Admissible Heuristics for Optimal Planning

Patrik Haslum
Department of Computer
and Information Science

Linkoping University

S-58183 Link6ping, Sweden

Abstract

HSP and HSPr are two recent planners that search the
state-space using an heuristic function extracted from
Strips encodings. HSP does a forward search from the
initial state recomputing the heuristic in every state,
while HSPr does a regression search from the goal com-
puting a suitable representation of the heuristic only
once. Both planners have shown good performance,
often producing solutions that are competitive in time
and number of actions with the solutions found by
Graphplan and SAT planners. HSP and HSPr, however,
are not optimal planners. This is because the heuris-
tic function is not admissible and the search algorithms
are not optimal. In this paper we address this problem.
We formulate a new admissible heuristic for planning,
use it to guide an IDA™ search, and empirically eval-
uate the resulting optimal planner over a number of
domains.

The main contribution is the idea underlying the
heuristic that yields not one but a whole family of
polynomial and admissible heuristics that trade ac-
curacy for efficiency. The formulation is general and
sheds some light on the heuristics used in HSP and
Graphplan, and their relation. It exploits the factored
(Strips) representation of planning problems, mapping
shortest-path problems in state-space into suitably de-
fined shortest-path problems in atom-space. The for-
mulation applies with little variation to sequential and
parallel planning, and problems with different action
costs.

Introduction

HSP and HSPr are two recent planners that search the
state-space using an heuristic function extracted from
Strips encodings (Bonet & Geffner 1999). HsP does
a forward search from the initial state computing the
heuristic in every state, while HSPr does a regression
search from the goal, computing a suitable representa-
tion of the heuristic only once. Both planners have
shown good performance, often producing solutions
that are competitive in time and number of actions with
the solutions found by Graphplan and SAT planners
(McDermott 1998).

Copyright (© 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Héctor Geffner
Departamento de Computacién
Universidad Simén Bolivar
Aptdo 89000, Caracas 1080-A
Venezuela

HSP and HSPr, however, are not optimal planners. This
is because the heuristic is not admissible and the search
algorithms are not optimall. Graphplan (Blum & Furst
1995) and Blackbox (Kautz & Selman 1999) are opti-
mal parallel planners that guarantee a minimal number
of time steps in the plans found. While optimality is
not always a main concern in planning, the distinction
between optimal and non-optimal algorithms is relevant
in practice and is crucial in theory where optimal and
approximate versions of the same problem may belong
to different complexity classes (Garey & Johnson 1979).

The goal of this paper is to address this issue. For
this, we formulate a new domain-independent admis-
sible heuristic for planning and use it for computing
optimal plans. The new heuristic is simple and general,
and can be understood as mapping the shortest-path
(planning) problem in state-space into a suitably de-
fined shortest-path problem in atom-space. This idea is
implicit in a number of recent planners, e.g., (Blum
& Furst 1995; McDermott 1996; Bonet, Loerincs, &
Geffner 1997); here we make it explicit and general.
The formulation applies with little variation to prob-
lems with different action costs and parallel actions,
and suggests extensions for other classes of problems
such as problems with actions with different durations
(e.g., (Smith & Weld 1999)).

The new heuristic is based on computing admissible
estimates of the costs of achieving sets of atoms from
the initial state sop. When the size of these sets is 1, the
heuristic is equivalent to the h,,,; heuristic considered
in (Bonet & Geflner 1999). When the size is 2, for paral-
lel planning, the heuristic is equivalent to the heuristic
implicit in Graphplan. The computation of the heuris-
tic, however, does not build a layered graph nor does it
rely on ‘mutex relations’. On the other hand, its time
and space complexity is polynomial in N™, where N is
the number of atoms in the problem and m is the size
of the sets considered.

For the experiments in this paper, we use the heuris-
tic that results from sets of size m = 2 (atom pairs). To

LA heuristic is not admissible when it may overestimate
optimal costs, while a search algorithm is not optimal when
it does not guarantee the optimality of the solutions found
(Nilsson 1980; Pearl 1983).

avoid the recomputation of the heuristic in every state,
we take the idea from HSPr and compute the heuris-
tic once from the initial state and use it to guide a
regression search from the goal.? The search is per-
formed using the optimal algorithm mA* (Korf 1985).
We call the resulting optimal planner HSPr*. With the
current implementation, HSPr* produces good results in
sequential domains like Blocks World and the 8-puzzle,
but weaker results on parallel domains like rockets or
logistics. This is in contrast with the non-optimal HSPr
planner that solves these problems very fast. We dis-
cuss these results, try to identify its causes, and draw
some conclusions.

The paper is organized as follows. We cover first
the relevant background including the heuristics used
in HSP and Graphplan (Sect. 2). Then we introduce the
new heuristic (Sect. 3), review the basic and enhanced
version of the IDA* algorithm that we use (Sect. 4),
and report results over a number of sequential domains
(Sect. 5). Last we consider the extensions and results
for parallel planning (Sect. 6) and close with a summary
and discussion (Sect. 7).

Background
HSP
HSP maps Strips planning problems into problems of
heuristic search (Bonet & Geffner 1999). A Strips prob-
lem is a tuple P = (A, O, I, G) where A is a set of atoms,
O is a set of ground operators, and I C Aand G C A
encode the initial and goal situations. The state space
determined by P is a tuple S = (S, so, Sa, A(*), f,¢)
where
. the states s € S are collections of atoms from A
. the initial state sq is T
. the goal states s € Sg are such that G C s
. the actions a € A(s) are the operators op € O such
that Prec(op) C s
5. the transition function f maps states s into states
s' = s — Del(a) + Add(a) for a € A(s)
6. the action costs c(a) are assumed to be 1
HSP searches this state-space, starting from sp, with an
heuristic function h derived from the Strips represen-
tation of the problem. A similar approach was used
before in (McDermott 1996) and (Bonet, Loerincs, &
Geflner 1997).

The heuristic h is derived as an approximation of the
optimal cost function of a ‘relaxed’ problem P’ in which
delete lists are ignored. More precisely, h(s) is obtained
by adding up the estimated costs gs(p) for achieving
each of the goal atoms p from s. These estimates are
computed for all atoms p by performing incremental
updates of the form

95(p) := min [g5(p), 1+ gs(Prec(a))] (1)

=W N =

2The heuristic can also be used in the context of HsP.
However, the overhead of computing the heuristic in every
state does not appear to be cost-effective in general.

starting with gs(p) = 0 if p € s and gs(p) = oo oth-
erwise, until the costs gs;(p) do not change. In (1),
O(p) stands for the set of operators that ‘add’ p and
gs(Prec(a)) stands for the estimated cost of the set of
atoms in Prec(op).

In HSP, the cost gs(C) of sets of atoms C is defined
as the sum of the costs gs(r) of the individual atoms r
in the set. We denote such cost as g22¢(C):

g2 (C) = Y ga(r)

reC

(additive costs) (2)

The heuristic h(s) used in HSP, that we call hyq4(s), is
then defined as:

hada(s) = ¢2%4(G) (3)

The definition of the cost of sets of atoms in (2) as-
sumes that ‘subgoals’ are independent. This is not true
in general and as a result the heuristic may overestimate
costs and is not admissible.

An admissible heuristic can be obtained by defining
the costs g;(C) of sets of atoms as

mazr

g95%%(C) = max gs(r) (max costs) (4)
reC

The resulting ‘max heuristic’ Apmqz (s) = g7 (G) is ad-

missible but is not as informative as h,q4(s) and is not

used in HSP. In fact, while the ‘additive’ heuristic com-

bines the costs of all subgoals, the ‘max’ heuristic con-

siders the most difficult subgoals only.

In HSP, the heuristic h(s) and the atom costs gs(p)
are computed from scratch in every state s visited. This
is the main bottleneck in HSP and can take up to 85% of
the computation time. For this reason, HSP relies on a
form of hill-climbing search for getting to the goal with
as few state evaluations as possible. Surprisingly this
works quite well in many domains. In the AIPS98 Plan-
ning Contest, for example, HSP solved 20% more prob-
lems than the Graphplan and SAT planners (McDer-
mott 1998). In many cases, however, the hill-climbing
search finds poor solutions or no solutions at all.

HSPr

HSPr (Bonet & Geffner 1999) is a variation on HSP that
removes the need to recompute the atom costs gs(p)
in every state s. This is achieved by computing these
costs once from the initial state and then performing
a regression search from the goal.® In this search, the
heuristic h(s) associated with any state s is defined in
terms of the costs g(p) = gs,(p) computed from sq as

h(s)=>_ g(p)

pEs

3Refanidis and Vlahavas propose a different way for
avoiding these recomputations. Rather than calculating the
heuristics by forward propagation and using it in a back-
ward search, they compute the heuristic by backward prop-
agation and use it to guide a forward search. See (Refanidis
& Vlahavas 1999).

Since node evaluation in HSPr is faster than in HSP,
HSPr uses a more systematic search algorithm that of-
ten produces better plans than HSP in less time.* For
example, HSPr solves each of the 30 logistic problems in
the BLACKBOX distribution in less than 3 seconds each
(Bonet & Geffner 1999). HSPr, however, is not better
than HSP across all domains as the information resulting
from the recomputation of the heuristic in certain cases
appears to pay off. In addition, the regression search
often generates states that cannot lead to any solution
as they violate basic invariants of the domain. To alle-
viate this problem, HSPr identifies atoms pairs that are
unreachable from the initial state (atemporal mutexes)
and prunes the states that contain them. This is an
idea adapted from Graphplan.

Graphplan

Planning in HSPr consists of two phases. In the first, a
forward propagation is used to compute the measures
g(p) that estimate the cost of achieving each atom from
So, in the second, a regression search is performed us-
ing an heuristic derived from those measures. These
two phases are in correspondence with the two phases
in Graphplan (Blum & Furst 1995), where a plan graph
is built forward in the first phase, and is searched back-
ward in the second. As argued in (Bonet & Geffner
1999), the parallel between the two planners goes fur-
ther. Graphplan can also be understood as an heuristic
search planner based on precise heuristic function hg
and a standard search algorithm. The heuristic hg(s)
is given by the index j of the first level in the graph that
contains the atoms in s without a mutex, and the search
algorithm is a version of Iterative Deepening A* (IDA*)
(Korf 1985) where the sum of the accumulated cost and
the estimated cost hg(n) is used to prune nodes n whose
cost exceed the current threshold (actually Graphplan
never generates such nodes).5

While Graphplan and HSPr can both be understood
as heuristic search planners they differ in the heuristic
and algorithms they use. In addition, HSPr is concerned
with (non-optimal) sequential planning while Graph-
plan is concerned with (optimal) parallel planning.

A new admissible heuristic

HSP and HSPr can be used to find good plans fast but not
provable optimal plans. This is because they are based
on non-admissible heuristics and non-optimal search
algorithms. For finding optimal plans, an admissible

“The search algorithm in HsPr is complete but is not op-
timal. Optimal algorithms such as A™ are not used because
they take more time and space, and since the heuristic is
not admissible they still don’t guarantee optimality.

® Without memoization, the search algorithm in Graph-
plan is standard 1DA*. With memoization, the search algo-
rithm is a memory-extended version of IDA™ (Sen & Bagchi
1989; Reinfeld & Marsland 1994) where the heuristic of a
node is updated and stored in a hash-table after the search
beneath its children completes without a solution (given the
current threshold).

heuristic that can safely prune large parts of the search
space is needed.

The non-admissible heuristic hy4q4 used in HSP is de-
rived as an approzimation of the optimal cost function
of a relaxzed problem where deletes lists are ignored.
This formulation raises two problems. First, the ap-
prozimation is not very good as it ignores the positive
interactions among subgoals that can make one goal
simpler after a second one has been achieved (this re-
sults in the heuristic being non-admissible). Second,
the relazation is not good as it ignores the negative
interactions among subgoals that are lost when delete
lists are discarded. These two problems have been ad-
dressed recently in the heuristic proposed by Refanidis
and Vlahavas (99). The proposed heuristic is more ac-
curate but it is still non-admissible and largely ad-hoc.
Here we aim to formulate an heuristic that addresses
these limitations but which can be given a clear justi-
fication. The idea is simply to approximate the cost of
achieving any set of atoms A from sy in terms of the es-
timated costs of achieving sets of atoms B of a suitable
small size m. When m = 1, we approximate the cost of
any set of atoms in terms of the estimated cost of the
atoms in the set. When m = 2, we approximate the
cost of any set of atoms in terms of the estimated cost
of the atom pairs in the set, and so on. In the first case
we will obtain the heuristic h,,q.; in the second, the
Graphplan heuristic, etc. We make these ideas precise
below.

The new heuristic is defined in terms of a relaxed
problem, but the ‘original’ and ‘relaxed’ problems are
formulated in a slightly different way than before. The
original problem is seen now as a single-source shortest-
path problem (Bertsekas 1995; Ahuja, Magnanti, & Or-
lin 1993). In a single-source shortest path problem one
is interested in finding the shortest paths from a given
source node to every other node in a graph. In our
graph, the nodes are the states s, the (directed) links
are the actions a that map one state into another, and
the link costs are given by the action costs c¢(a) > 0.
The source node is the initial state sg, and the (di-
rected) paths that connect so with a state s correspond
to the plans that achieve s from sq.

A way to solve this shortest-path problem is by find-
ing the optimal cost function V* over the nodes s, where
V*(s) expresses the cost of the optimal path that con-
nects so to s. This function V* can be characterized as
the solution of the Bellman equation:®

V*(s) = min [c(a) + V*(s")] (5)
(s',a)ER(s)

where V*(s9) = 0 and R(s) stands for the state-action

pairs (s',a) such that a maps s’ into s (i.e., a € A(s")
and s = f(a,s")).

SFor V* to be well-defined when some states are not
reachable from sg, it suffices to assume ‘dummy’ actions
with infinite costs that connect sp with each state s.

The shortest-path problem defined by (5) can be
solved by a number of algorithms resulting in a heuris-
tic function V* that perfectly estimates the distance of
any state s from so. Of course, there are two problems
with this idea: first, the solution of (5) is polynomial
in | S| but ezponential in the number of atoms; and sec-
ond, the function V* cannot be used (directly) to guide
a regression search from the goal. This is because the
goal G does not denote a single state but a set of states
sa such that G C sg. Thus for guiding a regression
search from the goal, a cost function must be defined
over sets of atoms A understood as representing the set
of states that make A true.

So we turn to a slightly different shortest-path for-
mulation defined over sets of atoms and let G* stand
for the optimal cost function in that space. For a set of
atoms A, G*(A) stands for the optimal cost of achieving
the set of atoms A from sq or alternatively, the optimal
cost of achieving a state s where A holds. The equation
characterizing the function G* is

G'(4)= min [@+C B O
where G*(A4) = 0 if A C sp and R(A) refers to the set
of pairs (B, a) such that B is the result of regressing
A through a. Formally, this set is given by the pairs
(B, a) such that AN Add(a) # 0, AN Del(a) = 0, and
B = A — Add(a) + Prec(a). We call such set R(A) the
regression set of A.

In the new shortest-path problem the nodes are the
possible sets of atoms A and each pair (B,a) in R(A)
stands for a directed link B — A in the graph with cost
c¢(a). Such links can be understood as expressing that A
can be achieved by the action a from any state s where
B holds. This shortest-path problem is not simpler than
the problem (5) but has two benefits: first the function
G* can be used effectively to guide a regression search,
and second, admissible approximations of G* can be
easily defined.

Let G stand for a function with the same domain
as G* and let’s write G < G* if for any set of atoms
A, G(A) < G*(A). It’s simple to check that if G is
the optimal cost function of a modified shortest path
problem obtained by the addition of ‘links’, G < G*
must hold. Likewise, G < G* must hold if links B — A
are replaced by links B’ — A of the same cost where
B' is such that G*(B') < G*(B). We can regard both
modifications as ‘relaxations’ that yield cost functions
G that are lower bounds on G*.

With these considerations in mind, let’s consider the
relaxation of the shortest-path problem (6) where the
links B — A for ‘large’ sets of atoms B, i.e., sets with
size |B| > m for some positive integer m, are replaced
by links B' — A where B’ is a subset of B with size
|B'| = m. Since B’ C B implies G*(B') < G*(B), it
follows from the arguments above that the optimal cost
function G™ of the resulting problem must be a lower
bound on G*.

This lower bound function G™ is characterized by the

following equations:
G™(A) =0 if AC sg (7)

@A) = min [e(a) +G"(B] (8)

if |A|<m & A Z so, and

G™(A)= max G™(B) if |4 >m 9)
BCA,|B|=m
For any positive integer m, the complexity of com-
puting G™ is a low polynomial in the number of nodes
(the number of atom sets A with size |A| equal to or
smaller than m) (Bertsekas 1995; Ahuja, Magnanti, &
Orlin 1993). G™ is thus a polynomial and admissible
approximation of the optimal cost function G*. The
approximation is based on defining the cost of ‘large’
sets of atoms A in Equation 9, in terms of the costs
of its ‘smaller’ parts. Equations 7 and 8, on the other
hand, are common to both G™ and G*.
For any positive integer m, we define the heuristics
h™ as
B (A) 2 G (4) (10)
The heuristics h™, for m = 1,2, ... are all admissible,
and they represent different tradeoffs between accuracy
and efficiency. Higher-order heuristics are more accu-
rate but are harder to compute. For any fixed value of
m, the computation of the heuristic A™ is a low polyno-
mialin N™, where N is the number of atoms. Below we
consider the concrete form of these heuristics for m =1
and m = 2. In both cases, we use the Strips representa-
tion of actions to characterize the regression set R(A)
in equation (8) which is the key equation defining the
functions G™.

The Max-atom heuristic

For m = 1, the heuristic h™ reduces to the heuristic
himaz considered above. Indeed, for sets A = {p} of
size 1, the regression set R({p}) is given by the pairs
(Prec(a),a) for a € O(p), where O(p) stands for the
set of actions that ‘add’ p. As a result, equation (8) for
G™ becomes

G'({p}) = min [c(a) + G*(Prec(a))]

~ a€0(p)

The resulting shortest-path problem can be solved
by a number of label-correcting algorithms (Bertsekas
1995; Ahuja, Magnanti, & Orlin 1993), in which esti-
mates g'({p}) are updated incrementally as

9'({p}) := min [¢"({p}) , c(a) + g' (Prec(a))]
a€0(p)
until they do not change, starting with g'({p}) = 0
if p € sp and g'({p}) = oo otherwise, Following (7)
and (9), g(0) is set to 0 and g*(4) for |A] > 1 is
set to maxyca g'({p}). When the updates terminate,
the estimates g' can be shown to represent the func-
tion G! that solves equations (7-9) (Bertsekas 1995;
Ahuja, Magnanti, & Orlin 1993). The complexity of
these algorithms varies according to the order in which

the updates are performed, yet it’s always a low poly-
nomial in the number of nodes (atoms sets A with size
4] < m).

The computation of the heuristic h,,,, described
above corresponds to this procedure, and thus h,,q, =
hl. In other words, h,q.e is the heuristic obtained by
approximating the cost of sets of atoms by the cost of
the most costly atom in the set. The heuristic is ad-
missible but is not sufficiently informative. The choice
in HSP and HSPr was to approximate the cost of sets of
atoms in a different way as the sum of the costs of the
atoms in the set. This approximation yields an heuris-
tic that is more informative but is not admissible. The
option now is to consider the heuristics A™ for higher
values of m.

The Max-pair heuristic

If we let O(p&q) refer to the set of actions that add
both p and ¢, and O(p|q) to the set of actions that add
p but do not add or delete g, the equation (8) for m = 2
and A = {p, ¢} becomes

G*({p,q}) =min{ min [c(a) + G*(Prec(a))};

a€0(p&q)
min_[c(a) + G*(Prec(a) U {q})];
a€0(pla)

min_[e(a) + G*(Prec(a) U {p})}

while the equation for A = {p} becomes
G*({p}) = min [c(a) + G*(Prec(a))]
a€O(p)

As before these equations can be converted into updates
for computing the value of the function G2 over all sets
of atoms with size less than or equal to 2. This compu-
tation remains polynomial in the number of atoms and
actions, and can be computed reasonably fast in most
of the domains we have considered. We call the heuris-
tic h2 = G?, the maz-pairs heuristic to distinguish it
from the maz-atom heuristic h'.

The consideration of atom pairs for the computation
of the heuristic h? is closely related to the consideration
of mutez pairs in the computation of the heuristic hg
in Graphplan. A distinction between h? and hg is that
the former is defined for arbitrary action costs and se-
quential planning, while the latter is defined for unitary
costs and parallel planning. Later on, we will introduce
a definition analogous to h? for parallel planning that
is equivalent to Graphplan hg.

Higher Order Heuristics

Equations 7-10 define a family of heuristics A™ = G™
for m > 1. For each value of m, the resulting heuris-
tic is admissible and polynomial, but the complexity of
the sequence of heuristics h™ grows exponentially with
m. The experiments we have performed are limited to
h™ with m = 2. Certainly, it should be possible to
construct domains where higher-order heuristics would

be cost-effective but we haven’t explored that. A simi-
lar situation exists in Graphplan with the computation
of higher-order mutexes (Blum & Furst 1995). Higher-
order heuristics may prove effective in complex domains
like the 15-puzzle, Rubik, and Hanoi where subgoals in-
teract in complex ways. The challenge is to compute
such heuristics efficiently and use them with little over-
head at run time.

Algorithms

Below we use the heuristic h? in the context of an IDA*
search (Korf 1985). The IDA* algorithm consists of a se-
quence of depth-first searches extended with an heuris-
tic function A and an upper bound parameter UB. Dur-
ing the search, nodes n for which the sum of the accu-
mulated cost g(n) and predicted cost h(n) exceed the
upper bound UB are pruned. Initially, UB is set to the
heuristic value of the root node, and after a failed trial
UB is set to the cost g(n) + h(n) of the least-cost node
that was pruned in that trial.

IDA* is guaranteed to find optimal solutions when the
heuristic h is admissible, but unlike A* it is a linear-
memory algorithm. Memory-enhanced versions of IDA*
have been defined for saving time such as those relying
on transposition tables (Reinfeld & Marsland 1994). In
the experiments below we report the results of IDA*
with and without transposition tables.

The performance of IDA* is often sensible to the order
in which the children of a node are selected for expan-
sion (this affects the last iteration of IDA*). In some
of the experiments we use an arbitrary node ordering
while in others we choose the ordering determined by
the additive heuristic h,q4q from HSP.

Commutativity Pruning

In planning problems, it is common for different action
sequences to lead to the same states. Linear-memory
algorithms like IDA* do not detect this and may end
up exploring the same fragments of the search space a
number of times. This problem can often be alleviated
by exploiting certain symmetries.

Let’s say that two operators a and a' are commuta-
tive if neither one deletes atoms in the precondition or
add list of the other, and that a set of actions is com-
mutative when all the actions in the set are pairwise
commutative. Commutative actions thus correspond to
the actions that can be done in parallel in Graphplan or
Blackbox, and can be recognized efficiently at compile
time.

Clearly the order in which a set of commutative ac-
tions is applied is irrelevant to the resulting outcome.
A simple way to eliminate the consideration of all or-
derings except one, is by imposing a fixed ordering ‘<’
on all actions (e.g., see (Korf 1998)). A branch con-
taining a contiguous sequence of commutative actions
ai, a3, ..., an is then accepted when it complies with
this ordering (i.e., when a; < az < -+ < ap) and is
rejected otherwise. This means that a branch in the

search tree can be pruned as soon as it contains a se-
quence of two consecutive commutative actions a;, a;+1
such that a; > a;+1. We refer to this form of pruning
as commutativity pruning.

Results

We call the planner obtained by combining the h?
heuristic with the IDA* algorithm, HSPr*. HSPr* is an
optimal sequential planner. The current implementa-
tion is in C. The results below were obtained on a Sun
Ultra 10 running at 440 Mhz with 256 RAM. In the
first experiments, we consider a number of (mostly) se-
quential domains and compare HSPr* with two state-
of-the-art planners: STAN 3.0 (Long & Fox 1999) and
BLACKBOX 3.6 (Kautz & Selman 1999). Both of these
planners are optimal parallel planners, so they mini-
mize the number of time steps but not necessarily the
number of actions.

Table 1 shows results over instances from the blocks
world, 8-puzzle, grid, and gripper domains. The for-
mulation of the blocks-world is the one with the three
‘move’ actions. The notation blocks-i denotes an in-
stance with ¢ blocks. The 8-puzzle is a familiar domain
(Nilsson 1980; Pearl 1983). The maximum distance be-
tween any two (reachable) configurations is 31. The
grid and gripper instances correspond to those used in
the AIPS Planning Contest (McDermott 1998).

In the table, #S and #A stand for the number of
time steps and the number of actions in the plan. For
sequential planners we report the number of actions
while for parallel planners we report both.

The numbers in Table 1 show that over these domains
the performance of HSPr* is comparable with STAN and
slightly better than BLACKBOX. These numbers, how-
ever, are just an illustration as the planners can be run
with a number of different options (STAN was run with
the default options; BLACKBOX was run with the com-
pact simplifier and the SATZ solver). An important dif-
ference between the three planners is the use of memory.
STAN and BLACKBOX use of a lot of memory, and when
they fail, most often is due to memory. In HSPr*, mem-
ory does not appear to be such a problem. In grid-2,
for example, HSPr* ran for almost eight hours until it
finally found an optimal solution. This is not good time
performance, but illustrates the advantages of using lin-
ear memory. STAN proved superior to both HSPr* and
BLACKBOX in the gripper domain where it apparently
exploits some of the symmetries in the domain (Fox &
Long 1999).

The results for HSPr* in these experiments were ob-
tained using the three enhancements of IDA* discussed
in the previous section: commutativity pruning , a
transposition table with 10° entries, and node-ordering
given by the heuristic h,q4. These are general enhance-
ments and most often they speed up the search. For
testing this, we ran some experiments on the blocks
world problems with all possible combinations of these
enhancements. The results are shown in Table 2, where
the number of nodes expanded (#N) and total time (T)

are reported. While in the small problem, the enhance-
ments make no difference, in the larger problem they
do. However, the payoffs do not always add up; for ex-
ample, commutative pruning (Com) cuts the run time
significantly when used in isolation but makes little dif-
ference when node-ordering (Ord) and a transposition
table (TT) are used.

Table 3 displays the quality of the heuristic A2 in com-
parison with the optimal cost of the problem, and the
time taken by the search with respect to the total time
(that also includes the computation of the heuristic).
It can be seen that the heuristic provides reasonable
bounds in the block-world problems but poorer bounds
in the other domains. In the 8-puzzle, the heuristic
seems to be weaker than the domain-dependent Man-
hattan distance heuristic but we haven’t made a de-
tailed comparison. In most domains, the time for com-
puting the heuristic is small when compared with the
search time. The exception is the grid domain where
the computation of the heuristic takes most of the time.

We have tried to run HSPr* over standard parallel
domains like logistics and rockets but after many hours
we didn’t obtain any results. The most important cause
for this is that for those domains the heuristic A2, which
estimates serial cost, is a poor estimator. In parallel
domains, there are many independent subgoals, and in
that case the additive heuristic h,qq produces better
estimates. Indeed, the non-optimal HSPr planner that
uses the hygq heuristic solves these problems very fast
(Bonet & Geffner 1999).”7 The admissible heuristics A™
defined in Sect. 3, however, can be modified so that they
estimate parallel rather than serial cost. In that case,
the estimates are tighter and can be used to compute
optimal parallel plans.

Optimal Parallel Planning
Heuristics for Parallel Planning

The definition of the heuristics A™ can be modified
to estimate parallel rather than serial costs by simply
changing the interpretation of the regression set R(A)
appearing in the equation (8). This equation charac-
terizes the cost function G™(A) for the sets A Z so and
|A| < m and is reproduced here
m — : m
Gm(4) =, min [e(a) +G™(B)] (1)
Recall that R(A) contains the pairs (B, a) such that B is
the result of regressing A through action a. For making
h™ = G™ an estimator of parallel cost, all we need to
do is to let a range over the set of parallel actions, where
a parallel action stands for a set of pairwise compatible
(commutative) actions.
We illustrate the result of this change for m = 2.
We denote by G the cost function associated with the

"The reason for this, however, is not only the heuristic
but also the search algorithm. The non-optimal search algo-
rithm in HSPr can reach the goal by evaluating much fewer
nodes than IDA".

STAN BLACKBOX HSPr*
Instance Time | #S | #A || Time | #S | #A Time | #A
blocks-9 0.4 4| 10 1.0 4 11 0.45 6
blocks-11 2.0 5 14 6.9 5 15 1.29 9
blocks-15 || 102.7 8| 25 — | — | — | 136.46 | 14
eight-1 89.9 | 31| 31 — | — | — 63.53 | 31
eight-2 62.0 | 31| 31 — | — | — 67.23 | 31
eight-3 05| 20| 20 89.0 | 20| 20 0.51 20
grid-1 15| 14| 14 142 | 14| 14 8.44 | 14
grid-2 — — | — — = — 7:55h | 26
gripper-1 0.0 3 3 0.0 3 3 0.07 3
gripper-2 0.0 7 9 0.3 7 9 0.11 9
gripper-3 0.1 12 15 55.2 | 11 15 30.17 15
gripper-4 21| 17| 21 * * * * *

Table 1: Performance comparison over sequential domains. A long dash (—) indicates that the planner exhausted

the available memory and a star (*) indicates that no solution was found after 12 hours. All times are in seconds.

Table 2: Effects of IDA* enhancements in the number
of nodes expanded and time taken by HSPr*. Time in
seconds.

parallel problem, and let O(p,q) stand for the set of
compatible pairs of actions a and @’ such that p and ¢
belong to Add(a) U Add(a'). We assume now that all
primitive and parallel actions have uniform cost c(a) =
1.8 The definition of G’f, then takes the form:

2 o . 2 .
Gi{pah) =min{ _min [1+G(Prec@)];
min

1+ G?(Prec(a) U Prec(a’))];
<a,a’)€0(p,q)[»(Prec(a) (a')]

min_[1+G}(Prec(a) U {g})]}

min [1+ Gf,(Prec(a) u{p}Hl}
a€O0(q|p)
where the only change from the definition of serial G?
is in the second line: the parallel action a&a' is al-
lowed to establish the pair of atoms p&q at the cost of a
primitive action. The equations for GZ(A) for sets with
size |A| # 2 remain the same as before. The resulting
heuristic hf, = Gg, unlike the heuristic h?, is admissible

8It’s not clear what the cost of a parallel action should
be when primitive actions have different costs.

Options blocks-11 blocks-15 Instance | Opt. | h(root) | Nodes | Time | Search

Ord | TT | Com | #N | Time #N Time blocks-9 6 5 9 0.45 0.02
off | off | off 1068 | 6.44 | 134680 | 3458.96 blocks-11 9 7 87 1.29 0.42
off | off | on 640 3.65 | 30145 | 566.50 blocks-15 14 11 6630 | 136.46 | 132.45
off | on | off 480 3.17 | 29831 | 876.27 eight-1 31 15| 172334 | 63.53 | 63.34
off |on | on 466 2.95 | 11255 | 236.56 eight-2 31 15 | 182195 | 67.23 | 67.06
on off | off 137 1.17 | 51241 | 1280.82 eight-3 20 12 564 0.51 0.20
on | off | on 96 0.93 | 30069 | 591.73 grid-1 14 14 14 8.44 0.08
on on | off 93 0.98 6280 165.25 gripper-1 3 3 3 0.07 0.00
on on | on 87 0.93 7580 159.12 gripper-2 9 4 275 0.11 0.02
gripper-3 15 4| 371664 | 30.17 | 30.06

Table 3: Results for sequential problems displaying op-
timal and estimated costs, expanded nodes, and total
vs. search time. Time in seconds.

for parallel planning. Actually h2 can be shown to be
equivalent to the heuristic hg used in Graphplan where
ha(s) stands for the first layer in the plan graph that
includes the atoms in s without a mutex. For prov-
ing this, it is sufficient to show that hg complies with
the equations for Gf,, and this can be done inductively

starting with layer 0.

State Space for Parallel Planning

The simplest way to use the heuristic hf, to find opti-
mal parallel plans is by performing a regression search
from the goal with an algorithm like IDA* but replacing
the primitive actions with the possible parallel actions.
The problem with this idea, however, is that it does not
scale up; indeed, if the branching factor of the original
problem is b, the branching factor of the ‘parallel’ prob-
lem may be 2°. While the solution length in the parallel
space will be smaller, the growth in the branching factor
makes the scheme impractical.

A second approach is to retain the branching struc-
ture from the serial setting but change the cost struc-

ture. The cost of an action a in the serial setting is nor-
mally uniform. In the parallel setting, it can be defined
in terms of the preceding actions. The result is that
total cost will measure time steps rather than action
occurrences. This can be achieved by setting the cost
of an action to 0 when the action is compatible with the
‘last’ actions in the search tree, and to 1 otherwise (the
‘last’ actions defined in a suitable way). The problem
with this space is that it makes the heuristic hf, not ad-
missible. Admissibility can be restored by subtracting
1 from the value of the heuristic yet this transformation
makes the heuristic much less powerful.

We have thus settled on a third alternative for find-
ing optimal parallel plans that follows the scheme used
in Graphplan. The resulting search space can be char-
acterized as follows:

States: the states are triples (Old, New, Acts),
where Old and New are sets of atoms, and Acts is a
set of pairwise compatible primitive actions.

Branching: the children of a state (Old, New, Acts)
are obtained by applying all the primitive ac-
tions a that add the first atom p in Old and
are compatible with all the actions in Acts.
For each such action, the resulting state is
(Old — A(a), New + P(a), Acts + {a}), where P(a)
and A(a) stand for the precondition and add list of
a respectively.

No-Ops: actions No_Op(p) with precondition and
add list equal to p are assumed for each atom p

Costs: a dummy action that is the sole action ap-
plicable in the states (), A, Acts) is assumed. Such
action has cost 1 and leads to the state (4,0,0). All
other actions have cost 0.

Heuristic: the heuristic of a state (Old, New, Acts)
is given by hZ(New), which is non-overestimating.

Init and Goal: the initial state of the regression
is (0, G, 0), where G is the goal, and the goal states
are (0, A, Acts) for A C sg, where sg is the initial
situation.

In relation to Graphplan, the set of atoms Old in
the state (Old, New, Acts) can be thought as the list of
atoms in layer ¢ that haven’t been regressed yet, New
stands for the atoms in layer ¢ — 1 that have been ob-
tained from the regression so far, and Acts encodes the
actions that have been used to obtain those atoms.

We will refer to the planner that results from the
use of the IDA* search over this space, parallel HSPT* or
HSPr(p)*. Below we report results of this planner over
some standard parallel domains and compare it with
two state-of-the-art parallel planners and the original
version of Graphplan.

HSPr(p)* has three main aspects in common with
Graphplan: the heuristic, the search space, and the
search algorithm. On the other hand, HSPr(p)* does
not use a plan graph. The plan graph plays two roles
in Graphplan. First, and most important, it encodes

the heuristic. This aspect is captured by the use of the
h2 heuristic in HsPr(p)*. However, the plan graph also
stores information that makes the IDA* search more ef-
ficient: it makes regressions faster, it never generates
nodes that will be pruned, etc. Indeed, the IDA* search
in Graphplan takes the form of a ‘solution extraction’
algorithm in the plan graph. This second rol of the plan
graph is not captured in HSPr(p)*. On the positive side,
HSPr(p)* requires less memory and can easily be modi-
fied to use other search algorithms such as A* or wiDa*
(Korf 1993). Such changes can be accommodated in
Graphplan but provided the plan graph is used mainly
for representing and computing the heuristic and not
for solution extraction.

Results for Parallel Planning

Table 4 shows results over some standard parallel do-
mains. On the ‘rocket’ problems, HSPr(p)* appears to
be slightly better than Graphplan, while in the ‘logis-
tics’ problems, Graphplan is definitely superior. These
differences are likely due to the use of the plan graph.
As the columns for STAN and BLACKBOX show, neither
Graphplan or HSPr(p)* are state-of-the-art over these
domains. Nonetheless, STAN is a Graphplan-based plan-
ner that solves the logistics problems quite fast.’

To further compare the speed of HsPr(p)* and Graph-
plan we generated approximately 45 medium-sized, ran-
dom logistics instances solvable by both HSPr(p)* and
Graphplan. For the reasons above, we didn’t expect
HSPr(p)* to approach the speed of Graphplan but we
did expect HSPr(p)* to remain within an order of mag-
nitude. In 30 of the problems, that was the case. How-
ever, in 12 problems we found HSPr(p)* to be from 10 to
75 times slower than Graphplan, and in 3 problems we
found HSPr(p)* to be between 75 and 200 times slower.
These differences in speed are probably not only due to
the use of the planning graph in the search but also to
the node ordering used in both planners. Graphplan,
for example, tries No-Op actions first, while HsPr(p)*
tries them last. Similarly, in HSPr(p)* we have found
it convenient to order the atoms in Old in the state
(Old, New, Acts) by increasing value of the additive
heuristic hy,gq. While these choices help in a number
of examples, they also hurt in others, and thus poten-
tially amplify the differences in performance over some
of the instances.

Discussion

In this paper we have formulated a framework for deriv-
ing polynomial admissible heuristics for sequential and
parallel planning, and have evaluated the performance
of the optimal planner that results from using one of
these heuristics with the IDA* algorithm. The work
sheds light on the heuristics used in HSP and Graph-
plan, and provides a more solid basis for pursuing the

®For some reason, STAN didn’t solve the rocket problems.
Apparently, this is a bug that will be fixed.

Problem || HSPr(p)* | GRAPHPLN STAN | BBOX
rocket.a 90.5 100.0 — 1.8
rocket.b 68.6 310.0 — 2.3
log.a 3:12:20 0:20:35 0.4 2.1
log.b * 0:9:39 2.0 10.4
log.c * — | 0:21:01 47.0

Table 4: Time comparison over parallel domains. A
long dash (—) indicates that the planner exhausted the
available memory and a star (*) indicates that no solu-
tion was found after 12 hours. In the notation h : m : s,
h, m and s stand for hours, minutes, and seconds re-
spectively. Otherwise, times are in seconds.

‘planning as heuristic search’ approach. Below we dis-
cuss briefly related work and some open problems.

Graphplan: In (Bonet & Geffner 1999), Graphplan
was described as an heuristic search planner based
on an IDA* search and a heuristic hg(s) given by
the first layer in the plan graph that contains the
atoms in s without a mutex. In this paper, we have
taken this view further, providing an explanation and
a generalization of that heuristic, and evaluating a
pure IDA* planner with respect to Graphplan. In
Graphplan, the plan graph plays two roles: it’s used
for computing and representing the heuristic, and for
making the IDA* search more efficient. These uses
explain the efficiency of Graphplan in comparison to
previous planners. On the othe hand, it’s not clear
whether the plan graph will be suitable for computing
and representing higher order heuristics (h™, for m >
2) and searching with other algorithms.

Heuristics: higher-order heuristics may prove effec-
tive in domains like the 15-puzzle, Hanoi, Rubik, etc,
where subgoals interact in complex ways. The chal-
lenge is to compute such heuristics fast enough and
to use them with little overhead at run-time. Higher-
order (max) heuristics as defined in this paper are
related to the heuristics based on pattern databases
defined in (Culberson & Schaeffer 1998). Korf and
Taylor (96) discuss ways for generating hybrid heuris-
tics involving both ‘max’ and ‘additive’ operations
that may also prove useful in planning.

Algorithms: the heuristics defined in this paper
have been used in the context of the IDA* algorithm.
In a number of domains, however, a best-first search
may prove more convenient. When optimality is not
an issue, variations of A* and IDA* where the heuristic
is multiplied by a constant W > 1 may speed up the
search considerably (Korf 1993), making the resulting
planner competitive with the HSP and HSPr planners
over domains like Hanoi and Tire-world, where the
additive heuristic is not adequate.

Branching: in highly parallel domains like rockets
and logistics, SAT approaches appear to do best. This

may be due to the branching scheme used (see (Rinta-
nen 1998)). In SAT formulations, the space is explored
by setting the value of any variable at any time point,
and then considering each of the resulting state par-
titions separately. In heuristic search approaches, the
splitting is commonly done by applying all possible
actions. Alternative branching schemes, however, are
common in heuristic branch-and-bound search proce-
dures (Lawler & Rinnooy-Kan 1985), and they may
prove relevant in planning.

We hope to explore some of these ideas in the future.

Acknowledgments

We thank Blai Bonet for useful discussions on the topic
of this paper. Part of this work was done while H.
Geffner was visiting Linkoping University. He thanks
E. Sandewall and P. Doherty for making this visit pos-
sible and enjoyable. This work has been partially sup-
ported by grant S1-96001365 from Conicit, Venezuela
and by the Wallenberg Foundation, Sweden. P. Haslum
is also funded by the ECSEL/ENSYM Graduate Study
Program.

References
Ahuja, R.; Magnanti, T.; and Orlin, J. 1993. Network
Flows. Prentice-Hall.
Bertsekas, D. 1995. Dynamic Programming and Opti-
mal Control, Vols 1 and 2. Athena Scientific.
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. In Proceedings of IJCAI-95.
Bonet, B., and Geffner, H. 1999. Planning as heuris-
tic search: New results. In Proceedings of ECP-99.
Springer.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A ro-
bust and fast action selection mechanism for planning.
In Proceedings of AAAI-97, 714-719. MIT Press.
Culberson, J., and Schaeffer, J. 1998. Pattern
databases. Computational Intelligence 14(3):319-333.
Fox, M., and Long, D. 1999. The detection and ex-
ploitation of symmetry in planning domains. In Proc.
IJCAI-99.
Garey, M., and Johnson, D. 1979. Computers and
Intractability. Freeman.
Kautz, H., and Selman, B. 1999. Unifying SAT-based
and Graph-based planning. In Proceedings IJCAI-99.
Korf, R. 1985. Depth-first iterative-deepening: an
optimal admissible tree search. Artificial Intelligence
27(1):97-109.
Korf, R. 1993. Linear-space best-first search. Artificial
Intelligence 62:41-78.
Korf, R. 1998. Finding optimal solutions to Rubik’s
cube using pattern databases. In Proceedings of AAAI-
98, 1202-1207.
Lawler, E., and Rinnooy-Kan, A., eds. 1985. The
Traveling Salesman Problem : A Guided Tour of Com-
binatorial Optimization. Wiley.

Long, D., and Fox, M. 1999. The efficient implemen-
tation of the plan-graph. JAIR 10:85-115.
McDermott, D. 1996. A heuristic estimator for means-
ends analysis in planning. In Proc. Third Int. Conf.
on AI Planning Systems (AIPS-96).

McDermott, D. 1998. AIPS-98 Planning Competition
Results. http://ftp.cs.yale.edu/pub/mcdermott-
/aipscomp-results.html.

Nilsson, N. 1980. Principles of Artificial Intelligence.
Tioga.

Pearl, J. 1983. Heuristics. Morgan Kaufmann.
Refanidis, I., and Vlahavas, I. 1999. GRT: A do-
main independent heuristic for Strips worlds based on
greedy regression tables. In Proceedings of ECP-99.
Springer.

Reinfeld, A., and Marsland, T. 1994. Enhanced
iterative-deepening search. IEEE Trans. on Pattern
Analysis and Machine Intelligence 16(7):701-710.
Rintanen, J. 1998. A planning algorithm not based
on directional search. In Proceedings KR’98, 617-624.
Morgan Kaufmann.

Sen, A., and Bagchi, A. 1989. Fast recursive formu-
lations for BF'S that allow controlled used of memory.
In Proc. IJCAI-89, 297-302.

Smith, D., and Weld, D. 1999. Temporal planning
with mutual exclusion reasoning. In Proc. IJCAI-99.

