generate sequential or concurrent plans using both single-
step operators and operators with duration, and also allows internal state
changes within the execution interval of an action. TALplanner also allows
the use of an interesting class of resource types.

The development of TALplanner has followed an incremental methodology that
has proven useful during the development of the logics in the TAL family.

Each TAL logic uses a di�erent version of a high-level macro language
L(ND), which was initially quite restrictive but has been incrementally extended
to allow increased expressivity as well as to provide new macros suitable to cer-
tain speci�c reasoning tasks. The formal speci�cation for the di�erent versions
of L(ND) is provided in terms of a translation into an expressive shared logical
base language L(FL). Making small incremental extensions facilitates the task of
ensuring that all constructs provided by the language have a sound formal basis,
while the use of a shared base language provides a common formal basis for all
TAL logics and facilitates comparisons between di�erent logics.

Using this methodology for TALplanner entails starting with a restricted
version of a planning domain speci�cation language called L(ND)�, implement-
ing an e�cient planner for this language, and then incrementally extending its
expressivity. Extensions should always be grounded in the logical base language
L(FL). Each extension must also be tested empirically for e�ciency, using exist-
ing benchmarks when possible and extending benchmarks when they lack features
for testing the extensions.

Following this methodology, we �rst developed a restricted version of
TALplanner and presented it in Doherty and Kvarnstr�om [15]. Although very re-
stricted compared to the full expressive power of recent logics in the TAL family,
this version of TALplanner still allowed ADL-style actions [35] with a number of
extensions. The paper presented both a modal emulation version of TALplanner,
using a formula progression algorithm, and a non-modal version using formula
evaluation. Compared to TLplan, both versions of TALplanner demonstrated
signi�cant speedups and considerably less use of memory on a suite of benchmarks
from di�erent planning domains.

In recent work, these two approaches have been uni�ed into a single plan-
ner using both progressed modal control rules and evaluated non-modal control
rules. This enables the user to take advantage of the relative strengths of each

4 J. Kvarnstr�om and P. Doherty / TALplanner

approach within any planning domain. TALplanner and its domain speci�cation
language have also been extended for the speci�cation of resource constraints
and the algorithms have been generalized for the use of concurrent actions [30].
Furthermore, a number of pre-processing and analysis techniques have been de-
veloped that improve the performance of the planner, especially when non-modal
control formulas are used. These new enhancements have improved the perfor-
mance of TALplanner reported in Doherty and Kvarnstr�om [15] by many orders
of magnitude for large problem instances.

The results of these and other extensions and improvements, and testing
the extensions empirically via the use of standard and extended benchmarks, are
the focus of this paper. To enhance the coherency and incremental avor of the
presentation, we will �rst present the uni�ed sequential version of TALplanner
and then add extensions for resources and concurrency.

1.1. The Structure of the Paper

In Section 2, the Temporal Action Logics (TAL) framework is presented.
An example of a TAL narrative in the surface language L(ND) and its transla-
tion into the logical base language L(FL) is also provided. Section 3 contains
an overview of the L(ND) extensions required for the planning task, including
goal statements, control statements, and a new, more concise syntax for action
types (plan operators). It is also shown how the extended language L(ND)�

is used in TALplanner, and a small example is presented using the well-known
gripper domain. The uni�ed sequential version of the TALplanner algorithm is
presented in Section 4. In Section 5, the algorithm is modi�ed and extended
to generate concurrent plans, while Section 6 presents extensions for explicitly
modeling resource consumption and production. Section 7 contains a discussion
of soundness and completeness for TALplanner. In Section 8, the three di�erent
versions of TALplanner are empirically tested using a number of standard and
extended benchmarks. The results are provided and discussed. Finally, Section 9
concludes with discussion and future work.

2. TAL: Temporal Action Logics

TAL, Temporal Action Logics [14], is a family of non-monotonic temporal
logics developed for reasoning about action and change in dynamic and incom-
pletely speci�ed domains. The TAL logics originate from the Features and Flu-
ents framework developed by Sandewall [36]. TAL is a narrative based formalism,
where narratives are speci�ed in a high-level macro language L(ND) which can be
translated into a logical base language L(FL). The rich expressivity of the L(ND)
language includes the modeling of actions with duration, context-dependent ac-
tions, non-deterministic actions, delayed e�ects of actions [24], concurrency [23],
incompletely speci�ed timing of actions, and side-e�ects of actions [19]. It also

J. Kvarnstr�om and P. Doherty / TALplanner 5

provides robust solutions to the frame [13], rami�cation [19] and quali�cation [29]
problems when used for reasoning in restricted domains in incompletely speci�ed
environments. All of these features have a corresponding formal semantics.

If action types in L(ND) are viewed as plan operators, the language enables
the representation of many types of plan operators such as those used in STRIPS,
ADL and other planning formalisms. Due to the use of a surface macro language,
it is straightforward to incrementally extend and generalize existing plan operator
languages, or in cases where this is not adequate to simply use the rich language
expressivity associated with TAL to de�ne new plan operator languages. This
approach gives a formal semantics to plan operators and thereby provides a very
solid basis for experimenting with planners and formally verifying the correctness
of generated plans.

In the remainder of this section, however, the main focus will be on the use
of TAL in the area of reasoning about action and change. This will be explained
using a fragment of TAL-C [14,23], one of the most recent members of the TAL
family. We will also present a short narrative that provides concrete examples of
certain statement classes in the TAL surface language L(ND). This will provide
a basis for understanding how TAL is used in TALplanner.

2.1. TAL Narrative Descriptions

When reasoning about action and change in TAL, a world domain is char-
acterized in terms of a set of uents, which are time dependent functions repre-
senting the change in the value of a speci�c property through time.

A narrative type speci�cation de�nes a set of (currently �nite) uent value
domains and contains type speci�cations for the uents that describe the world
and the actions that are available to an agent.

A narrative background speci�cation consists of a narrative type speci�ca-
tion together with other background information that is common to all narratives
for a particular domain. This information is provided as a set of labeled narra-
tive statements in the surface language L(ND); examples will be given for each
statement class in Section 2.2. Persistence statements (labeled per) allow each
uent to be speci�ed as being of type persistent (normally retaining its value
from the previous timepoint), durational (normally reverting to a default value),
or dynamic (varying freely). Action type speci�cations (labeled acs) provide def-
initions of action types, while dependency constraints (labeled dep) characterize
causal dependencies among uents. Both action type speci�cations and domain
constraints can provide exceptions to the persistence or default value assump-
tions for certain uents at certain timepoints using the reassignment macros R,
I and X, de�ned below. Finally, domain constraints (labeled dom) characterize
information generally true in every state of the world.

A narrative description, or narrative, consists of a narrative background
speci�cation together with additional information speci�c to a particular reason-

6 J. Kvarnstr�om and P. Doherty / TALplanner

ing problem. The additional information is also given as a set of labeled narrative
statements in L(ND). Action occurrence statements (labeled occ) specify which
action instances occur and when, while observation statements (labeled obs) pro-
vide timing constraints as well as observations of uent values at particular time-
points.

2.1.1. The Surface Language L(ND)
Some brief comments about the most often used macros in L(ND) are pro-

vided to assist in understanding the narratives presented in this article.
A �xed uent formula [�] f =̂ v expresses the fact that the uent f has

the value v at the timepoint � . For boolean uents, the shorthand notation
[�] f

def

= [�] f =̂ true and [�]:f
def

= [�] f =̂ false is allowed. Boolean connectives
are allowed within a temporal scope (for example, [�] f =̂ v^ g =̂ v0), and closed,
open, or semi-open intervals are permitted (for example, [�; � 0] f =̂ v). The
function value(�; f) returns the value of the uent f at the timepoint � , where
[�] f =̂ v i� value(�; f) = v. The expression [�] f =̂ g, where f and g are uents,
is a shorthand notation for [�] f =̂ value(�; g).

An occlusion expression X([�; � 0]�) expresses the fact that all uents in �
are occluded (exempt from the persistence or default value assumptions) in the

interval [�; � 0]. A reassignment expression, R([�; � 0]�)
def

= X([�; � 0]�)^ [� 0]�, also
requires � to hold at the end of the interval, while a durational reassignment

expression I([�; � 0]�)
def

= X([�; � 0]�) ^ [�; � 0]� requires � to hold throughout the
interval. This is generalized to open, semi-open and singleton intervals.

An atomic expression is either any of the expressions de�ned above or a
feature, value or timepoint equality expression (f = f 0, v = v0, � = � 0), a temporal
relational expression (�
 � 0, where
 is a relation symbol in the temporal
base structure), or an action occurrence expression ([�; � 0]A(!), stating that the
action A, with arguments !, occurs during the interval [�; � 0]).

Statements in L(ND) are formed from atomic expressions in a manner simi-
lar to the de�nition of well-formed formulas in a �rst-order logical language using
the standard connectives, quanti�ers and notational conventions.

2.1.2. The Base Language L(FL)
In order to reason about a particular narrative, it is �rst mechanically trans-

lated into the base language L(FL), an order-sorted classical �rst-order language
with equality, using the translation function Trans() de�ned in Appendix A (see
also Doherty et al. [14]). The base language uses the following predicates:

� Holds(t; f; v) expresses that the uent f has the value v at the timepoint t,

� Occlude(t; f) expresses that the uent f may change value at t (corresponding
to the reassignment macros),

� Occurs(t; t0; a) expresses that the action a occurs between t and t0,

� Per(t; f) expresses that the uent f is persistent at time t, and

J. Kvarnstr�om and P. Doherty / TALplanner 7

� Dur(t; f; v) expresses that f is durational with default value v at time t.

The logical theory which is the result of the translation is still under-constrained
in the sense that a number of implicit assumptions about uent change in the
world remain to be characterized. In general, we want to encode the blanket
assumption that uent values do not change unless there is a good reason for
this to happen. There are a number of legitimate reasons for uents to change
value, such as action occurrences where the e�ects of the action change uent
values, or causal dependencies between uents where changes in some uents
force changes in others. In the TAL formalism, all such legitimate reasons for
change are represented implicitly using the reassignment macros R, I and X

in dependency constraints and action type de�nitions. When translated, these
statements result in constraints on the Occlude predicate.

In the logical theory, we want to formally encode the assumption that these
are the only reasons for uents to be occluded. This is done by using a special
form of circumscription [33] called �ltered circumscription [16] which involves
adding a second-order formula to the narrative logical theory. The Occlude predi-
cate is circumscribed relative to the action de�nitions and dependency constraints
with all other predicates �xed, and Occurs is circumscribed relative to the action
occurrence formulas with all other predicates �xed. The results are combined
and �ltered with the L(FL) translations of the persistence statements (forcing
persistent and durational uents to adhere to the persistence or default value
assumptions), domain constraints, observations, and timing constraints, as well
as the L(FL) foundational axioms and temporal structure axioms (TAL uses a
linear, discrete time structure with non-negative time). Except for the tempo-
ral structure axioms, the resulting second-order theory can be translated into
a logically equivalent �rst-order theory, which is then used to reason about the
narrative. In the remainder of the article, Trans+(N) will denote the result of
translating the narrative N into L(FL) and applying this �ltered circumscription
policy, which is formally de�ned in Appendix B.

The problems associated with building in such assumptions for uent change
are often called the frame, rami�cation and quali�cation problems. Although they
are not directly related to the algorithmic mechanisms of TALplanner, it should
be pointed out that most planning algorithms build in a form of closed world
assumption (CWA) where uents only change value due to action occurrences.

Refer to Doherty et al. [14] for a more detailed overview of TAL and the
L(ND) and L(FL) languages.

2.2. A TAL Narrative Example

The following narrative is a variation of the well-known hiding turkey sce-
nario [36]. In this variation, there is a turkey that is alive and not hiding at time 0
(obs1) and that may or may not be deaf. This turkey is afraid of sounds: If it

8 J. Kvarnstr�om and P. Doherty / TALplanner

is not deaf and there is some noise, it will hide (dep1). When there has been no
noise for ten consecutive timepoints, it will �nally stop hiding (dep2).

The scenario also involves a gun, which is not loaded in the initial state
(obs1). There are two actions at our disposal: We can Load the gun, which
ensures that the gun is loaded when the action has been executed but also makes
some noise throughout the duration of the action (acs1). While the other uents
are persistent (per1), noise is durational with default value false (per2), since there
is normally no noise unless someone is currently making noise. Thus, after the
gun is loaded, noise will automatically revert to false. We can also Fire the gun,
which results in the gun no longer being loaded { and if the gun was loaded and
the turkey was not hiding, it will die (acs2).

In this particular scenario, the gun is Loaded the gun between 1 and 4 (occ1)
and Fired between 5 and 6 (occ2). There are two sets of preferred models1 of this
narrative, one where the turkey is deaf and one where it is not. In the �rst model
set, the turkey does not hide and ends up being shot, while in the second model
set, it hears the noise, hides, and emerges from hiding ten timepoints later.

The L(ND) formalization of this scenario is as follows:

per1 8t [true! Per(t+1; alive)^Per(t+1; deaf)^Per(t+1; hiding)^Per(t+1; loaded)]
per2 8t [true! Dur(t; noise; false)]
acs1 [t1; t2] Load R((t1; t2] loaded) ^ I((t1; t2] noise)
acs2 [t1; t2] Fire ([t1] loaded ^ :hiding! R((t1; t2] :alive)) ^

([t1] loaded! R((t1; t2] :loaded))
dep1 8t [[t] :hiding ^ :deaf ^ noise! R([t+ 1] hiding)]
dep2 8t [[t; t+ 9] hiding ^ :noise! R([t+ 10] :hiding)]
obs1 [0] alive ^ :loaded ^ :hiding
occ1 [1; 4] Load
occ2 [5; 6] Fire

The translation into L(FL) is somewhat more complex, demonstrating some of
the advantages in providing the macros in L(ND). (Here, :Holds(�; f; true) has
been simpli�ed into Holds(�; f; false).)

per1 8t [true! Per(t+1; alive)^Per(t+1; deaf)^Per(t+1; hiding)^Per(t+1; loaded)]
per2 8t [true! Dur(t; noise; false)]
acs1 Occurs(t1; t2; Load)!

Holds(t2; loaded; true) ^ 8t[t1 < t � t2 ! Occlude(t; loaded)] ^
8t[t1 < t � t2 ! Holds(t; noise; true)] ^ 8t[t1 < t � t2 ! Occlude(t; noise)

acs2 Occurs(t1; t2;Fire)! ((Holds(t1; loaded; true) ^ Holds(t1; hiding; false)!
Holds(t2; alive; false) ^ 8t[t1 < t � t2 ! Occlude(t; alive)]) ^
(Holds(t1; loaded; true)!
Holds(t2; loaded; false) ^ 8t[t1 < t � t2 ! Occlude(t; loaded)]))

dep1 8t [Holds(t; hiding; false) ^ Holds(t; deaf; false) ^ Holds(t; noise; true))!
Holds(t+ 1; hiding; true) ^Occlude(t+ 1; hiding)]

1 The preferred models of a narrative are the models of the circumscribed narrative theory.

J. Kvarnstr�om and P. Doherty / TALplanner 9

dep2 8t [8t0[t � t0 � t+ 9! Holds(t0; hiding; true) ^ Holds(t0; noise; false)]!
Holds(t+ 10; hiding; false) ^Occlude(t+ 10; hiding)

obs1 Holds(0; alive; true) ^ Holds(0; loaded; false) ^ Holds(0; hiding; false)
occ1 Occurs(1; 4; Load)
occ2 Occurs(5; 6;Fire)

The circumscription of the Occurs predicate in the action occurrences (occ) above
(that is, CircSO(�occ(Occurs);Occurs) as de�ned in Appendix B) is equivalent to
the following �rst-order formula:

8t; t0; a[Occurs(t; t0; a)$ (t = 1 ^ t0 = 4 ^ a = Load) _ (t = 5 ^ t0 = 6 ^ a = Fire)]

The circumscription of the Occlude predicate in the action schemas (acs) and
dependency constraints (dep) above (that is, CircSO(�

0(Occlude);Occlude) as de-
�ned in Appendix B) is equivalent to the following set of �rst-order formulas:

8t[Occlude(t; alive)$ t = 6 ^Holds(5; loaded; true) ^Holds(5; hiding; false)]
8t[Occlude(t; loaded)$ 2 � t � 4 _ t = 6 ^ Holds(5; loaded; true)]
8t[:Occlude(t; deaf)]
8t[Occlude(t; hiding)$
9t0[t = t0 + 1 ^ Holds(t0; hiding; false) ^Holds(t0; deaf; false) ^ Holds(t0; noise; true)] _
9t0[t = t0 + 10 ^ 8� [t0 � � � t0 + 9! Holds(�; hiding; true) ^ Holds(�; noise; false)]]]

8t[Occlude(t; noise)$ 2 � t � 4]

3. The TALplanner Framework

Clearly, the expressivity associated with recent logics in the TAL family
already provides su�cient support for modeling many aspects of the speci�cation
of a planning problem, including common concepts such as operator de�nitions
and speci�cations of initial states as well as less commonly used features such
as non-deterministic operators, state constraints, and instantaneous and delayed
indirect e�ects of actions.

However, when our work with TALplanner began, existing TAL logics had
no provisions for specifying goals or domain-dependent control information. Fol-
lowing the TAL methodology of introducing new macros when needed but keeping
the base language L(FL) and its circumscription policy unchanged, we therefore
de�ned a new language called L(ND)�, a new version of the high-level surface
language L(ND) which provides a number of new statement classes and macros.
These extensions will be discussed in detail later in this section.

Given this extended narrative de�nition language, it is possible to view the
planning task entirely in terms of TAL narratives (Figure 2). The input to the
planner is an L(ND)� goal narrative that contains a set of operator de�nitions and
a description of the initial state, but that does not contain any action occurrences.
TALplanner searches for a set of action occurrences (plan steps) that can be
added to this narrative so that in the corresponding logical model, a goal state
is achieved. If this succeeds, the output is a new TAL plan narrative in L(ND)

10 J. Kvarnstr�om and P. Doherty / TALplanner

where control rules and goal statements have been removed and the appropriate
set of action occurrences has been added. In this process, the semantics of the goal
and plan narratives is de�ned by the translation into the base language L(FL).

As an aid to understanding the concepts that will be presented in the re-
mainder of this section, we will now show a concrete example using a variation
of the well-known gripper domain, where a robot with a number of grippers can
move objects between a number of rooms. Then, we will discuss the process of
searching for plans given a TAL goal narrative, and explain how this process can
be aided by allowing the domain designer to specify additional control knowledge
in terms of temporal control formulas constraining the state sequence correspond-
ing to an operator sequence. We will also discuss goal speci�cations and how the
power of control formulas can be increased by allowing them to explicitly refer
to the goal. A set of control formulas for the gripper domain will be provided.
Finally, we will return once more to the abstract view of TALplanner, discussing
Figure 2 in more detail.

3.1. A Robot Gripper Example

There are several di�erent ways to model the robot gripper domain, partly
depending on which aspects of the domain are considered important (for exam-
ple, are balls interchangeable or is it important which ball ends up in which
room?) and partly depending on the restrictions placed on the formalization by
the planning formalism being used, such as whether resources and/or non-boolean
properties can be modeled and whether object typing is explicitly supported or
must be emulated through the use of unary predicates.

Here, balls are assumed not to be interchangeable, and the order-sorted type
system of TAL will be used. The value domains used are obj for things (including
the robot), ball for balls (a subtype of obj), room for rooms, and gripper for
grippers. We use the uents loc specifying the location of objects, free specifying
whether a given gripper is free, and carry specifying whether the robot is carrying

Goal Narrative
TAL TALPlanner

Plan Narrative
TAL

L(ND)

1st-order
theory

1st-order

L(FL)

theory T
Circ(T) +

Quantifier Elimination

Goal

L(FL)

L(ND)*

Figure 2. The relation between TAL and TALplanner

J. Kvarnstr�om and P. Doherty / TALplanner 11

a certain object in a certain gripper. The goal narrative thus begins with the
following labeled statements, which also specify the actual objects present in this
speci�c problem instance.

#domain obj :elements f ball1, ball2, ball3, robot g
#domain ball :parent obj :elements f ball1, ball2, ball3 g
#domain room :elements f roomA, roomB g
#domain gripper :elements f left, right g

#feature loc(obj) :domain room
#feature free(gripper) :domain boolean
#feature carry(ball, gripper) :domain boolean

It is also necessary to de�ne the three operators that are available to the robot.
The robot can pick up a ball in any free gripper, as long as the ball is in the same
location and the robot is not already carrying it. It can always drop a ball that
it is carrying. Finally, it can move to another room, which changes not only the
location of the robot but also the location of any ball that it is currently carrying.
Note that in this formalization of the gripper domain, there is no \map" modeling
connections between rooms. Instead, we make the common (although somewhat
unrealistic) assumption that the robot may move directly from any room to any
other room.

acs1 [t1; t2] pick(ball ; gripper)
[t1] loc(ball) =̂ loc(robot) ^ free(gripper) ^ :9gripper 0[carry(ball ; gripper 0)]!
R([t2] carry(ball ; gripper) ^ :free(gripper))

acs2 [t1; t2] drop(ball ; gripper)
[t1] carry(ball ; gripper)!
R([t2] :carry(ball ; gripper) ^ free(gripper))

acs3 [t1; t2] move-to(room)
[t1] loc(robot) 6=̂ room !
R([t2] loc(robot) =̂ room) ^
8ball [[t1] 9gripper [carry(ball ; gripper)]! R([t2] loc(ball) =̂ room)]

Finally, the initial state and goal must be de�ned. In the initial state, all grippers
are free and the robot and all balls are in room A. The goal requires all balls to
be in room B and requires all grippers to be free but does not constrain the
location of the robot. The exact goal statement syntax in L(ND)� will be de�ned
in Section 3.4.

#obs 8gripper, ball [[0] free(gripper) ^ :carry(ball, gripper)]
#obs 8obj [[0] loc(obj) =̂ roomA]
#goal 8ball [loc(ball) =̂ roomB] ^ 8gripper [free(gripper)]

Thus, there are initially three balls in room A, all of which should be moved
to room B. Given the control knowledge that will be presented in Section 3.5,
TALplanner will produce the following sequential plan:

12 J. Kvarnstr�om and P. Doherty / TALplanner

#occ [0,1] pick(ball1, left)
#occ [1,2] pick(ball2, right)
#occ [2,3] move-to(roomB)
#occ [3,4] drop(ball1, left)
#occ [4,5] drop(ball2, right)

#occ [5,6] move-to(roomA)
#occ [6,7] pick(ball3, left)
#occ [7,8] move-to(roomB)
#occ [8,9] drop(ball3, left)

3.2. Searching for Plans

Although Figure 2 provides an abstract view of a planner for the TAL for-
malism, it provides no information as to how a suitable set of action occurrences
should be generated, much less how it should be generated e�ciently. The an-
swer to this question depends both on the type of plans one is interested in
(for example, whether one is interested in sequential or concurrent plans) and
on the expressivity one wishes to allow (for example, whether indirect e�ects or
non-deterministic operators should be allowed, and whether operators can have
varying durations).

The current version of TALplanner places a number of restrictions on the
TAL goal narratives that are allowed. As is the case with many existing planners,
TALplanner currently requires complete information about the initial state, and
operators must be deterministic. The planner does not allow for the use of
dependency constraints or indirect e�ects of actions, and only allows restricted
forms of domain constraints.

This restricts the expressivity of TALplanner operators considerably com-
pared to what is allowed in the TAL logic. However, it is still possible to use ADL-
style operators as well as operators with extended duration and state changes
within the duration, as will be demonstrated in the extended logistics domain in
Section 8.3. Thus, the current level of expressivity is still considerable compared
to that allowed by many STRIPS- or ADL-based planners. Also, following the
research methodology presented in the introduction, we intend to incrementally
relax these restrictions in future versions of TALplanner, adding support for
incomplete states, non-deterministic operators and restricted forms of indirect
e�ects of actions.

Taking this into consideration, the forward-chaining paradigm, used in
TLplan as well as many other recent planners such as HSP [12] and FF [21,20],
appears to be a good choice for both the sequential and the concurrent version
of TALplanner. Compared to other types of planners, forward-chaining planners
have the advantage of always having access to a complete description of past
and current states, which facilitates the use of operator types with complex pre-
conditions and conditional e�ects as well as future extensions involving indirect
e�ects.

The forward chaining search space is de�ned by the initial state and the set
of operator instances applicable in any given state. An example for the gripper
domain is shown in Figure 3. In the initial node, a number of operator instances

J. Kvarnstr�om and P. Doherty / TALplanner 13

node
Initial

pick(b3,l)
move(B)

pick(b1,l)pic
k(

b1
,l)

pick(b1,r)

pick(b2,r)

pick(b2,r)

move(B)

drop(b2,r)

Figure 3. The Forward Chaining Search Space for the Gripper Domain

such as pick(ball1,left), pick(ball1,right) and move-to(roomB) are applicable. If the
robot picks up ball2 in the right gripper, there are exactly four applicable actions
in the resulting state: Pick up ball1 or ball3 in the remaining gripper, move to
roomB, or drop the ball that was just picked up.

Here, nodes have been identi�ed with operator sequences, which allows the
search space to be represented as a tree. If nodes are instead identi�ed with states,
this structure would have to be generalized to a directed graph. For example,
executing pick(ball1,left) followed by pick(ball2,right) leads to the same state as
executing pick(ball2,right) followed by pick(ball1,left). The exact de�nitions of
operator sequences, plans and search trees will be given separately for sequential
plans in Section 4 and for concurrent plans in Section 5.

3.3. Pruning the Search Tree using Temporal Control Formulas

Although the forward-chaining search tree can be searched using standard
algorithms such as depth �rst, breadth �rst, or iterative deepening, these algo-
rithms are not goal-directed and would usually lead to very ine�cient planners.
Fortunately, there are a number of ways to alter these algorithms in order to
improve performance. One can identify two main categories of techniques being
used for this purpose in recent forward-chaining planners: A planner can use
various forms of domain-dependent or domain-independent heuristics to guide
the search process, as in the very successful planners HSP [12] and FF [21,20], or
it can use domain-dependent or domain-independent pruning to remove search
nodes completely, thereby decreasing the size of the search tree.

Naturally, these two techniques can easily be combined. Both TLplan and
TALplanner allow the user to specify domain-dependent heuristics based on a
single state as well as domain-dependent pruning rules in the form of temporal
control formulas, which can refer to the entire state sequence corresponding to
a plan as well as to the goal of a speci�c planning instance. If a state sequence
generated by a planner is seen as a logical model, control formulas can be viewed
as model �lterers that can be used to rule out state sequences that cannot lead

14 J. Kvarnstr�om and P. Doherty / TALplanner

E

A

B

C

DA

B

C

D

E

?

A

C

E

B

D

Initial state Goal state

Figure 4. Pruning Nodes in the Blocks World

to plans or lead to suboptimal or redundant plans. In this paper, we will mainly
concentrate on the use of such control formulas, leaving the detailed investigation
of the combination of heuristics and pruning to future research.

The utility of domain-dependent pruning rules (in another form than the
ones used by TLplan and TALplanner) was demonstrated at least as early as
1981, when Kibler and Morris [26] presented four intuitive control rules for the
blocks world domain. One of these rules was \don't add to a pile containing a
block that needs to be moved". For example, in Figure 4, the robot arm has just
picked up block E. This block should be on top of C { but if it is placed there
immediately, it will eventually have to be removed again in order to move blocks
A and B. Informally, this rule can be expressed as a temporal formula of the form
\if in any state x is not on top of y, and y belongs to a tower containing a block
that must eventually be moved, then in the next state, x should still not be on
top of y".

There are a number of di�erent logics that are suitable for specifying tempo-
ral control formulas. TLplan uses a �rst-order version of the modal tense logic
LTL, while TALplanner can either use TAL logic formulas or emulate the modal
formulas used by TLplan. These alternatives will be discussed in more detail in
the following subsections.

3.3.1. Control Formulas in TLplan

TLplan control formulas are de�ned in a �rst-order version of LTL (Linear
Temporal Logic [17]), a linear modal tense logic. There are four temporal modal-
ities: �U� (� holds until � holds), 3� (� will hold eventually), 2� (� always

holds), and � (� holds in the next state).
The modal control formula speci�ed by the domain designer is progressed

through each state generated by an operator sequence.2 If the result is the for-
mula false, the planner has proven that the node and all its descendants must
necessarily violate the control formula, and the node can be pruned.

For e�ciency reasons, TLplan stores a progressed formula in each search

2 The progression algorithm is published in [9]. A variation is used in Section 4.

J. Kvarnstr�om and P. Doherty / TALplanner 15

node. Each time a new action is examined, the planner only needs to progress a
previously stored formula through the single new state generated by the action.
This saves time, but can use considerable amounts of memory for large problem
instances, as will be shown in the blocks world benchmark examples in Section 8.4.

It should be noted that TLplan does not ensure that control formulas are
actually satis�ed by the �nal plan, since the progression algorithm does not take
into consideration what happens (or does not happen) after the end of the �nal
operator in an operator sequence. For example, control formulas of the form 3�

(eventually, � will hold) will never cause a state sequence to be pruned. Since
the progression algorithm never considers the \future", it always allows for the
possibility that it might be possible to achieve � in some future state. This is
true even for a formula such as 3 false.

Although this is rarely a problem, it is important to realize that TLplan
control rules are not goals in themselves, but are intended to guide the planner
towards a state satisfying the state-based goal.3

Consider once again the gripper domain. When using the standard for-
malization where a robot can move \instantly" between any two rooms without
considering intervening rooms, there is clearly no point in allowing two consec-
utive move-to actions. This can be expressed using the following control rule,
stating that if the robot has changed locations from one timepoint to the next,
it must then remain at the same location in the following state:

2:9l[loc(robot) = l ^ loc(robot) = l]! 9l[loc(robot) = l ^ loc(robot) = l]

3.3.2. Using TAL Control Formulas in TALplanner

While TLplan is based on the use of modal control formulas and a pro-
gression algorithm, TALplanner is primarily based on the use of non-modal TAL
control formulas (labeled control in the extended language L(ND)�) and a for-
mula evaluation algorithm. These formulas also have a di�erent semantics: The
TAL control formulas are currently viewed as part of the goal speci�cation, and
must necessarily hold in any valid plan.4

Returning to the gripper domain, the rule that the robot should never move
twice without picking up or dropping a ball can be formalized in TAL as follows:

8t:value(t; loc(robot)) 6= value(t+ 1; loc(robot))!

value(t+ 1; loc(robot)) = value(t+ 2; loc(robot))

3 The TLplan implementation also allows the speci�cation of temporally extended goals [8,10],
modal temporal formulas that must be satis�ed by the �nal plan. However, this cannot be
used in combination with state-based goals, and also prevents the use of the goal modality
(Section 3.4).

4 This is not an integral part of the TALplanner algorithms: One could easily change the goal
acceptance criterion so that non-modal control rules are used for pruning but are not seen as
part of the goal.

16 J. Kvarnstr�om and P. Doherty / TALplanner

However, the fact that TAL control formulas must hold in every valid plan does
not necessarily imply that they must hold in every pre�x of a valid plan. For
example, any state goal can also be expressed as a control formula requiring that
the state goal must eventually become true at some timepoint t and hold until
in�nity:

9t: [t;1) 8ball [loc(ball) =̂ roomB] ^ 8gripper [free(gripper)]

This condition will not be satis�ed in the initial node, corresponding to the empty
operator sequence { unless, of course, all balls were already in room B. Clearly,
simply pruning every operator sequence that does not satisfy a control formula
would make the planner incomplete. Instead, TALplanner analyzes the control
formulas and automatically extracts a set of pruning constraints, formulas that
do need to hold in every pre�x of any valid plan.

The process of extracting pruning constraints is somewhat more complex
than the use of progression in TLplan. This is especially true since in order
to ensure that pruning constraints are as strong as possible, the extraction algo-
rithms must take into account both the expressivity allowed in planning domain
descriptions and the constraints that have been placed on the plans being gener-
ated (for example, whether sequential or concurrent plans are required).

On the other hand, the use of evaluation rather than progression also has
several advantages. For example, there is no need to store a progressed control
formula in each search node, which saves considerable amounts of memory. Also,
as will be discussed briey in Section 4.4, using evaluated pruning constraints
facilitates certain kinds of formula analysis techniques that can be applied in order
to take advantage of the domain-speci�c information inherent in the operator
de�nitions for any given planning domain.

The process for extracting and optimizing pruning constraints will be dis-
cussed briey in Section 4.4 for sequential TALplanner and Section 5.3 for con-
current TALplanner. A complete description will be presented in a future paper.

3.3.3. Using Emulated Modal Control Formulas in TALplanner

In addition to supporting TAL control formulas, TALplanner also allows
the use of emulated modal control formulas (labeled mcontrol in the extended
language L(ND)�) together with a progression algorithm shown in Section 4.5.
However, due to the use of explicit time and operators with duration, the modal
operators used by Kabanza et al. [22] have been adopted, where operators can
be indexed with closed, open or semi-open temporal intervals.

There are four temporal operators, U (until), 3 (eventually), 2 (always),
and (next), but all of them may be de�ned in terms of the U operator. As in
Kabanza et al. [22], the �rst three temporal operators can be indexed with closed,
open or semi-open intervals. The meaning of a formula containing a temporal
operator is dependent on the timepoint n at which it is evaluated.

J. Kvarnstr�om and P. Doherty / TALplanner 17

� �U[�;� 0] means that � must hold from n until is achieved at some timepoint
in [� + n; � 0 + n]. We de�ne �U � �U[0;1] .

� 3[�;� 0] � � trueU[�;� 0] � means that eventually � will be true at a timepoint in
[� + n; � 0 + n]. We de�ne 3� � 3[0;1] �.

� 2[�;� 0] � � :3[�;� 0] :� means that � must be true at all points in the interval
[� + n; � 0 + n]. We de�ne 2� � 2[0;1] �.

� � � trueU[1;1] � means that � must hold at n+ 1.

For emulated modal control formulas, an atomic expression is either an elemen-

tary uent formula of the form f =̂ v, expressing the fact that the uent f has
the value v, an equality expression or temporal relational expression as de�ned in
Section 2.1, or a goal expression goal(�) expressing that the state goal entails �
(de�ned in Section 3.4). Modal control formulas in L(ND)� are formed from
atomic expressions in the standard manner using the four temporal modalities
and the standard logical connectives, quanti�ers and notational conventions.

From a semantic perspective, temporal modalities can be viewed as a special
type of macro-operator in the extended surface language L(ND)�. The translation
function TransModal takes a timepoint n and a modal control formula intended
to be evaluated at n as input and returns a formula in L(ND)� without temporal
modalities as output. In the following, Q denotes a quanti�er and
 denotes a
binary logical connective.

1 procedure TransModal(n;)
2 if = Qx:� then return Qx:TransModal(n; �)
3 if = �
 then return TransModal(n; �)
 TransModal(n;)
4 if = :� then return :TransModal(n; �)
5 if = f(x) =̂ v then return [n]
6 if contains no modalities then return

7 if = goal(�) then return goal(�)
8 if = (�U[�;� 0]) then return

9[t : n+ � � t � n+ � 0] (TransModal(t;) ^ 8[t0 : n � t0 < t]TransModal(t0; �))

The algorithm TransModal provides the meaning of the temporal modalities in
the linear, discrete temporal logic TAL, in correspondence with their intuitive
meaning in a linear tense logic.

3.3.4. Converting Modal Control Formulas

From a knowledge engineering perspective, authors of control formulas may
prefer to de�ne control formulas using modalities without using a progression
algorithm. In this case, modal control formulas can be automatically translated
into the corresponding TAL control formulas.

However, in order to preserve the same pruning semantics used by TLplan
when formula evaluation is used rather than progression, modal control formulas
cannot simply be translated into equivalent TAL formulas using the TransModal
algorithm. Instead, the translation procedure must automatically add the nec-

18 J. Kvarnstr�om and P. Doherty / TALplanner

essary contextualization to ensure that the value of the translated formula only
depends on the states up to and including t�xed, the last state that is guaranteed
not to be changed by the addition of new operators. Therefore, an alternative
algorithm called TransModal+ is de�ned. This algorithm takes a timepoint n and
a modal control formula intended to be evaluated at n as input and returns a
formula in L(ND)� without temporal modalities, but with the additional �xed
state time point constraint, as output. As in the de�nition of TransModal, Q
denotes a quanti�er and
 denotes a binary logical connective.

1 procedure TransModal+(n;)
2 if = Qx:� then return n � t�xed ! Qx:TransModal+(n; �)
3 if = �
 then return n � t�xed ! (TransModal+(n; �)
 TransModal+(n;))
4 if = :� then return n � t�xed ! :TransModal+(n; �)
5 if = f(x) =̂ v then return n � t�xed ! [n]
6 if contains no modalities then return n � t�xed !

7 if = goal(�) then return n � t�xed ! goal(�)
8 if = (� U[�;� 0]) then return (n+ � 0 � t�xed)!
9[t : n+ � � t � n+ � 0] (TransModal+(t;) ^ 8[t0 : n � t0 < t] TransModal+(t0; �))

3.3.5. Comparing Progression and Evaluation of Control Formulas

Two ways of checking control formulas have now been discussed: Using
progression and using formula evaluation. Both approaches have advantages and
disadvantages in terms of computational complexity.

Although a naive progression algorithm would most likely do better than
a naive formula evaluator, as demonstrated in earlier benchmark tests [15], we
have found that evaluation enables certain optimizations for common classes of
control formulas. These optimizations are considerably more di�cult to apply to
a progression algorithm. An additional advantage of not using progression is the
signi�cantly lower memory usage due to not needing to store a progressed control
formula in each search node.

This, however, does not apply equally to all types of control formulas. For
example, if a modal formula makes extensive use of the until operator, the eval-
uation of the corresponding TAL formula is more di�cult to optimize, and the
use of a progression algorithm is likely to improve performance.

Developing and analyzing optimization choices is currently being pursued
as an active research issue.

3.4. Goals in L(ND)�

The state goal in a planning problem instance is speci�ed using a set of goal
statements in L(ND)� (labeled goal) describing the desired properties of the goal
state. Which restrictions should be placed on such formulas depends on the way
in which the goal will be used by the planning algorithm.

J. Kvarnstr�om and P. Doherty / TALplanner 19

Although any planning algorithm must be able to determine whether the
�nal state resulting from a certain plan candidate entails the goal, TLplan has
demonstrated the advantages of also being able to test whether the goal entails a
certain formula. In the gripper domain, for example, one can intuitively see that
if the robot is carrying one or more balls that should be in the current room {
according to the goal { it should remain in the room until it has dropped them.

To allow such references to the goal, Bacchus and Kabanza [9] extend the
�rst-order version of LTL used in TLplan by adding a goal modality, where
goal(�) is true i� � holds in every acceptable goal state, or, equivalently, i�
the goal entails �. Since TLplan is restricted to using conjunctive goals, this
entailment check is very e�cient. Using the goal modality, the gripper rule can
be expressed as follows:

28b; l; g[carry(b; g) ^ loc(robot) = l ^ goal(loc(b) = l)! loc(robot) = l]:

While it would be possible to add a goal modality to TAL, this would require
signi�cant changes to the base language L(FL). Instead, we prefer to once again
follow the standard TAL methodology of adding new high-level macros and leav-
ing the base language intact. This is achieved by introducing goal expressions, a
new form of atomic expression in L(ND)�.

Although allowing arbitrary (disjunctive and existential) goal statements
and arbitrary goal expressions may require theorem proving, it is possible to
enable the use of e�cient formula evaluation techniques by placing suitable con-
straints on the allowed formulas. Such e�ciency considerations must be weighed
against the associated restrictions in expressivity. Therefore, two di�erent alter-
natives are presented, one of which restricts expressivity but allows very e�cient
entailment checking and one of which allows more complex formulas. For each
alternative, the translation into L(FL) is provided, ensuring that the semantics
of goal expressions is integrated with that of L(FL).

3.4.1. Goals: A Straight-Forward Macro Translation

In the �rst alternative, goal statements are restricted to be conjunctions of
expressions of the form f =̂ v, each of which states that a speci�c uent (state
variable) should take on a speci�c value. It should be noted that although explicit
negations are not allowed, negative goals of the form :at(object; location) can be
written as at(object; location) =̂ false.

For each uent f : dom1 � � � � � domn ! dom, the translation into L(FL)
adds a corresponding goal uent goalf : dom1� � � �� domn� dom! ftrue; falseg.
The intention is that goalf (x; v) should be true exactly when the goal entails
that f(x) =̂ v. This is achieved using TAL durational uents. Each goal uent
is durational with default value false, meaning that each instance of the uent
is false whenever it is not explicitly forced to be true. What remains is to force
the appropriate goal uents to be true, which can be achieved by translating

20 J. Kvarnstr�om and P. Doherty / TALplanner

the goal statement ^n
i=1fi(xi) =̂ vi into the dependency constraint I(8t:[t] ^n

i=1
goalfi(xi; vi) =̂ true).

Finally, goal expressions are restricted to be of the form goal(f(x) =̂ v). This
expression can be translated into the L(ND) formula 8t:[t] goalf (x; v) =̂ true.
Due to the restrictions placed on goal statements, this notation can easily be
extended to allow conjunctions, disjunctions, and quanti�cation within the scope
of the goal macro by observing the following equivalences:

� goal(� ^) � goal(�) ^ goal()

� goal(� _) � goal(�) _ goal()

� goal(9x:�) � 9x:goal(�)

� goal(8x:�) � 8x:goal(�)

Note that although some restrictions are placed on goal statements, this alter-
native still provides expressivity similar to or exceeding that of many existing
planners, including TLplan.

3.4.2. Goals: Allowing Arbitrary Goals

Although the approach described above is su�cient for many planning prob-
lems, the planner should be able to use arbitrary goal statements and arbitrary
formulas within the scope of the goal macro. This can be achieved with the help
of some additional pre-processing.

A uent formula in L(ND) is any formula formed from expressions of the
form f =̂ v using quanti�cation over values and the ordinary boolean connectives.
In the second alternative, a goal statement in L(ND)� can be any uent formula,
and goal expressions are of the form goal(�), where � can be any uent formula.

The translation into L(FL) is as follows. Let GN be a goal narrative with n
occurrences of goal expressions, and let be the conjunction of all goal state-
ments in GN . For each goal expression goal(�i(xi)) occurring in GN , where xi
are the free variables occurring in �i, create a new boolean durational goal u-
ent goali(xi) with default value false and replace the goal expression with the
expression 8t:[t] goali(xi). What remains is to ensure that goali(xi) holds exactly
for those xi for which goal(�i(xi)) should hold. For all instances hv1; : : : ; vmi of
xi such that Trans+(8t:[t]) j= Trans(8t:[t] �(v1; : : : ; vn)), add a dependency
constraint I(8t:[t] goali(v1; : : : ; vn) =̂ true). Since all value domains are �nite,
only a �nite number of dependency constraints will be needed.

It should be noted that the main purpose of this translation procedure is
to de�ne the semantics of goal expressions. An implementation is free to use
other, more e�cient methods, such as using a theorem prover or pre-generating a
suitable representation of all acceptable goal states and using formula evaluation,
as long as the method being used follows the semantics de�ned here.

J. Kvarnstr�om and P. Doherty / TALplanner 21

3.5. Control Rules for the Gripper Domain

A complete set of control formulas for the gripper domain can now be shown.
When writing control rules, it is always very important to take into account

the range of possible goals that one wants to plan for. Here, the assumption is
that the state goal will only require certain balls, and possibly the robot, to be
in certain rooms { for example, goals that require certain grippers to be free or
non-free will not be allowed. Under these assumptions, the following control rules
are very useful for pruning the search tree.

First, if the robot is carrying a ball that should be in the current room, then
it should remain in the same room at the next timepoint. This implies that the
robot will never leave a room before it drops the relevant balls. For modularity
reasons, it is not explicitly stated that the robot must drop a ball: There may be
other relevant actions to perform in the current state, especially in an extended
version of this domain.

#control :name "stay-if-should-drop"
8t, room [[t] loc(robot) =̂ room ^ 9ball, gripper [carry(ball, gripper) ^ goal(loc(ball)=̂room)]!

[t+1] loc(robot) =̂ room]

Second, if the robot is in a room that contains a ball that should be somewhere
else, and there is a free gripper, then it should remain in the same room.

#control :name "stay-if-should-pick-up"
8t, ball, room [[t] loc(robot) =̂ room ^ loc(ball) =̂ room ^ 9gripper [free(gripper)] ^

9room' [goal(loc(ball) =̂ room') ^ room' 6= room] !
[t+1] loc(robot) =̂ room]

Third, for any ball that the robot is not currently carrying, if there is no explicit
goal that the ball should be in another room, there is no point in picking it up.

#control :name "only-pick-up-relevant-balls"
8t, ball [[t] :9gripper [carry(ball, gripper)] ^

:9room [goal(loc(ball) =̂ room) ^ loc(ball) 6=̂room] !
[t+1] :9gripper [carry(ball, gripper)]

3.6. Operator De�nitions in L(ND)�

Although the standard L(ND) macros for specifying TAL operators are very
powerful, the syntax is quite di�erent from that normally used in the planning
community. For this reason, as well as in order to facilitate future extensions
to plan operator speci�cations, a new operator macro is introduced. Below, the
syntax of this macro is de�ned using extended BNF notation. Extensions for
resources are de�ned in Section 6.

opdef ::= "operator" opname ["(" argument ("," argument)* ")"]

":at" temporalVariable

[":precond" logicFormula]

22 J. Kvarnstr�om and P. Doherty / TALplanner

context ("," context)*

context ::= ":context"

[":forall" valueVariable ("," valueVariable)*]

[":condition" logicFormula]

":effects" effect ("," effect)*

effect ::= "[" "+" delay "]" fluentTerm ":=" valueTerm |

"[" "+" delay "," "+" enddelay "]" fluentTerm ":=" valueTerm

Given some binding of the operator argument variables and the invocation time-
point variable (speci�ed by :at), the operator is invocable with those arguments
at that timepoint i� the global precondition speci�ed by :precond holds. The
exact e�ects may be context-dependent, and the :conditions and the value terms
used in e�ects can depend on not only the invocation state but also any preceding
state. For actions with only one context, the :context keyword can be omitted.

Since TALplanner allows operators with duration, it is necessary to specify
not only the e�ects but also the delay between the invocation timepoint and each
e�ect. It is possible to de�ne e�ects that take place at a single timepoint as well
as e�ects that take place during an interval. Since both the delay and the enddelay
may be arbitrary temporal terms, the duration of the action may depend on the
state in which it is invoked. However, the delays must be strictly positive: No
operator is allowed to have e�ects in or before the state in which it is invoked.

The exact semantics of an operator de�nition is de�ned by its translation
into the base language L(FL):

� Transe�(t; [+�;+�
0] f := v) = I([t+ �; t+ � 0] f =̂ v)

� Transe�(t; [+�] f := v) = I([t+ �] f =̂ v)

� Transcon(t; :forall v1; : : : ; vn :condition � :e�ects 1; : : : ; m) =
8v1; : : : ; vn[�!

Vm
i=1Transe�(t; i)]

� Transop(operator name(v1; : : : ; vn) :at t :precond � :context c1 : : : :context cn) =
8t; t0:Occurs(t; t0;name(v1; : : : ; vn))! Trans(�!

Vn
i=1 Transcon(t; ci)).

This de�nes a basic syntax and semantics for L(ND)� operator de�nitions. Sec-
tion 6 presents an extension that facilitates the speci�cation of resource usage.
We are currently working on extending TALplanner for incomplete knowledge
and non-deterministic operators, which will necessitate further additions.

It is now possible to provide an alternate de�nition of the gripper domain
operators initially presented in Section 3.1.

#operator pick(ball, gripper) :at t
:precond [t] loc(ball) =̂ loc(robot) ^ free(gripper) ^ :9 gripper' [carry(ball, gripper')]
:e�ects [+1] carry(ball, gripper) := true,

[+1] free(gripper) := false

#operator drop(ball, gripper) :at t
:precond [t] carry(ball, gripper)

J. Kvarnstr�om and P. Doherty / TALplanner 23

:e�ects [+1] carry(ball, gripper) := false,
[+1] free(gripper) := true

#operator move-to(room) :at t
:precond [t] loc(robot) 6=̂ room
:context
:e�ects [+1] loc(robot) := room
:context :forall ball :condition [t] 9 gripper [carry(ball, gripper)]
:e�ects [+1] loc(ball) := room

The translation of these operators is equivalent to the L(ND) operator de�nitions
in Section 2.2.

3.7. TALplanner: An Abstract View

As shown in Figure 2, TALplanner takes a TAL goal narrative GN in L(ND)�

as input. The planner translates the goal narrative into a suitable internal repre-
sentation and then searches for a plan, an executable operator sequence satisfying
the goal statement and the control rules. If a plan exists, the result is a new plan
narrative in L(ND) where goals and control rules have been removed and a set
of action occurrences (corresponding to plan steps) has been added.

More formally, let GNgoal, GNcontrol and GNmcontrol be the sets of goal state-
ments, TAL control statements and modal control statements in GN , respec-
tively. These statement classes are only used during the plan synthesis process
and should not be included in the �nal plan narrative. Thus, assuming the plan-
ner succeeds in �nding a plan, the plan narrative Np is the L(ND) narrative
(GN n (GNgoal [GNcontrol [GNmcontrol)) [GNocc, where GNocc is the set of action
occurrences (plan steps) generated by the planning algorithm.

Observe that one can use standard inference techniques or techniques spe-
ci�c to TAL to reason about both the input goal narrative and the output plan
narrative. The plan narrative is always guaranteed to entail the state goal and
the domain dependent control formulas in GNcontrol.

4. Sequential TALplanner

In previous papers [15,30], two separate TALplanner algorithms for gener-
ating sequential plans were proposed: TALplan/modal using emulated modal con-
trol formulas and a progression algorithm, and TALplan/non-modal using TAL
control formulas and formula evaluation. Since experience has shown that both
approaches have advantages and disadvantages, a uni�ed sequential version of
TALplanner has recently been developed. The new planner is called TALplan/seq
and allows the use of both types of control rules.

The constraints placed on goal narratives by the current version of
TALplan/seq will now be presented, followed by a de�nition of sequential plans
and a description of the forward-chaining search tree induced by this de�nition.

24 J. Kvarnstr�om and P. Doherty / TALplanner

The uni�ed sequential TALplanner algorithm will then be described. This algo-
rithm uses both formula progression and a pruning constraint extraction algo-
rithm, discussed in the �nal two subsections.

4.1. Constraints on Goal Narratives

For this version of TALplan/seq, the following restrictions are placed on the
goal narratives accepted as input:

� The initial state must be completely speci�ed.

� Operators must be deterministic.

� Dependency constraints (and side e�ects of actions) are not allowed.

� Domain constraints must not relate to multiple states. More formally, domain
constraints must be pure state constraints of the form 8t:[t] �(t), where the
formula �(t) is a �xed uent formula that only refers to uents at time t.

� Fluents must be persistent or dynamic, as de�ned in Section 2.1. Each dy-
namic uent must be associated with a domain constraint that uniquely de-
termines the value of that uent. This provides the possibility of using de�ned
predicates (essentially, boolean state variables de�ned in terms of formulas).

However, context-dependent operators and operators with duration and inter-
nal state changes within the execution of the operator are allowed, permitting
TALplanner to handle full ADL-style operators with some additional extensions.
Arbitrary (disjunctive and existential) goals are also permitted.

4.2. Sequential Plans

TALplanner takes a TAL goal narrative GN as input, and generates a new
plan narrative Np where a set of timed action occurrences has been added. In-
ternally, however, TALplanner is basically a forward chaining planner, searching
through the space of states reachable from the initial state. In order to be able
to describe this search space more formally, a number of de�nitions are required.

Due to the use of actions with non-unit duration, plans cannot be just
sequences of operators but must also contain timing information. This is provided
as action occurrences or timed operator instances of the form [�; � 0] o, denoting
the invocation of the operator instance o between times � and � 0, where � < � 0.

An executable operator sequence is a tuple of timed operator instances with
the following constraints. First, the empty tuple is an executable operator se-
quence. Second, given a sequence of n operators ending in [tn�1; tn] on, its
successors are exactly those sequences adding one new timed operator instance
[tn; tn+1] on+1 such that on+1 is applicable at [tn; tn+1] (where tn = 0 if n = 0).

A plan is an executable operator sequence that satis�es all control formulas
in GNcontrol as well as the goal statements in GNgoal.

J. Kvarnstr�om and P. Doherty / TALplanner 25

These de�nitions induce a search tree where the root is labeled with the
empty operator sequence and the children of a node labeled with the sequence l
are labeled with the successors of l. Clearly, this search tree must contain all
plans. Therefore, a complete planner can be generated by using a complete
search algorithm such as breadth �rst search or iterative deepening.

4.3. The Sequential TALplanner Algorithm

The following is a version of the sequential TALplanner algorithm using
depth-�rst search with optional cycle checking. Naturally, the algorithm can
easily be modi�ed to use other search strategies.

Input: A goal narrative GN .
Output: A plan narrative Np which entails the goal and the non-modal control
formulas.
1 procedure TALplan/seq(GN)
2

V
GNgoal Conjunction of all goal statements

3 �
V
GNmcontrol Conjunction of all modal control rules

4 �
V
GNcontrol Conjunction of all non-modal control rules

5 � generate-pruning-constraints(�) Generated pruning constraints
6 acc fg Visited (accepted) states for redundancy checking
7 Open hh�;�1; 0;GNii Stack (depth-�rst search)
8 while Open 6= hi do
9 h�; �; � 0;GNi pop(Open)

10 N GN n (GNgoal [GNcontrol [GNmcontrol)
11 if Trans+(N [ft�xed = � 0g) 6j= Trans(:�) then Check pruning constraints
12 �+ Progress(�; � + 1; � 0 + 1;N) Progress modal control
13 if �+ 6= false then Check modal control
14 state (state at time � 0 for N)
15 if (redundancy checking disabled) or state 62 acc then

16 acc acc [fstateg
17 if GoodPlan(GN ; � 0) then return N
18 else Expand(GN ; � 0 ; �+;Open)

Some explanations are in order. Each search node is associated with a modal
control formula �, which may be the constant true in the absence of modal control.
Line 11 checks whether the negation of the non-modal pruning constraints � is
entailed, in which case the search node should be pruned. If this is not the case,
the planner then progresses the modal control formula � through the new �xed
state or states generated by the new action (the temporal interval [� + 1; � 0]),
in order to �nd a modal formula �+ that should hold at � 0 + 1 (line 12). If
�+ = false, the search node should be pruned. Lines 14{16 perform redundancy
checking. Line 17 checks whether a plan has been found, while line 18 pushes the
successors of the current search node onto the stack using the Expand algorithm
de�ned below.

26 J. Kvarnstr�om and P. Doherty / TALplanner

4.3.1. What is a Good Plan?

The GoodPlan algorithm determines whether an operator sequence corre-
sponding to a narrative GN is in fact a plan, where the � argument denotes the
ending timepoint of the last operator instance added to the narrative GN .

In the default implementation, GoodPlan ensures both that the state goal
is entailed at time � and that the non-modal control formulas � are entailed
(recall that in order to emulate the semantics used for modal control formulas by
TLplan, such formulas are only used for pruning purposes and are not considered
to be part of the goal).

Di�erent implementations could provide di�erent criteria for whether a nar-
rative satis�es a goal. For example, since TALplanner allows actions with du-
ration and internal state, one may want to accept plans where a goal state is
visited at some intermediate timepoint in the duration of an action, even if the
�nal state does not satisfy the goal.

1 procedure GoodPlan(GN ; �)
2 N GN n (GNgoal [GNcontrol [GNmcontrol)
3

V
GNgoal Conjunction of all goal statements

4 �
V
GNcontrol Conjunction of all non-modal control rules

5 if Trans+(N) j= Trans(� ^ [�]) return true

6 else return false

4.3.2. What is a Successor?

The Expand algorithm is responsible for �nding all successors of a plan pre�x.
Here, this is done by �nding all operator instances whose preconditions are satis-
�ed at time s in GN . Di�erent implementations of Expand can provide di�erent
lookahead, decision-theoretic and �ltering mechanisms for choice of actions.

1 procedure Expand(GN ; s; �;Open)
2 N GN n (GNgoal [GNcontrol [GNmcontrol)
3 for all a(x) 2 ActionTypes(N) do For all action types (operators)
4 for all [s; t] a(c) 2 Instantiate(s; a(x)) do For all instantiations
5 if Trans+(N) j= Trans([s] precond(a(c))) then If applicable at s
6 Open Open [fh�; s; t;GN [f[s; t] a(c)gig Add it to Open

Note that in the implementation, a lazy version of Expand is used where successors
are only generated as needed.

4.4. Extracting Pruning Constraints

As discussed in Section 3.3.2, the non-modal control rules de�ned by the
domain designer provide constraints that must be satis�ed by any valid plan.
However, in order to prune the search tree, TALplanner requires constraints
that must be satis�ed by any pre�x of a valid plan. In a pre-processing phase,
TALplanner analyzes the control rules and automatically generates a set of such

J. Kvarnstr�om and P. Doherty / TALplanner 27

pruning constraints. If an operator sequence violates a pruning constraint, the
corresponding search node and its descendants can immediately be discarded.

The process of extracting and analyzing pruning constraints can be quite
complex for certain classes of control formulas, and also depends on the exact
restrictions placed on goal narratives and on whether sequential or concurrent
plans are being generated. A complete and formal de�nition of the algorithms
being used for di�erent formula classes and di�erent restrictions is outside the
scope of this article, and will be presented in a forthcoming paper. Here, an illus-
trative example will instead be provided for a very common formula class under
the assumption of sequential planning with the restrictions given in Section 4.1.

Consider again the gripper control rules presented in Section 3.5. These
rules are of the form 8t:�(t), where �(t) only depends on states in the interval
[t; t+ c] for some constant c (for these three rules, c = 1).

Suppose an operator sequence is considered where �(t) is false for some
timepoint t (so that the control formula 8t:�(t) is violated), and suppose it can
be guaranteed that the states in [t; t+ c] are �xed, that is, that they will remain
unchanged in all descendants. Clearly, �(t) will remain false in all descendants,
and the control rule will always remain violated. Such an operator sequence
cannot be the pre�x of a plan, and can immediately be pruned.

A new temporal constant t�xed is introduced that at any point in the search
process denotes the ending timepoint of the current operator sequence. Clearly,
since sequential plans are generated, all states up to and including t�xed are �xed:
New operators can be added, but they cannot a�ect the \past". The pruning
constraint 8t:t+ c � t�xed ! �(t) is generated and must be satis�ed by any plan
pre�x. For example, the third gripper control rule, \only pick up relevant balls",
generates a pruning constraint of the form

8t:t+ 1 � t�xed ! 8b:[t] :9g[carry(b; g)] ^ (t; b)! [t+ 1] :9g[carry(b; g)]

where (t; b)
def

= :9r[goal(loc(b) =̂ r)^ [t] loc(b) 6=̂ r] expresses the fact that there
is no reason for moving the ball b to another room.

4.4.1. Operator-Independent Pruning Constraint Analysis

TALplanner only generates successors for operator sequences that satisfy all
pruning constraints. This fact can be used in order to optimize the evaluation of
pruning constraints in the successors.

Consider once again a pruning constraint of the form 8t:t+c � t�xed ! �(t).
If the planner has just added the timed operator instance [�; � 0] o, then t�xed has
just increased from � to � 0. Thus, it is already ensured in the predecessor that
8t:t + c � � ! �(t), and since this condition only depended on �xed states, it
remains true in the successor. In order to prove the constraint 8t:t+c � � 0 ! �(t)
in the successor, only 8t:� < t+ c � � 0 ! �(t) needs to be proved. By using this
simpler pruning constraint, the planner avoids re-evaluating conditions that were

28 J. Kvarnstr�om and P. Doherty / TALplanner

rules
Control

Operator
definitions

Control
optimizer

Pruning
constraintsanalyzer

Control

Optimized
constraints

for operator 1

Optimized
constraints

for operator n

Figure 5. Optimization

already checked in a predecessor. This reduces the gripper pruning constraint
above to the following formula:

8t:� < t+ 1 � � 0 ! 8b:[t] :9g[carry(b; g)] ^ (t; b)! [t+ 1] :9g[carry(b; g)]

4.4.2. Operator-Dependent Pruning Constraint Analysis

Pruning constraints can also be analyzed separately for each operator type
in a domain, under the assumption that some instance of that operator has just
been invoked (see also Figure 5). Although this is done during pre-processing,
when exact arguments and invocation timepoints are not yet known, the operator
de�nitions contain considerable information about the states in which the pruning
constraints will eventually be evaluated: The preconditions must hold (or the
operator would not have been invoked), the e�ects must have taken place, and
since sequential planning is assumed and the use of dependency constraints is
not allowed, no persistent state variables can have changed during the execution
interval [�; � 0] except those explicitly speci�ed by the operator e�ects.

Let � denote the information present in the de�nition of an operator o.
When proving a pruning constraint � immediately after adding an instance of o
to an operator sequence, � is already known. If it is possible to �nd a simpler
condition such that � ^ � � � ^ , then proving is su�cient.

Consider the reduced gripper pruning constraint presented above under the
assumption that [�; � 0] pick(b1; g1) has just been invoked for some ball b1 and
some gripper g1. Since the pick operator always uses one unit of time, it must be
the case that � 0 = � + 1. Simplifying the pruning constraint accordingly yields:

8b:[�] :9g[carry(b; g)] ^ (�; b)! [� + 1] :9g[carry(b; g)]

The quanti�ed formula can only be false if carry(b; g) is false at � but true at �+1.
But this can only occur for carry(b1; g1), since no other instance of carry is altered
by pick(b1; g1). Thus, the constraint can be simpli�ed as follows:

[�] :carry(b1; g1) ^ (�; b)! [� + 1] :carry(b1; g1)

Due to the preconditions of [�; � 0] pick(b1; g1), the formula [�] :carry(b1; g1) must
be false, and due to the direct e�ects, [� + 1] :carry(b1; g1) must be false. After

J. Kvarnstr�om and P. Doherty / TALplanner 29

Generated,
tested, pruned

Generated,
tested, pruned

generated
Never

generated
Never

generated
Never

Generated,
tested, OK

Generated,
tested, OK

Generated,
tested, OK

Generated,
tested, OK

Generated,
tested, pruned

Figure 6. Fewer States Generated using Precondition Control

simpli�cation, the remaining formula is : (�; b1), where b1 is bound to the actual
argument of the pick operator just having been invoked.

In some cases, this process completely removes pruning constraints for cer-
tain operators. For example, TALplanner automatically detects that the con-
straint \do not move when there are objects to drop" cannot be violated by the
drop or pick actions.

4.4.3. Generating Precondition Control

Often, the operator-speci�c pruning constraint analysis results in simpli�ed
pruning constraints where some conjuncts { or even the entire constraints { only
refer to the invocation state of the operator. This was the case for the gripper
example, where : (�; b1) only refers to time � . TALplanner moves such con-
juncts into the precondition of the operator, automatically generating so called
precondition control [7].

This is possibly one of the reasons why TALplanner is signi�cantly faster
than TLplan. In order to check whether a control rule is violated in a successor,
TLplan (or TALplanner with modal control rules) must apply an action, gen-
erating one or more new states, and then progress the control rule through the
new states (the left hand side of Figure 6). When a pruning constraint can be
reduced to precondition control, however, it can be checked before the successor
states are generated (the right hand side of Figure 6).

4.5. Progressing a Modal Control Formula

The Progress algorithm (abbreviated P below) will now be de�ned. Let � be
a modal control formula that should hold at � in N . Then, Progress(�; �; � 0;N)
will be a modal control formula that should hold at � 0 in N . Usually, � 0 should
be the timepoint immediately after the last �xed state.

1 procedure Progress(�; �; � 0;N)
2 if � = � 0 return �

30 J. Kvarnstr�om and P. Doherty / TALplanner

3 if � = f(x) =̂ v

4 if Trans+(N) j= Trans([�] �) return true else return false

5 if � contains no temporal modalities
6 if Trans+(N) j= Trans(�) return true else return false

7 if � = :�1 return :P(�1; �; � 0;N)
8 if � = �1
 �2 return P(�1; �; �

0;N)
 P(�2; �; �
0;N)

9 if � = �1 U[�1;�2] �2
10 if �1 < 0 ^ �2 < 0 return false

11 elsif 0 2 [�1; �2]
12 return P(�2; �; �

0;N) _ (P(�1; �; �
0;N) ^ P(�1 U[�1�1;�2�1] �2; � + 1; � 0;N))

13 else return P(�1; �; �
0;N) ^ P(�1 U[�1�1;�2�1] �2; � + 1; � 0;N)

This algorithm is similar to the one used by Bacchus and Kabanza in [10]. How-
ever, there are some di�erences in the progression of the U operator, since TAL
actions with duration can have internal state: Unlike the �rst-order version of
MITL (metric interval temporal logic [3,4]) used in [10], there can be a sequence
of state changes between the initiation state and the e�ect state of a TAL action.

Since , 2 and 3 can be de�ned in terms of U, the algorithm above su�ces,
although handling the additional modal operators explicitly might be useful for
clarity and e�ciency:

14 if � = 3[�1;�2] �1
15 if [�1; �2] < 0 return false

16 elsif 0 2 [�1; �2] return P(�1; �; �
0;GN) _ P(3[�1�1;�2�1] �1; � + 1; � 0;GN)

17 else return P(3[�1�1;�2�1] �1; � + 1; � 0;GN)
18 if � = 2[�1;�2] �1
19 if [�1; �2] < 0 return false

20 elsif 0 2 [�1; �2] return P(�1; �; �
0;GN) ^ P(2[�1�1;�2�1] �1; � + 1; � 0;GN)

21 else return P(2[�1�1;�2�1] �1; � + 1; � 0;GN)
22 if � = �1
23 if � + 1 = � 0 return �1
24 else return P(�1; � + 1; � 0;GN)

The result of Progress is simpli�ed using the rules :false = true, (false ^ �) =
(� ^ false) = false, (false _ �) = (� _ false) = �, :true = false, (true ^ �) =
(� ^ true) = �, and (true _ �) = (� _ true) = true.

5. Extending TALplanner for Concurrency

The sequential version of TALplanner will now be extended for generating
concurrent plans. The concurrent planner will place the same constraints on goal
narratives as the sequential planner (Section 4.1).

5.1. Concurrent Plans

Although the planner described in this section generates concurrent plans,
a plan is still viewed as a sequence of timed operator sequences.

J. Kvarnstr�om and P. Doherty / TALplanner 31

For concurrent TALplanner, an executable operator sequence is a tuple of
timed operator instances. The empty tuple is an executable operator sequence,
and given a sequence p of n operators ending in [sn; tn] on, its successors are those
sequences adding one new timed operator instance [sn+1; tn+1] on+1 satisfying the
following four constraints.

First, the new operator on+1 must be applicable at [sn+1; tn+1]. This implies
that its preconditions are satis�ed, that its e�ects are not internally inconsistent,
and that its e�ects do not contradict the e�ects of the operator instances already
present in the sequence.

Second, the new operator should not be invoked before any of the opera-
tors already existing in the sequence. Therefore, it is required that sn � sn+1.
This guarantees that all states up to and including sn are �xed and will never
be modi�ed in any successor of p, which is important for the e�ciency of the
implementation.

Third, an upper bound will be placed on the invocation timepoint sn+1.
Let � be the maximum of all ending timepoints ti of all actions in p. The states
from sn up to � may all be di�erent, but since nothing can change after � ,
successors with sn+1 > � are not considered. Thus, it must be the case that
sn+1 � � (note that it is possible that � > tn, as in the operator sequence
h[0; 7] o1; [0; 3] o2i).

Fourth, there is an additional di�culty associated with successors where
sn+1 = sn (that is, where the new action has the same invocation timepoint as
an existing action): The search tree could contain redundant pairs of plan pre�xes
such as h[0; 3] o1; [0; 3] o2i and h[0; 3] o2; [0; 3] o1i. To avoid this redundancy, the
existence of a total order � on operator instances will be assumed, and if sn+1 =
sn, it must be the case that o � on.

Like the de�nition of sequential plans, this de�nition induces a possibly
in�nite search tree which can be traversed using standard search strategies such as
breadth �rst search or various forms of heuristic search methods. The algorithms
presented below use depth-�rst search and rely on control rules to prune nodes
that would not lead closer to the goal.

5.2. The Concurrent TALplanner Algorithm

The concurrent TALplanner algorithm will now be de�ned. The main dif-
ference between this algorithm and sequential TALplanner is that successors may
be added at any timepoint between � and � , inclusive. Note that successors are
pushed on the stack in reverse temporal order, since invoking operators as early
as possible is preferred. The case where all states up to � are �xed must be
treated separately (lines 11{18): Only here can a plan possibly be found, and
only here can redundancy checking be performed.

Input: A goal narrative GN .

32 J. Kvarnstr�om and P. Doherty / TALplanner

Output: A plan narrative Np which entails the goal and the non-modal control
formulas.
1 procedure TALplan/conc(GN)
2

V
GNgoal Conjunction of all goal statements

3 �
V
GNmcontrol Conjunction of all modal control rules

4 �
V
GNcontrol Conjunction of all non-modal control rules

5 � generate-pruning-constraints(�) Generated pruning constraints
6 acc fg Visited (accepted) states for redundancy checking
7 Open hh�;�1; 0; 0;GNii Stack (depth-�rst search)
8 while Open 6= hi do
9 h�; �; � 0; � ;GNi pop(Open)

10 N GN n (GNgoal [GNcontrol [GNmcontrol)
11 if Trans+(N [ft�xed = �g) 6j= Trans(:�) then Check pruning constraints
12 �+ Progress(�; � + 1; � + 1;N) Progress modal control
13 if �+ 6= false then Check modal control
14 state (state at time � for N)
15 if (redundancy checking disabled) or :9s0 2 acc: better-or-equal5(s0; state) then
16 acc acc [fstateg
17 if GoodPlan(GN ; �) then return N
18 else Expand(GN ; �; � ; � ; �+;Open)
19 for s from � � 1 downto � do

20 if Trans+(N [ft�xed = sg) 6j= Trans(:�) then Check pruning constraints
21 �+ Progress(�; � + 1; s+ 1;N) Progress modal control
22 if �+ 6= false then Check modal control
23 Expand(GN ; �; s; � ; �+;Open)

5.2.1. What is a Successor?

Although the sequential version of GoodPlan can still be used, the sequential
version of the Expand algorithm must be modi�ed somewhat to prevent the search
tree from containing redundant pairs of plan pre�xes (line 5). Also, � must be
updated and stored in each search node (max(t; �) in line 7).

1 procedure Expand(GN ; �; s; � ; �;Open)
2 N GN n (GNgoal [GNcontrol [GNmcontrol)
3 for all a(x) 2 ActionTypes(N) do For all action types (operators)
4 for all [s; t] a(c) 2 Instantiate(s; a(x)) do For all instantiations
5 if s 6= � or a(c) � lastact(N) then If not redundant ordering
6 if Trans+(N) j= Trans([s] precond(a(c))) then If applicable at s
7 push h�; s; t;max(t; �);GN [f[s; t] a(c)gi on Open Add it to Open

5.3. Extracting Pruning Constraints

The algorithms for generating and analyzing pruning constraints for sequen-
tial plans are based on the assumption that all states up to and including the

5 The better-or-equal relation is explained in Section 6.1.

J. Kvarnstr�om and P. Doherty / TALplanner 33

maximum e�ect timepoint in an operator sequence will remain unmodi�ed in
every successor. Although this does not hold for concurrent plans, there is a
weaker condition that TALplanner can take advantage of in order to strengthen
its pruning capabilities.

Let p = h[s1; t1] o1; : : : ; [sn; tn] oni be an executable operator sequence. If
sequential plans are being generated, all states up to and including time tn are
�xed, while states after tn may be modi�ed in successors. If concurrent plans
are being generated, all states up to and including sn are �xed. States after sn
may be modi�ed in successors, except for those state variables that have already
been explicitly assigned a value at timepoints within the interval [sn + 1; tn]. By
considering this during the generation and analysis of pruning constraints for
concurrent plans, TALplanner can detect control violations earlier than would
have been possible with a pure progression algorithm.

6. Extending TALplanner with Resources

Many planning domains involve the use of limited resources which can be
consumed, produced, borrowed, or used in various other ways. For example,
vehicles such as trucks and airplanes can have limited carrying capacities and a
limited amount of fuel available.

For sequential planning, such properties can usually be modeled quite easily
in TALplanner by using plain action e�ects updating the values of non-boolean
uents: A drive action would decrease the amount of fuel available by assigning
a new value to the fuel uent. However, the use of concurrency adds consider-
ably to the complexity of modeling resources in this manner, mainly due to the
possibility of multiple actions using the same resource in the same state, and
even for sequential planning, adding explicit built-in support for resources often
facilitates the writing of domain de�nitions. Therefore, three new extensions to
TALplanner are provided: Resource declaration statements, an extended form of
operator statements, and a set of uent macros for use with resources.

Resource declaration statements have the following form:

resource r(x) :domain domain

For example, in a problem domain where vehicles have limited space, a space
resource can be declared as follows:

resource space(vehicle) :domain integer

Operator statements are extended in order to provide a structured way of declar-
ing the resource usage of an operator.

context ::= ":context"

[":forall" valueVariable ("," valueVariable)*]

[":condition" logicformula]

34 J. Kvarnstr�om and P. Doherty / TALplanner

[":resources" resUse ("," resUse)*]

":effects" effect ("," effect)*

resUse ::= "[" "+" delay ["," "+" enddelay] "]"

(":produce" | ":consume" |

":borrow" | ":borrow-nonex" | ":assign")

resourceFluent ["(" valueTerm ("," valueTerm)* ")"]

":amount" amountExpression

Like plain e�ects, resource e�ects can refer to a single timepoint (a strictly positive
delay from the invocation timepoint) or an interval of time (also strictly positive:
no operator is allowed to use resources in its invocation state). However, while
plain e�ects always specify a new value to be assigned to a uent, there are �ve
di�erent kinds of resource e�ect:

� :produce produces a certain amount of the given resource. What has been
produced in a certain state cannot be used (consumed or borrowed) in the
same state.

� :consume consumes a certain amount of the given resource. Consumption in
one state leaves room for more production in the following state.

� :borrow borrows a certain amount of resources at the speci�ed timepoint or
during the speci�ed interval. After the speci�ed timepoint or interval, the re-
sources are returned, and are immediately ready to be borrowed or consumed.

� :borrow-nonex is similar to borrow. However, the resources are borrowed non-
exclusively, so that multiple concurrent instances of :borrow-nonex can share
the same resources.

� :assign assigns a new value to the resource. This e�ect is incompatible with the
other e�ects in the sense that it is impossible to borrow, produce or consume
some units of a certain resource and to assign a new value to the same resource
at the same timepoint. TALplanner ensures that plans satisfy this constraint
by automatically generating a suitable control rule for each resource.

Each resource has a number of di�erent aspects modeled as uent macros.
First, in any state, there is an initial amount of resources { the amount that

would be available if no resource e�ects took place in that state. Given a resource
res, this is modeled as a uent macro init(res).

Second, given a state and a resource res, certain amounts of that resource
have been produced, consumed, borrowed non-exclusively, and borrowed exclu-
sively. These amounts may arise from cumulative e�ects of a number of con-
current operators, and can be referred to using the uent macros produced(res),
consumed(res), borrowed-nonex(res), and borrowed(res), respectively.

Third, it is often useful to be able to refer to the amount of resources actually
available for consumption in any given state. This amount can be referred to as
available(res), and is equivalent to init(res)�consumed(res)�borrowed-nonex(res)�

J. Kvarnstr�om and P. Doherty / TALplanner 35

borrowed(res) (recall that resources produced in a state are not available for
consumption in the same state). Similarly, one can refer to the amount of
resources transferred to the next state as transferred(res); this is equivalent to
init(res) + produced(res)� consumed(res).

Finally, the minimum and maximum amounts allowed can be speci�ed using
the macros minimum(res) and maximum(res). In states where a resource has been
explicitly assigned a new value, it is su�cient to ensure that the new value is
within the allowed range. When no assignment has taken place, however, there
may be a number of concurrent resource e�ects a�ecting the same resource. When
enforcing resource constraints, TALplanner assumes that multiple resource e�ects
might not in fact occur exactly simultaneously in the real world even though they
are modeled as taking place in the same state, and therefore takes the pessimistic
view. For the minimum constraint, this entails the assumption that all consump-
tion in any given state might take place before any production, leading to the
constraint that init(res)� consumed(res)� borrowed-nonex(res)� borrowed(res) �
minimum(res) in all states, or, equivalently, that available(res) � minimum(res)
in all states. Similarly, to ensure that the amount of resources never exceeds
the speci�ed maximum regardless of the actual order between production and
consumption within a state, the planner requires that init(res) + produced(res) �
maximum(res) at all timepoints.

For every resource, it is necessary to specify the initial, minimum and max-
imum values in the initial state. For example, the fact that it is possible to have
between 0 and 60 units of fuel, and that 30 units are available in the initial state,
can be expressed as follows:

[0] init(fuel) =̂ 30 ^minimum(fuel) =̂ 0 ^maximum(fuel) =̂ 60

Like all aspects of TALplanner, the formal semantics of resources is de�ned in
terms of translations into L(FL). Each resource de�nition gives rise to a num-
ber of TAL uents, some of which are dynamic (non-inert), while each resource
e�ect is translated into an ordinary operator e�ect. At any given timepoint,
domain constraints determine the values of the non-inert resource uents associ-
ated with each resource { the total amount produced, consumed, borrowed, etc.
The implicit condition that the amount of any resource should never be outside
its allowed range of values is translated into a set of control rules. The exact
translation is straightforward, and will therefore be omitted and presented it in
a forthcoming technical report.

Note that since resource macros can be used in control rules, one is not
limited to simple minimum/maximum constraints on resources. It is easy to state
that no more than 5.5 units of fuel can be consumed at any given timepoint:

8t:value(t; consumed(fuel)) � 5:5

One can also state that it is impossible to produce and consume units of the
same resource at the same time, that equal amounts of two resources must always

36 J. Kvarnstr�om and P. Doherty / TALplanner

be available, or even a complex constraint such that whenever some condition �
holds, a certain resource may not be consumed during the following 6 timepoints:

8t:[t] consumed(res) =̂ 0 _ produced(res) =̂ 0

8t:value(t; available(res1)) = value(t; available(res2))

8t: [t] �! [t+ 1; t+ 6] consumed(res) =̂ 0

6.1. Resources and Redundancy Checking

When resources are involved, ordinary cycle checking is generally too weak.
Suppose, for example, that moving consumes fuel. An operator sequence where
one moves from a to b and immediately back to a is intuitively redundant, but
does not lead to a cycle, since less fuel is available after moving.

Therefore, each resource can be associated with a preference: more, less, or
none. The syntax for resource declarations is extended accordingly:

resource r(x) :domain domain [:preference (:more j :less j :none)]

This induces a partial order on states, better-or-equal, used in TALplan/conc:
better-or-equal(s; s0) holds i� (1) s and s0 are equal wrt. ordinary uents and
resources with preference none, (2) for every resource with preference more, there
is at least as much available in s as in s0, and (3) for every resource with preference
less, there is at least as much available in s0 as in s. Thus, declaring the fuel
resource with preference more allows TALplanner to prune action sequences such
as the one mentioned above.

Since resources can be used not only in resource e�ects but also in precon-
ditions, control rules, and goals, generating these preferences automatically can
be quite complex for non-trivial domains, and is a topic for future research.

6.2. Concurrency and Resources in the Gripper Domain

The obvious use of resources and concurrency is of course the ability to model
and solve problems that can not be represented in a more restrictive formalism
such as STRIPS. Perhaps less obvious, but equally important, is that explicit
representations of resources lead to more e�cient encodings of some standard
STRIPS problems.

Consider once more the gripper domain. In the case where the robot has
more than one gripper, one di�culty for a planner is recognizing that the grippers
are functionally identical; if a plan can not be completed using the left gripper to
pick up a certain object, using the right gripper instead will not �x the problem
(this was pointed out in [18]). This di�culty can be avoided by modeling the
grippers as a resource of bounded capacity. Picking up and dropping objects
\consumes" and \produces" grippers, respectively. This also facilitates the de�-
nition of problem instances: Rather than having to name each gripper, it su�ces
to specify the number of grippers that are available.

J. Kvarnstr�om and P. Doherty / TALplanner 37

The value domains obj for things (including the robot), ball for balls (a sub-
type of obj), and room for rooms are unchanged from the previous formalization
of this domain. The integer domain is added and the gripper domain is no longer
used. The uent loc is unchanged, while the uent free is replaced with the
resource gripper and the uent carry no longer has a gripper argument.
#domain obj :elements f ball1, ball2, ball3, robot g
#domain ball :parent obj :elements f ball1, ball2, ball3 g
#domain room :elements f roomA, roomB g
#resource gripper :domain integer

#feature loc(obj) :domain room
#feature carry(obj) :domain boolean

#obs [0] init(gripper) =̂ 2 ^ minimum(gripper) =̂ 0 ^ maximum(gripper) =̂ 2

Given these de�nitions, the gripper domain operators from Section 3.6 can be
rede�ned as follows:
#operator pick(ball) :at t
:precond [t] loc(ball) =̂ loc(robot) ^ : carry(ball)
:resources [+1] :consume gripper :amount 1
:e�ects [+1] carry(ball) := true

#operator drop(ball) :at t
:precond [t] carry(ball)
:resources [+1] :produce gripper :amount 1
:e�ects [+1] carry(ball) := false

#operator move-to(room) :at t
:precond [t] loc(robot) 6=̂ room
:context
:e�ects [+1] loc(robot) := room
:context :forall ball :condition [t] carry(ball)
:e�ects [+1] loc(ball) := room

7. Soundness and Completeness

The issues of soundness and completeness can only be considered relative to
the exact restrictions being placed on a plan. This is especially true for planners
that allow the speci�cation of control rules, due to the question of whether or
not such rules are part of the requirements that must be satis�ed by a plan.

The sequential and concurrent TALplanner algorithms are sound given the
de�nitions of a plan in Sections 4.2 and 5.1, respectively: If a narrative descrip-
tion Np is returned given GN as input, then Trans+(Np) j= Trans(

V
GNcontrol ^

[t]
V
GNgoal), where t is the end timepoint of the last action occurrence in GNocc.

(Recall that modal control rules are not viewed as part of the goal that must be
satis�ed by a �nal plan.)

Completeness is a somewhat more complex issue, and depends on whether
or not cycle checking is used and whether or not modal control rules are present
in the goal narrative.

38 J. Kvarnstr�om and P. Doherty / TALplanner

7.1. Completeness Without Modal Control Rules

In the absence of modal control rules, TALplanner prunes a search node
only if it can prove that all descendants must violate some non-modal control
formula. Since non-modal control formulas must necessarily be satis�ed in any
valid plan, this pruning does not render TALplanner incomplete, as long as a
complete search strategy such as breadth �rst or iterative deepening is used.

In most cases, however, TALplanner is run using depth-�rst search and cycle
checking, as shown in the TALplan/seq and TALplan/conc algorithms above.

Since non-modal control rules in TALplanner are in e�ect temporally ex-
tended goals, it may be natural to view cycle checking as one very speci�c form
of temporally extended goal: A valid plan must not contain a cycle. Given this
perspective, TALplanner is complete even when cycle checking is activated.

However, if one takes a more traditional view of cycle checking, considering
it merely an aid to the planner during the search process, then TALplanner is not
complete in the presence of cycle checking, since it is technically possible to write
control formulas that can only be satis�ed by plans containing cycles. It should
still be possible to provide restricted completeness results for speci�c types of
control formulas, but we leave this for future research.

7.2. Completeness With Modal Control Rules

Emulated modal control rules in TALplanner are not considered part of the
goal to be achieved. Therefore, careless use of modal control rules can easily
render the planner incomplete, in the sense that the control rules speci�ed by the
domain designer could explicitly disallow all the paths that could lead to a goal
state. For example, adding the modal control rule false will prevent TALplanner
from �nding any plan.6

8. Example Domains and Empirical Test Results

In this section, a number of example domains will be presented with em-
pirical test results from running TALplanner on a number of problem instances
within each domain. Although the main focus will be on a number of variations
of the well-known logistics domain, the blocks world will also be considered in
addition to a number of results from the AIPS 2000 Planning Competition [2].
TALplanner received the Outstanding Performance award in the hand-tailored
(domain-dependent) track of the planning competition and �rst place in the ADL-
plus-resources track of the Miconic 10 elevator control domain competition [27]
sponsored by Schindler Lifts Ltd.

6 The non-modal control rule false is viewed as a goal; if it is present, there is no plan.

J. Kvarnstr�om and P. Doherty / TALplanner 39

Rather than showing the complete TALplanner domain de�nitions, only the
operator de�nitions and control rules will be provided. The complete domain
de�nitions will soon be available at http://www.ida.liu.se/�jonkv/vital.html.

The test results from the AIPS 2000 Planning Competition were generated
on a 500 MHz Pentium III machine with 1 GB of memory. Results will be
presented for the �rst three domains used in the hand-tailored track of the com-
petition: The blocks world, the logistics domain, and the schedule domain. The
complete PDDL domain de�nitions and problem instances are available from the
AIPS 2000 home page [2], together with the raw data �les from which the graphs
in this section were created. TALplanner's results are compared with SHOP [34]
(a hierarchical task network (HTN) planner), System R [32] (a regression-based
planner where domain-dependent control information is used to order subgoals,
prune subgoals, and determine the way a subgoal is solved by regressing it to a
new conjunctive goal), PbR [5,6] (Planning by Rewriting, a planner �rst generat-
ing a plan quickly and then optimizing the plan using domain-speci�c rewriting
rules), and BDDPlan [37] (a planner using Binary Decision Diagrams to support
reasoning in the Fluent Calculus, where a model checking algorithm is used to
do an implicit breadth �rst search).

The remaining test results, for the logistics and blocks world domains, were
generated by the authors. Test results for TLplan and TALplanner were gen-
erated on a 333 MHz Pentium II computer running Windows NT 4.0 SP3, with
256 MB of memory. In the logistics domain, TALplanner was also compared with
SHOP [34], a hierarchical task network (HTN) planner, which ran on a 440 MHz
Sun Ultra 10 with 256 MB of memory.

The TLplan tests were performed using the precompiled C version that can
be downloaded from http://www.cs.toronto.edu/~fbacchus/. TALplanner is
written in Java, and TALplanner 2.741 was used together with the Java Develop-
ment Kit 1.2.2-001 and the HotSpot virtual machine (2.0rc2), both of which can
be downloaded from http://java.sun.com. SHOP is written in Lisp, and SHOP
1.6.1 was used together with Allegro Common Lisp Enterprise Edition 5.0.

8.1. The Logistics Domain

In the standard logistics domain, a number of packages can be transported by
truck between locations in the same city and by airplane between cities. The goal
is normally to deliver each package from its initial location to its destination. In
the worst case, each object may have to be transported by truck from its original
location to an airport, by airplane to another airport, and then by truck from
that airport to its �nal location, thus requiring up to nine actions per package
when loading and unloading actions are included.

Three variations of this domain will be considered: The plain logistics do-
main, the logistics domain modi�ed to allow the generation of concurrent plans
by TALplan/conc, and an extended domain with variable duration of actions,

40 J. Kvarnstr�om and P. Doherty / TALplanner

where packages use variable amounts of space and resources are used to model
the carrying capacities of vehicles.

8.1.1. The Standard Logistics Domain

In keeping with the standard formulation, the following uents, resources
and operators describe the logistics domain. Note that TAL is an order-sorted
logic, and all variables are typed. The type loc (location) has the subtypes airport,
city, while the type thing has the subtypes obj and vehicle, the latter of which
has the subtypes truck and plane. The uent city of demonstrates the use of
non-boolean state variables: At any timepoint, city of(loc) =̂ city means that the
location loc is in the city city.

#feature at(thing, loc), in(obj, vehicle) :domain boolean
#feature city of(loc) :domain city

#operator load-truck(obj, truck, loc) :at t
:precond [t] at(obj, loc) ^ at(truck, loc)
:e�ects [+1] at(obj, loc) := false, [+1] in(obj, truck) := true

#operator load-plane(obj, plane, loc) :at t
:precond [t] at(obj, loc) ^ at(plane, loc)
:e�ects [+1] at(obj, loc) := false, [+1] in(obj, plane) := true

#operator unload-truck(obj, truck, loc) :at t
:precond [t] in(obj, truck) ^ at(truck, loc)
:e�ects [+1] in(obj, truck) := false, [+1] at(obj, loc) := true

#operator unload-plane(obj, plane, loc) :at t
:precond [t] in(obj, plane) ^ at(plane, loc)
:e�ects [+1] in(obj, plane) := false, [+1] at(obj, loc) := true

#operator drive(truck, loc1, loc2) :at t
:precond [t] at(truck, loc1) ^ city of(loc1) =̂ city of(loc2) ^ loc1 6= loc2
:e�ects [+1] at(truck,loc1) := false, [+1] at(truck,loc2) := true

#operator y(plane, airport1, airport2) :at t
:precond [t] at(plane, airport1) ^ airport1 6= airport2
:e�ects [+1] at(plane,airport1) := false, [+1] at(plane,airport2) := true

The following domain constraints de�ne abbreviations used in the control rules
and are similar to the de�ned predicates used by TLplan. For example, an object
needs to be moved by truck from loc if its destination is in another city and the
object is not already at an airport, or if the destination is another location in the
same city.

#feature use-truck(obj, loc), unload-from-truck(obj, loc) :domain boolean :de�ned
#feature use-plane(obj, loc), unload-from-plane(obj, loc) :domain boolean :de�ned

#dom 8t [[t] use-truck(obj, loc) $
9loc' [goal(at(obj, loc')) ^ city of(loc) 6=̂ city of(loc') ^ :is airport(loc)] _
9loc' [goal(at(obj, loc')) ^ city of(loc) =̂ city of(loc') ^ loc 6= loc')]]

#dom 8t [([t] unload-from-truck(obj, loc) $
goal(at(obj, loc)) _
is airport(loc) ^ 9loc' [goal(at(obj, loc')) ^ city of(loc) city of(loc')]]

J. Kvarnstr�om and P. Doherty / TALplanner 41

#dom 8t [[t] use-plane(obj, loc) $ 9loc' [goal(at(obj, loc')) ^ [t] city of(loc) 6=̂ city of(loc')]]

#dom 8t [[t] unload-from-plane(obj, loc) $ 9l' [goal(at(obj, l')) ^ [t] city of(loc) =̂ city of(l')]]

The control rules below are inspired by, but not identical to, those used by
TLplan. Briey, an airplane should remain where it is until all packages that
should be moved by the plane have been loaded. If it does move, it should move
to a location where it needs to deliver packages, or to an airport where there are
packages to be picked up and where no other airplane is present. If a package is
at its destination, it should not be moved. A package should only be loaded onto
a plane if a plane (rather than a truck) is needed to move it, and should only be
unloaded if it is in its destination city. Similar control rules are needed for trucks
but are omitted here.

#control :name "airplanes-stay-until-everything-is-loaded"
8t, plane, loc [[t] at(plane, loc) ^ 9obj [(at(obj, loc) ^ use-plane(obj, loc)) _

at(plane, loc) ^ 9obj [(in(obj, plane) ^ unload-from-plane(obj, loc))] !
[t+1] at(plane, loc)]

#control :name "airplanes-move-to-relevant-locations"
8t, plane, loc [
[t] at(plane, loc) !
[t+1] at(plane, loc) _

9loc', obj [at(plane, loc') ^ in(obj, plane) ^ unload-from-plane(obj, loc')] _
9loc', obj [at(plane, loc') ^ at(obj, loc') ^ use-plane(obj, loc')]]

#control :name "only-load-when-necessary"
8t, obj, plane, loc [[t] :in(obj, plane) ^ at(obj, loc) ^ :use-plane(obj, loc) !

[t+1] :in(obj, plane)]

#control :name "only-unload-when-necessary"
8t, obj, plane, loc [[t] in(obj, plane) ^ at(plane, loc) ^ :unload-from-plane(obj, loc) !

[t+1] in(obj, plane)]

#control :name "objects-remain-at-destination-locations"
8t, obj, loc [[t] at(obj, loc) ^ goal(at(obj, loc)) ! [t+1] at(obj, loc)]

8.1.2. Test Results

TALplanner and TLplan were tested and compared using the 30 logistics
problems from the AIPS'98 planning competition [1]. See Table 1 for the complete
list of results; times are in seconds. (The table also contains results for the
extended domains that will be presented in the following sections.)

For two of the problems, 256 MB of memory was not su�cient for TLplan;
the others required between 0.4 seconds and 17 hours to complete. TALplan-
ner proved to be considerably more e�cient: The longest plan (for problem 29)
contained 330 operators and was created in approximately 0.3 seconds, while
the most complex problem (problem 28) resulted in 274 operators and required
0.63 seconds. TALplanner allocated approximately 1.1 megabytes of memory, to
which the runtime size of the Java environment (5{7 MB) must be added.

42 J. Kvarnstr�om and P. Doherty / TALplanner

Table 1
Test Results for the Logistics Domain

Standard Logistics Domain Concurrency Duration

TALplan/seq TALplan/conc
TLplan SHOP progression evaluation evaluation evaluation

1 0.421 0.060 0.050 0.040 0.050 0.270
2 1.712 0.090 0.060 0.040 0.060 0.811
3 19.398 0.210 0.170 0.060 0.070 2.063
4 54.338 0.250 0.250 0.060 0.070 5.889
5 0.310 0.060 0.040 0.030 0.080 0.541
6 84.191 0.480 0.581 0.070 0.110 6.729
7 5.568 0.120 0.111 0.041 0.060 1.061
8 97.310 0.360 0.511 0.061 0.070 5.658
9 218.644 0.420 0.651 0.080 0.080 9.594
10 167.581 1.260 0.611 0.080 0.090 5.738
11 5.167 0.100 0.120 0.040 0.100 0.911
12 286.021 0.760 0.430 0.050 0.090 14.781
13 1073.263 1.160 1.041 0.070 0.130 16.524
14 802.824 1.000 3.284 0.100 0.100 6.800
15 24.675 0.260 0.340 0.080 0.080 1.512
16 168.002 0.390 0.381 0.060 0.090 10.004
17 90.460 0.210 0.822 0.100 0.080 2.895
18 4358.367 2.690 1.773 0.120 0.190 21.080
19 2685.021 0.960 1.713 0.110 0.180 18.466
20 3414.089 1.420 1.762 0.121 0.231 37.815
21 2102.643 0.860 1.402 0.100 0.161 39.436
22 11.570 20.149 0.330 0.490 71.402
23 116.798 0.810 0.871 0.080 0.090 2.434
24 695.780 0.320 0.761 0.070 0.110 39.096
25 11724.910 2.530 4.166 0.220 0.330 146.921
26 9976.946 19.200 12.338 0.230 0.440 83.960
27 14994.551 1.290 6.209 0.220 0.420 72.814
28 6.720 32.446 0.631 0.871 670.284
29 60874.834 15.510 15.422 0.291 0.431 34.550
30 14070.923 3.860 6.229 0.211 0.361 312.099

Pentium II-333 UltraSparc-440 Pentium II-333

In Nau et al. [34], the HTN planner SHOP was found to be considerably
faster than TLplan. Nau et al. believe the most important reason to be the fact
that SHOP in e�ect allows the user to design a planning algorithm, rather than
prune a search space, and that SHOP's use of problem reduction can be more
e�cient than the state space search used by TLplan. However, even though
the SHOP results in Table 1 were generated using a newer, considerably faster
version of SHOP than the one used in [34], TALplanner is still faster by almost
two orders of magnitude for some of the larger problem instances, despite running
on a slower computer.

J. Kvarnstr�om and P. Doherty / TALplanner 43

0.01

0.1

1

10

100

1000

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

se
co

nd
s

TALplanner
SHOP
System R

Figure 7. Logistics Problems from the AIPS 2000 Planning Competition

Figure 7 contains the logistics results from the domain-dependent track of
the AIPS 2000 Planning Competition. The x axis indicates the number of pack-
ages to be moved; since more than one problem instance had the same number
of packages, there is more than one result at each x coordinate. Note also the
spikes in the curve for TALplanner, resulting from Java garbage collection.

8.2. Extending the Logistics Domain for Concurrency

Like many planning domains, the logistics domain is naturally concurrent.
For example, di�erent vehicles can be moved and di�erent packages loaded and
unloaded, relatively independent of one another.

However, there are other actions that should not be performed concurrently.
For example, one cannot load packages into a truck and simultaneously drive that
truck to another location. Although this is naturally true for any plan generated
by the sequential planner, the concurrent planner requires such action combina-
tions to be explicitly prevented by preconditions and resource constraints. In the
logistics domain, a new resource use of(thing) is introduced for mutual exclusion:
#resource use of(thing) :domain integer :preference :none
#obs [0] 8thing [init(use of(thing)) =̂ 0 ^ minimum(use of(thing)) =̂ 0 ^

maximum(use of(thing)) =̂ 1]

The use of resource ensures that an object or vehicle is never used in conicting
concurrent actions. When packages are loaded into or unloaded from a vehicle,
the corresponding use of resources are borrowed non-exclusively, allowing several
loading or unloading actions involving the vehicle to take place concurrently.

44 J. Kvarnstr�om and P. Doherty / TALplanner

Actions that move the vehicle borrow the resource exclusively, so that it can
never be moved to two di�erent destinations at the same time or moved during
loading or unloading.

8.2.1. Test Results

TALplanner was tested once more for the 30 logistics problems from the
AIPS'98 planning competition [1], using the concurrent version of the planner
with the new operator de�nitions described above but the same control rules as
for the sequential planner. The resulting plans made good use of the concurrency
inherent in the domain, requiring approximately the same number of plan steps
but considerably fewer time steps. However, due to the additional overhead
of resources and concurrency, the planner now required almost 0.9 seconds to
complete the most complex problem (see Table 1, column Concurrency).

8.3. Extending the Logistics Domain for Resources and Actions with Duration

In a domain such as logistics, it is unreasonable to expect all actions to have
the same duration. Therefore, to create e�cient plans it is not su�cient to plan
actions concurrently, but the planner must also be able to plan a sequence of
several \short" actions, like loading, driving and unloading a truck, in parallel
with a \long" action, like ying an airplane between distant cities.

Here, the logistics domain is extended to make use of actions with variable
duration. The new integer-valued uent dist(loc; loc) corresponds to the distance
between two locations, and the drive and y actions are modi�ed to take dis-
tances into account. The domain is extended further by modeling the sizes of
packages using an integer-valued uent size(obj) and the carrying capacities of
vehicles using an integer-valued resource space(vehicle). Since driving and y-
ing no longer moves a vehicle instantaneously between locations, a boolean uent
moving(vehicle; loc) is introduced, which holds whenever vehicle is moving towards
loc but has not yet arrived. This requires the following additions and changes to
the goal narrative. Note that in this formalization, four operators are used rather
than six.

#feature moving(vehicle, loc) :domain boolean
#feature dist(loc, loc), size(obj) :domain integer

#resource space(vehicle) :domain integer :preference :more

#operator load(obj, vehicle, loc) :at t
:precond [t] at(obj, loc) ^ at(vehicle, loc)
:resources [+1] :borrow-nonex use of(vehicle) :amount 1,

[+1] :borrow use of(object) :amount 1
[+1] :consume space(vehicle) :amount size(obj)

:e�ects [+1] at(obj, loc) := false, [+1] in(obj, vehicle) := true

#operator unload(obj, vehicle, loc) :at t
:precond [t] in(obj, vehicle) ^ at(vehicle, loc)
:resources [+1] :borrow-nonex use of(vehicle) :amount 1,

J. Kvarnstr�om and P. Doherty / TALplanner 45

[+1] :borrow use of(object) :amount 1
[+1] :produce space(vehicle) :amount size(obj)

:e�ects [+1] in(obj, vehicle) := false, [+1] at(obj, loc) := true

#operator drive(truck, loc1, loc2) :at t
:precond [t] at(truck, loc1) ^ city of(loc1) =̂ city of(loc2) ^ loc1 6= loc2
:resources [+1,+dist(loc1,loc2)/2] :borrow use of(truck) :amount 1,
:e�ects [+1] at(truck,loc1) := false,

[+1,+dist(loc1,loc2)/2-1] moving(truck,loc2) := true,
[+dist(loc1,loc2)/2] at(truck,loc2) := true
[+dist(loc1,loc2)/2] moving(truck,loc2) := false

#operator y(plane, airport1, airport2) :at t
:precond [t] at(plane, airport1) ^ airport1 6= airport2
:resources [+1,+dist(airport1,airport2)/5] :borrow use of(plane) :amount 1,
:e�ects [+1] at(plane,airport1) := false,

[+1,+dist(airport1,airport2)/5-1] moving(plane,airport2) := true,
[+dist(airport1,airport2)/5] at(plane,airport2) := true
[+dist(airport1,airport2)/5] moving(plane,airport2) := false

Two of the control rules also need to be modi�ed for concurrency and the use of
vehicles with limited space. Briey, an airplane should remain where it is until all
packages that should be moved by the plane, and that actually �t into the plane,
have been loaded; note the explicit reference to resources in the control rule.
We must also take into account the fact that vehicles may be moving for some
time before they arrive at their destinations, and ensure that not every available
airplane ies to the same destination whenever packages can be picked up.

#control :name "airplanes-stay-until-everything-is-loaded"
8t, plane, loc [
[t] at(plane, loc) ^
[t] 9obj [(at(obj, loc) ^ use-plane(obj, loc) ^ size(obj) � available(space(plane))) _

(in(obj, plane) ^ unload-from-plane(obj, loc))] !
[t+1] at(plane, loc)]

#control :name "airplanes-move-to-relevant-locations"
8t, plane, loc [
[t] at(plane, loc) !
[t+1] at(plane, loc) _ 9loc', obj [(at(plane, loc') _ moving(plane, loc')) ^

(in(obj, plane) ^ unload-from-plane(obj, loc'))] _
9loc', obj [(at(plane, loc') _ moving(plane, loc')) ^ at(obj, loc') ^

(use-plane(obj, loc') ^ size(obj) � available(space(plane))) ^
8p' [at(p', loc') _ moving(p',loc') ! p' = plane]]]

8.3.1. Test Results

The concurrent planner has been tested on extended logistics problems based
on the 30 problems from AIPS-98 but using the operators and control rules
presented above. Trucks had 5 units of space, while planes had 25 units. Package
sizes were between 1 and 3 (randomly generated), and distances between locations
varied between 1 and 25.

46 J. Kvarnstr�om and P. Doherty / TALplanner

The operator-speci�c analysis of pruning constraints has not yet been imple-
mented for operators with variable duration. Mostly for this reason, TALplanner
now needed approximately 11 minutes to solve the most complex problem (Ta-
ble 1, column Duration). However, it was still well over 100 times faster on
many of the extended problems compared to TLplan running the corresponding
non-extended problems with single-step actions and no space constraints. Once
the appropriate extensions to the operator-speci�c analysis algorithms have been
implemented, performance should improve by at least an order of magnitude.

8.4. The Blocks World

We now briey turn our attention to the standard blocks world with the
operators pickup(block) which picks up a block from the table, putdown(block)
which places a block on the table, unstack(block,block) which picks up a block
previously placed on top of another block, and stack(block,block) which places a
block on top of another block. Domain de�nitions, control rules and problems
for this domain will soon be online at http://www.ida.liu.se/�jonkv/vital.html; see
also the control rules published in [15].

We created a number of di�erent test problems using between 25 and 5000
blocks and tested them in TLplan and TALplanner. For TLplan, the world
de�nition and control rules from domains/Blocks/4OpsBlocksWorld.tlp in the
TLplan distribution were used together with an additional control rule ensuring
that blocks are not placed on the table if their �nal destinations are ready. This
additional rule resulted in shorter plans as well as improved performance. For
TALplanner, the same control rules were translated into TAL.

Table 2 contains the results (times are in seconds). TLplan was tested
on the �rst ten problems; for the larger problems, 256 MB of memory was not
su�cient. TALplanner did somewhat better using modal control rules, providing
better performance as well as lower memory usage (approximately 65 MB for
problem 38). When evaluated control rules were used, TALplanner solved the
entire set of problem instances in less than one minute and required approximately
70 MB of memory for the largest problem.7

Figure 7 shows the blocks world results from the domain-dependent track
of the AIPS 2000 Planning Competition, where the x axis indicates the number
of blocks.

8.5. The Schedule Domain

The schedule domain was the third domain to be used in the domain-
dependent track of the AIPS 2000 Planning Competition. In this domain, there
is a collection of parts and a number of operators that operate on these parts:

7 TALplanner can also use a more e�cient representation of states, which decreases performance
by between 5% and 25% but decreases the memory requirements for problem 43 to 35 MB.

J. Kvarnstr�om and P. Doherty / TALplanner 47

Table 2
Test Results for the Blocks World

Blocks Plan length TLplan TALplan/seq TALplan/seq
progression evaluation

16 25 16 0.100 0.070 0.090
24 50 68 1.843 0.681 0.090
25 70 86 5.528 1.713 0.090
26 70 104 7.060 1.943 0.110
27 100 158 35.321 5.748 0.110
28 140 230 175.893 17.024 0.130
29 200 350 734.546 38.135 0.151
30 280 350 2918.847 83.941 0.160
31 280 470 3067.261 122.807 0.190
32 460 470 20745.280 1735.135 0.210
33 460 794 775.535 0.331
34 640 1118 2249.375 0.461
35 820 1478 3739.057 0.601
36 1000 1802 7174.557 0.771
37 1400 2450 34337.405 1.111
38 1400 2630 16771.947 1.192
39 2000 3278 1.733
40 2000 3710 1.922
41 5000 3710 6.920
42 5000 9326 8.702
43 5000 15314 18.327

polish, roll, lathe, grind, punch, drill-press, spray-paint, and immersion-paint. Each
operator has a number of e�ects, some of which may undo the e�ects of other
operators; for example, if a part has been painted, lathing it will have the side
e�ect of removing the paint. The goal is for each part to have a certain shape,
surface condition, and/or color.

The results for the schedule domain are shown in Figure 9, where the x axis
indicates the number of parts to be scheduled. Here, TALplanner is slower than
SHOP for the smallest problem instances. The reason for this is mainly that the
startup time for the Java Virtual Machine and the Just-In-Time compilation of
TALplanner (4{6 seconds) has been distributed evenly over all problem instances.
Due to the relatively small number of instances, this contributes almost a tenth
of a second to each instance, which is signi�cant due to the small size of each
instance.

8.6. Discussion

Having presented benchmark results for TALplanner in a number of do-
mains, there are two points that should be mentioned.

In each of the benchmark domains used in this article, the performance of

48 J. Kvarnstr�om and P. Doherty / TALplanner

0.1

1

10

100

1000

10000

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

se
co

nd
s

TALplanner
SHOP
System R
PbR

Figure 8. Blocks World Problems from the AIPS 2000 Planning Competition

0.01

0.1

1

10

100

1000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

se
co

nd
s

TALplanner
SHOP
BDDPlan
PbR

Figure 9. Schedule World Problems from the AIPS 2000 Planning Competition

TALplanner has been shown to be signi�cantly better than that of its competi-
tors. As a counterpoint, it should also be mentioned that the performance of
TALplanner in the FreeCell domain used in the AIPS 2000 Planning Competi-
tion was not as good as we would have liked it to be. This domain appears to be

J. Kvarnstr�om and P. Doherty / TALplanner 49

better suited for domain-speci�c or domain-independent heuristics than for hard
pruning rules. At the time of the competition, TALplanner did not yet support
the speci�cation of domain-speci�c heuristics, and there was very little time to
develop control rules. As a result, although TALplanner still solved all problems
and generated plans reasonably quickly, the plans were in some cases thousands
of operators long, tens of times as long as necessary.

Obviously, the performance of TALplanner depends on the quality of the
control rules being used, and the ease of writing good control rules depends on
the nature of the domain. For some domains, temporal control rules may not be
a suitable solution at all, or may be helpful to a certain extent but require the
assistance of other techniques for optimum performance.

The second point relates to the di�erences in performance between TALplan-
ner with progressed modal control rules and TALplanner with evaluated non-
modal control rules. Although this performance di�erence is largely due to ad-
ditional optimizations being possible when one is not constrained to using a
purely progression-based planner, it should also be mentioned that our e�orts
have mainly been concentrated on optimizing the evaluation-based planner, and
some of these optimizations could most likely be adapted to the use of modal
formulas by de�ning an extended, more complex progression algorithm.

9. Conclusions

We have presented a forward-chaining planner, TALplanner, coupled with
a formal semantics based on the use of a temporal action logic (TAL). Two
versions of the planner were considered, one generating sequential plans and one
generating concurrent plans. An interesting class of resource types was integrated
into plan operator descriptions. All versions of TALplanner described in the paper
have been implemented. The performance of these versions has been empirically
tested using a number of di�erent benchmarks from di�erent planning domains.
Based on the data, TALplanner has demonstrated impressive performance in
comparison to a number of state-of-the-art planners in the literature. We believe
the techniques described here can be extended in a number of di�erent directions
and in fact must be in order to scale up and be used in challenging domains such
as cognitive robotics.

One of the most limiting factors in the current versions of TALplanner is the
dual combination of restricting the initial state to be completely speci�ed and
for action types to be deterministic. We are currently investigating a number of
techniques which will result in a relaxation of these restrictions.

50 J. Kvarnstr�om and P. Doherty / TALplanner

Acknowledgements

This research is supported by the Wallenberg Foundation and the EC-
SEL/ENSYM graduate studies program. We would also like to thank Patrik
Haslum for contributing to the extensions for concurrency and resources.

Appendix

A. The Trans Function

The Trans function de�nes the translation from L(ND) to L(FL). In the follow-
ing, Q is a quanti�er and
 is a binary logical connective. All variables occurring
only on the right-hand side are assumed to be previously unused variables.

Trans([�] f(!) =̂ v) = Holds(�; f(!); v)
Trans([�] :�) = :Trans([�] �)

Trans([�] �
 �) = Trans([�] �)
 Trans([�] �)
Trans([�] Qv[�]) = Qv[Trans([�] �)]
Trans([�; � 0] �) = 8t[� � t � � 0 ! Trans([t] �)]
Trans((�; � 0] �) = 8t[� < t � � 0 ! Trans([t] �)]

Trans(X([�] f(!) =̂ v)) = Occlude(�; f(!))
Trans(X([�] :�)) = Trans(X([�] �))

Trans(X([�] �
 �)) = Trans(X([�] �)) ^ Trans(X([�] �))
Trans(X([�] Qv[�])) = 8v[Trans(X([�] �))]
Trans(X([�; � 0] �) = 8t[� � t � � 0 ! Trans(X([t] �))]
Trans(X((�; � 0] �) = 8t[� < t � � 0 ! Trans(X([t] �))]
Trans(R([�] �)) = Trans(X([�] �)) ^ Trans([�] �)

Trans(R([�; � 0] �) = Trans(X([�; � 0] �) ^ Trans([� 0] �)
Trans(R((�; � 0] �) = Trans(X((�; � 0] �) ^ Trans([� 0] �)

Trans(I([�] �)) = Trans(X([�] �)) ^ Trans([�] �)
Trans(I([�; � 0] �) = Trans(X([�; � 0] �) ^ Trans([�; � 0] �)
Trans(I((�; � 0] �) = Trans(X((�; � 0] �) ^ Trans((�; � 0] �)
Trans(CT ([�] �)) = 8t[� = t+ 1! Trans([t] :�)] ^ Trans([�] �)

Trans([�; � 0] 	(!)) = Occurs(�; � 0;	(!))
Trans(Per(t; f)) = Per(t; f)

Trans(Dur(t; f; v)) = Dur(t; f; v)
Trans(value(t; f)) = value(t; f)

B. Circumscription in TAL

The second-order circumscription of a number of predicates P = P1; : : : ; Pn
in the theory �(P) is denoted CircSO(�(P);P) (see Lifschitz [31]). Intuitively,
CircSO(�(P);P) represents a (second-order) theory containing �(P) where the
extensions of the predicates P are minimal.

J. Kvarnstr�om and P. Doherty / TALplanner 51

To transform a narrative from L(ND) to L(FL):

1. Let dom, acs, dep, obs, occ, and per be the sets of statements with labels
dom, acs, dep, obs, occ, and per respectively, completed with universal quan-
ti�cation for variables occurring freely.

2. Let �dom = Trans(dom), �acs = Trans(acs), �dep = Trans(dep), �obs =
Trans(obs), �occ = Trans(occ), and �per = Trans(per)

3. Let �0 = �acs [�dep and let � = CircSO(�
0(Occlude);Occlude) [�dom [

CircSO(�occ(Occurs);Occurs) [�obs [� [�fnd. � is the theory that is used
for proofs in TAL.

The set � consists of the following formulas relating to Per and Dur :
� = f8t; f; v[Dur(t; f; v) ^ :Occlude(t; f)! Holds(t; f; v)];
8t; f; v[Per(t; f; v)^:Occlude(t+1; f)! (Holds(t+1; f; v)$ Holds(t; f; v))];
8t; f; v; w[Dur(t; f; v) ^Dur(t; f; w)! v = w];
8t; f [Per(t; f)� 9v[Dur(t; f; v)]g

Finally, the set �fnd consists of foundational axioms for unique names for ac-
tions, uents and values, constraints that a uent has exactly one value at each
timepoint, and the temporal structure axioms.

References

[1] AIPS-1998. Arti�cial Intelligence Planning Systems: 1998 Planning Competition. http://
ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html, 1998.

[2] AIPS-2000. Arti�cial Intelligence Planning Systems: 2000 Planning Competition. http://
www.cs.toronto.edu/aips2000, 2000.

[3] R. Alur, T. Feder, and T. A. Henzinger, `The bene�ts of relaxing punctuality', in Proceed-
ings of the Tenth ACM Symposium on Principles of Distributed Computing (PODC'91),
pp. 139{152, Montr�eal, Canada, (August 1991). Available at http://www.cis.upenn.edu/
�alur/Podc91.ps.gz.

[4] R. Alur and T. A. Henzinger, `Back to the future: Towards a theory of timed reg-
ular languages', in Proceedings of the 33rd IEEE Symposium on Foundations of Com-
puter Science, pp. 177{186, Pittsburgh, Pennsylvania, USA, (October 1992). IEEE Com-
puter Society Press. Updated version available at http://www-cad.eecs.berkeley.edu/
�tah/Publications/back to the future.ps.

[5] J. L. Ambite, Planning by Rewriting, Ph.D. dissertation, University of Southern California,
1998. Available at http://www.isi.edu/�ambite/thesis.ps.gz.

[6] J. L. Ambite, C. A. Knoblock, and S. Minton, `Learning plan rewriting rules', in Proceedings
of the Fifth International Conference on Arti�cial Intelligence Planning and Scheduling
Systems (AIPS-2000), eds., S. Chien, S. Kambhampati, and C. A. Knoblock, pp. 3{12,
Breckenridge, Colorado, USA, (April 2000). AAAI Press, Menlo Park, USA. Available at
http://www.isi.edu/�ambite/2000-aips.ps.

[7] F. Bacchus and M. Ady. Precondition control, 1999. Available at ftp://newlogos.
uwaterloo.ca/pub/bacchus/BApre.ps.gz.

[8] F. Bacchus and F. Kabanza, `Planning for temporally extended goals', in Proceedings of
the Thirteenth National Conference on Arti�cial Intelligence (AAAI'96), pp. 1215{1222,

52 J. Kvarnstr�om and P. Doherty / TALplanner

Portland, Oregon, USA, (August 1996). AAAI Press / The MIT Press. Available at ftp://
newlogos.uwaterloo.ca/pub/bacchus/BKAAAI96.ps.gz.

[9] F. Bacchus and F. Kabanza, `Using temporal logic to control search in a forward chaining
planner', in New Directions in AI Planning, eds., M. Ghallab and A. Milani, 141{153, IOS
Press, (1996). Available at ftp://newlogos.uwaterloo.ca/pub/bacchus/BKEWSP96.ps.gz.

[10] F. Bacchus and F. Kabanza, `Planning for temporally extended goals', Annals of Mathemat-
ics and Arti�cial Intelligence, 22, 5{27, (1998). Available at ftp://newlogos.uwaterloo.ca/
pub/bacchus/BKAMAI98.ps.gz.

[11] F. Bacchus and F. Kabanza, `Using temporal logics to express search control knowl-
edge for planning', Arti�cial Intelligence, 116, 123{191, (2000). Available at ftp://
newlogos.uwaterloo.ca/pub/bacchus/BKTlplan.ps.

[12] B. Bonet and H. Ge�ner. HSP: Heuristic search planner, 1998. Available at http://
www.ldc.usb.ve/�hector/.

[13] P. Doherty, `Reasoning about action and change using occlusion', in Proceedings of the
Eleventh European Conference on Arti�cial Intelligence (ECAI'94), ed., A. G. Cohn, pp.
401{405, Amsterdam, The Netherlands, (August 1994). John Wiley and Sons, Ltd., Eng-
land. Available at ftp://ftp.ida.liu.se/pub/labs/kplab/people/patdo/ecai94.ps.gz.

[14] P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnstr�om, `TAL: Temporal Action
Logics { language speci�cation and tutorial', Link�oping Electronic Articles in Computer
and Information Science, 3(15), (September 1998). Available at http://www.ep.liu.se/
ea/cis/1998/015.

[15] P. Doherty and J. Kvarnstr�om, `TALplanner: An empirical investigation of a temporal
logic-based forward chaining planner', in Proceedings of the Sixth International Workshop
on Temporal Representation and Reasoning (TIME'99), eds., C. Dixon and M. Fisher, pp.
47{54, Orlando, Florida, USA, (May 1999). IEEE Computer Society Press. Available at
ftp://ftp.ida.liu.se/pub/labs/kplab/people/patdo/time99-�nal.ps.gz.

[16] P. Doherty and W. Lukaszewicz, `Circumscribing Features and Fluents: A uent logic for
reasoning about action and change', in Proceedings of the Eighth International Symposium
on Methodologies for Intelligent Systems (ISMIS'94), eds., Z. W. Ras and M. Zemankova,
pp. 521{530, Charlotte, North Carolina, USA, (October 1994).

[17] E. A. Emerson, `Temporal and modal logic', in Handbook of Theoretical Computer Science,
ed., J. van Leeuwen, volume B, chapter 16, 997{1072, MIT, (1990).

[18] M. Fox and D. Long, `The detection and exploitation of symmetry in planning problems',
in Proceedings of the International Joint Conference on Arti�cial Intelligence (IJCAI-99),
ed., T. Dean, pp. 956{961, Stockholm, Sweden, (1999). Morgan Kaufmann Publishers, San
Francisco. Available at http://www.dur.ac.uk/�dcs0www/research/stanstu�/symm.ps.gz.

[19] J. Gustafsson and P. Doherty, `Embracing occlusion in specifying the indirect ef-
fects of actions', in Principles of Knowledge Representation and Reasoning: Proceed-
ings of the Fifth International Conference (KR '96), eds., L. C. Aiello, J. Doyle, and
S. Shapiro, pp. 87{98. Morgan Kaufmann Publishers, San Francisco, (1996). Available at
ftp://ftp.ida.liu.se/pub/labs/kplab/people/patdo/�nal-kr96.ps.gz.

[20] J. Ho�mann. Fast-Forward home page. http://www.informatik.uni-freiburg.de/�ho�mann/
�.html.

[21] J. Ho�mann and B. Nebel, `The FF planning system: Fast planning generation through
heuristic search'. Submitted to Journal of Arti�cial Intelligence Research. Available at
http://www.informatik.uni-freiburg.de/�ho�mann/papers/jair2000b.ps.gz.

[22] F. Kabanza, M. Barbeau, and R. St-Denis, `Planning control rules for reactive agents',
Arti�cial Intelligence, 95, 67{113, (1997).

[23] L. Karlsson and J. Gustafsson, `Reasoning about concurrent interaction', Journal of Logic
and Computation, 9(5), 623{650, (October 1999).

J. Kvarnstr�om and P. Doherty / TALplanner 53

[24] L. Karlsson, J. Gustafsson, and P. Doherty, `Delayed e�ects of actions', in Proceedings of
the Thirteenth European Conference on Arti�cial Intelligence (ECAI'98), ed., H. Prade, pp.
542{546, Brighton, UK, (August 1998). John Wiley and Sons, Ltd., England. Available at
ftp://ftp.ida.liu.se/pub/labs/kplab/people/patdo/ecai98.ps.gz.

[25] H. Kautz and B. Selman. Blackbox: A new approach to the application of theorem proving
to problem solving. http://www.research.att.com/�kautz.

[26] D. Kibler and P. Morris, `Don't be stupid', in Proceedings of the Seventh International Joint
Conference on Arti�cial Intelligence (IJCAI-81), ed., A. Drinan, pp. 345{347, Vancouver,
B.C., Canada, (August 1981).

[27] J. Koehler. Miconic 10 elevator domain home page. http://www.informatik.uni-freiburg.de/
�koehler/elev/elev.html.

[28] J. Koehler, B. Nebel, J. Ho�mann, and Y. Dimopoulos, `Extending planning graphs to an
ADL subset', in Proceedings of the Fourth European Conference on Planning (ECP'97),
ed., S. Steel, pp. 273{285, Toulouse, France, (September 1997). Springer. Available at
http://www.informatik.uni-freiburg.de/�ho�mann/papers/ecp97.ps.gz.

[29] J. Kvarnstr�om and P. Doherty, `Tackling the quali�cation problem using uent dependency
constraints', Computational Intelligence, 16(2), 169{209, (May 2000).

[30] J. Kvarnstr�om, P. Doherty, and P. Haslum, `Extending TALplanner with concurrency and
resources', in Proceedings of the Fourteenth European Conference on Arti�cial Intelligence
(ECAI-2000), ed., W. Horn, pp. 501{505, Berlin, Germany, (August 2000). IOS Press, The
Netherlands. Available at ftp://ftp.ida.liu.se/pub/labs/kplab/people/patdo/www-ecai.ps.gz.

[31] V. Lifschitz, `Computing circumscription', in Proceedings of the Ninth International Joint
Conference on Arti�cial Intelligence (IJCAI-85), pp. 121{127, Los Angeles, California,
USA, (August 1985). Morgan Kaufmann Publishers, Los Altos, CA.

[32] F. Lin. A planner called R. Submitted to AI Magazine. Available at http://www.cs.ust.hk/
faculty/in/papers/r-aim.ps.

[33] J. McCarthy, `Circumscription { a form of non-monotonic reasoning', Arti�cial Intelligence,
13, 27{39, (1980). Available at http://www-formal.stanford.edu/jmc/circumscription.ps.

[34] D. Nau, Y. Cau, A. Lotem, and H. Mu~nos-Avila, `SHOP: Simple hierarchical ordered plan-
ner', in Proceedings of the International Joint Conference on Arti�cial Intelligence (IJCAI-
99), ed., T. Dean, pp. 968{973, Stockholm, Sweden, (1999). Morgan Kaufmann Publishers,
San Francisco. Available at http://www.cs.umd.edu/�nau/papers/shop-ijcai99.pdf.

[35] E. P. D. Pednault, `ADL: Exploring the middle ground between STRIPS and the Situation
Calculus', in Proceedings of the First International Conference on Principles of Knowledge
Representation and Reasoning (KR'89), eds., R. J. Brachman, H. J. Levesque, and R. Re-
iter, pp. 324{332, Toronto, Ontario, Canada, (1989). Morgan Kaufmann Publishers, San
Mateo.

[36] E. Sandewall, Features and Fluents: A Systematic Approach to the Representation of
Knowledge about Dynamical Systems, Oxford University Press, 1994.

[37] H.-P. St�orr. BDDPlan home page. http://pikas.inf.tu-dresden.de/�stoerr/bddplan.html.

