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Abstract. We present a sound and complete, tractable inference method
for reasoning with localized closed world assumptions (LCWA's) which
can be used in applications where a reasoning or planning agent can
not assume complete information about planning or reasoning states.
This Open World Assumption is generally necessary in most realistic
robotics applications. The inference procedure subsumes that described
in Etzioni et al [9], and others. In addition, it provides a great deal
more expressivity, permitting limited use of negation and disjunction in
the representation of LCWA's, while still retaining tractability. The ap-
proach is based on the use of circumscription and quanti�er elimination
techniques and inference is viewed as querying a deductive database.
Both the preprocessing of the database using circumscription and quan-
ti�er elimination, and the inference method itself, have polynomial time
and space complexity.
In Processdings of the 9th International Conference on Arti-
�cial Intelligence: Mehtodology, Systems, Applications, 2000,
(AIMSA 2000).

1 Introduction

Traditionally, classical reasoning and planning techniques have been developed
for environments in which the reasoning agent is assumed to have complete
information about the world in which it is embedded and the only changes to
the world are the e�ects which result from the agent's invocation of actions.
Under this assumption, an e�cient means of representing negative information
about the world in each planning or reasoning state is to apply the Closed World
Assumption (CWA) [1, 16]. In this case, information about the world, absent in
a state, is assumed to be false.
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In many realistic applications, in particular robotics applications, the as-
sumption of complete information is not feasible and the CWA can not be used.
For example, an unmanned aerial vehicle ying over a region can not have a com-
plete model of the region. New objects are continually sensed or encountered and
agents other than the UAV agent cause change in the region. In applications such
as this, an Open World Assumption (OWA), where information not known by the
agent is assumed to be unknown, is the ontologically right choice to make, but
complicates both the representational and implementational aspects associated
with inference mechanisms and the use of negative information.

The CWA and the OWA represent two extremes. Quite often, a reasoning
agent has information which permits the application of the CWA locally. If the
UAV agent has a camera sensor, the agent can assume complete information
about objects in the focus of attention (FOA) of the camera; for example, the
only cars in the FOA are those identi�ed by the image processing module.

The research issue then, is to �nd maximally expressive, but tractable infer-
ence mechanisms for local closed world reasoning which can be integrated with
deliberative components, such as planning algorithms, used in applications where
the OWA applies. An additional issue is to be able to dynamically modify the
degree of closed-worldness relative to the dynamics of the application at hand.

We approach the problem as follows. The starting point is the approach to
LCWA described in [9], where the authors present a sound, but incomplete,
tractable algorithm for LCWA intended for use in the XII Planner. Briey,
their approach works as follows: Assume an actual world w which can be repre-
sented by a complete logical theory. Since the reasoning agent only has incom-
plete information about that world, but that information is assumed correct,
the agent's knowledge can be represented as a set of possible worlds S, where
w 2 S. For reasons of tractability, the approach approximates S by representing
it as a set of ground literals, M , where negative information about w known
to the agent is represented explicitly. M can be viewed as the agent's knowl-
edge database. Localized closure information is represented in another database,
L, as a set of formulas restricted to be conjunctions of literals (not necessarily
grounded). For example, M = fparent:dir(ecai:tex; =ecai00); size(kr:tex; 100)g,
L = fLCW (parent:dir(f; =ecai00))g. Although a reasoning agent could not in-
fer that it knows about all the �les in all directories and their sizes, it can infer
that it knows about all the �les in the directory ecai00. In [9], the authors de-
scribe an algorithm which encodes a sound, but incomplete inference relation,
M;L j=E �, where given M and L, they can determine whether a conjunction of
positive ground literals, �, is inferable under partial closure of the theory. Since
both L and � are restricted to be positive conjunctive formulas, the algorithm
and its e�ciency are based on the use of matching conjunctive queries against
a conjunctive database. Note that due to the OWA, for a speci�c query �, the
algorithm may return true, false, or unknown. In the following, we use QLCW
to refer to the query language of which � would be an instance.

We substantially extend the approach of [9] by:



{ providing a semantics for the case where LCW constraints in L and queries
in QLCW are expressed by arbitrary �rst-order formulas. The semantics is
based on the use of circumscription. The new semantics and the one given in
[9] agree on the special case where conjunctions of positive literals are used
in L and QLCW.

{ isolating a more expressive language for LCW constraints in L which sub-
sumes that used in [9], permits limited use of negation and disjunction, and
still retains tractability.

{ providing a sound and complete, tractable deduction method for the more
expressive language. Observe that in [9] completeness is not guaranteed even
in the case of a language with conjunctions of positive literals only.

Our approach to the problem is based on the use of circumscription to mini-
mize formulas in L in the context of the theory L^M . Using quanti�er elimina-
tion techniques, the original circumscribed theory can be reduced to a 1st-order
or �xpoint formula. Viewing the reduced theory as a database query, inference
relative to M can be viewed as a query to a database. Restricting the expres-
sivity of L to what we call semi-Horn formulas, M to a conjunction of positive
and negative ground literals, and queries in QLCW to semi-Horn formulas, we
can show that both the theory reduction technique and querying technique re-
main tractable and safe. Tractability means that the method allows for e�cient
(PTIME) computations. Safety means that no inconsistencies are introduced by
the method no matter what logical dependencies are used in L.

Note that by �rst providing a general framework and semantics for structur-
ing the problem in a classical setting and then isolating tractable combinations
of fragments of the languages used in M , L, and QLCW, we provide a method-
ology for generalization of the technique based on the use of results from the
knowledge representation and deductive database communities.

2 Preliminaries

We deal with an ordinary �rst-order language with equality, L1, over a �xed
alphabet A without function constants. By L2 we denote the second-order lan-
guage based on an alphabet whose symbols are those of A, together with a
denumerable set of n-ary predicate variables (for each n � 0). These will be
denoted by the letters � and 	 , possibly with subscripts and/or primes.

In the sequel, we shall use second-order circumscription. Our de�nition fol-
lows [13].

De�nition 1. Let P be a tuple of distinct predicate constants, S be a tuple
of predicate constants disjoint with P , and let T (P; S) be a �nite theory in a
language L1. The second-order circumscription of P in T (P; S) with variable S,
written CIRC(T (P ; S);P ;S), is the sentence (in the language L2)

T (P; S) ^ 8�	 [T (�; 	) ^ [� � P ] � [P � �]];



where � and 	 are tuples of predicate variables similar to P and S, respec-
tively1, and � � P (resp. P � �) stands for

Vn

i=1[8x:�i(x) � Pi(x)] (resp.Vn

i=1[8x:Pi(x) � �i(x)]).

In the following, we shall often write CIRC(T ;P ;S) instead of the formula
CIRC(T (P ; S);P ;S).

Let us now quote the �xpoint theorem formulated and proved in [15] for
second-order quanti�er elimination.

Theorem 1. Let P be a predicate variable, and 	 0(P ),	(:P ) be formulas with-
out second-order quanti�cation. Let �(P ) be positive w.r.t. P , 	(:P ) be nega-
tive w.r.t. P and 	 0(P ) be positive w.r.t. P , then

9P8�y[�(P ) � P (�y)] ^ [	(:P )] � 	 [P  �P (�y):�(P )]; (1)

and

9P8�y[P (�y) � �(P )] ^ [	 0(P )] � 	 0[P  �P (�y):�(P )]; (2)

where the above substitutions exchange the variables bound by �xpoint operators
by the corresponding actual variables of the substituted predicate. (1), ((2)) is
used to minimize (maximize) P .

The de�nition of semi-Horn formulas, for which Theorem 1 is applicable, has
been introduced in [5]. In what follows we shall consider a restricted version
of semi-Horn formulas, where the recursive part of the semi-Horn formula is
restricted as to the use of universal quanti�ers.

De�nition 2. By a semi-Horn formula (w.r.t. Q) we understand a conjunction
of formulas of the form

[�(�x) � Q(�x)] ^ 	(:Q); (3)

and

[Q(�x) � �(�x)] ^ 	(Q); (4)

where �(�x) is any classical �rst-order formula positive w.r.t. Q and 	(:Q)
(	(Q)) is any �rst-order formula negative (positive) w.r.t. Q. Formula �(�x) �
Q(�x) (Q(�x) � �(�x)) is called the recursive part of (3) ((4)) and 	(:Q) (	(Q))
is called the negative (positive) part of (3) ((4)).

By a semi-Horn formula we understand a semi-Horn formula w.r.t. all pred-
icate symbols occurring in the formula.

1 A tuple of predicate expressions X is said to be similar to a tuple of predicate
constants Y i� X = (X1; : : : ; Xn), Y = (Y1; : : : ; Yn) and, for all 1 � i � n, Xi and
Yi are of the same arity.



3 Representing an Agent's Knowledge

Suppose W is a complete logical theory formalizing what is true in an actual
world state w. Suppose also, that T is a �nite �rst-order theory, i.e. a �nite set
of sentences from L1, formalizing an agent's knowledge about w. Following [9],
we say that an agent has local closed-world information w.r.t. a formula � and
T i�

T j= �� or T j= :�� for each ground substitution �:

It is assumed that any knowledge the agent infers from T is correct in the actual
world w. Since T provides only incomplete information about w, not all facts
about w are known to the agent. In other words, only some of the information
is locally closed relative to T , other information is unknown.

Following [9], we approximate an agent's knowledge about T by a pair M;L,
where M is a �nite set of positive or negative ground literals and L is a set
of �rst-order formulas, representing local closed-world assumptions. We assume
that if T formalizes the agent's knowledge about the world, then for each formula
�

M j= � implies T j= �:

Let c1; : : : ; cn be all the constants from the alphabet under consideration.
We write DCA(M) to denote the domain closure axiom for a theory M . This
is the formula

8x:
n_

i=1

x = ci:

We write UNA(M) to denote the unique name assumption axiom for a theory
M . This is the formula ^

1�i<j�n

ci 6= cj :

We write M;L j= � to denote that a formula � follows from a pair M;L.
This notion is de�ned as follows.

De�nition 3. Let M;L be a �nite set of ground literals and a set of formulas
representing closed-world information, respectively. Suppose that L consists of
formulas �1; : : : ; �n. Let R = R1; : : : ; Rn be a set of new predicates symbols
similar to �1; : : : ; �n.2 By an LCW-based extension of M , denoted by M', we
shall understand this to be the theory consisting of formulas of M , augmented
by:

{ DCA(M) and UNA(M)
{ the set of formulas 8x:Ri(x) � �i (i = 1; : : : n).

The following de�nition provides us with the semantics of LCW as under-
stood in this paper.

2 A predicate symbol P is similar to a formula � i� the arity of P is equal to the
number of free variables of �.



De�nition 4. Let S be the set of all predicate symbols occurring in �1; : : : ; �n.
Then

M;L j= � i� CIRC(M 0;R;S) j= �;

where R = (R1; : : : ; Rn).

Note that de�nition 4 provides the general case and semantics for reasoning
under the LCWA. The rest of the paper considers restrictions on M , L and
QLCW which make reasoning under the LCWA tractable.

In what follows we divide M 0 into three parts:

{ a positive part, denoted by M+, consisting of positive literals of M ; the
positive part is intended to gather positive information directly included in
the database M

{ a negative part, denoted by M�, consisting of negative literals of M ; the
negative part is intended to gather negative information directly included in
the database M

{ an LCW part, denoted by Mc, consisting of equivalences 8x:Ri(x) � �i
(i = 1; : : : n) introduced in De�nition 3.

Observe that M+ is just an extensional database as understood in the �eld
of deductive databases (see, e.g. [1, 8]). Also M� can be easily treated as a
part of an extensional database. Now (deductive) queries are represented by
Mc embedded in a tractable query language like �xpoint calculus or classical
�rst-order logic (see e.g. [1]). Thus, whenever LCW is polynomially reducible to
�xpoint or classical formulas, one has a tractable reasoning mechanism.

In what follows we often call M+ [M� simply a database.

4 The Main Result

The following theorem provides us with a su�cient condition which guarantees
that second-order quanti�ers can be eliminated from CIRC(M 0;R;S) using the
�xpoint theorem (Theorem 1) and some syntactic transformations applied in the
DLS algorithm [6].

The main result of this paper, formulated below, shows that the second-order
formula resulting from circumscription can be reduced to a �xpoint formula.
Thus the complexity of reasoning is polynomial in the size of M . This follows
from the fact that the database part of M is not a�ected by the quanti�er elim-
ination process. Only LCW constraints can, in some cases, introduce additional
complexity. However the size of the resulting formula is, in the worst case, not
greater than m + O(n2), where n is the size of LCW constraints together with
the query and m is the size of the database.

In the proof of the theorem we use second-order quanti�er elimination (For
surveys of approaches to second-order quanti�er elimination consult [6, 14]). Be-
cause of the space limitations, the proof is not included in the current paper,
but is available from the authors.



Theorem 2. Let CIRC(M 0;R;S) be de�ned as in Section 3. If M consists of
literals and LCW constraints in L are de�ned by means of semi-Horn formulas,
then the following conditions hold:

{ second-order quanti�ers can be eliminated from CIRC(M 0;R;S);

{ if the size of the database M is m and the size of Mc together with the
query is n then, in the worst case, the resulting formula has size m+O(n2).
Moreover M is not a�ected by the quanti�er elimination process.

The second-order quanti�er elimination technique applied in the proof of
Theorem 2 is based on Theorem 1 and provides us also with de�nitions of the
eliminated predicates. As in [8], this feature is crucial for the approach we present
in this paper. More precisely (for details see e.g. [8]):

{ in the case of formulas of the form (1), one gets an explicit de�nition of the
least relation P satisfying the �rst-order part of (1); and

{ in the case of formulas of the form (2), one gets an explicit de�nition of the
greatest relation P satisfying the �rst-order part of (2).

Observe that Theorem 2 can still be generalized using techniques of [6{8, 14].

Corollary 1. Consider a relational (or deductive) database in which the query
language QLCW is the classical �rst-order logic or monotone �xpoint calculus3.
If M consists of literals and the LCW constraints in L are de�ned by means of
semi-Horn formulas, then:

{ the time complexity of the quanti�er elimination algorithm is polynomial in
the size of the input query;

{ the formula resulting from the quanti�er elimination process is a mono-
tone �xpoint formula, thus time and space data complexity of querying the
database is polynomial in the size of the database;

{ if all �'s occurring in recursive parts of semi Horn formulas de�ned in def-
inition 2 (i.e. in formulas of the form �(�x) � Q(�x) and Q(�x) � �(�x)) do
not contain Q's then the formula resulting from the quanti�er elimination
process is a classical �rst-order formula. Thus assuming that the query lan-
guage is restricted to the classical �rst-order logic one obtains polynomial
time data complexity and polylogarithmic space data complexity [1, 12].

Proof. The �rst item easily follows from the results provided in [5, 8] and from
the proof of Theorem 2.

The second item just quotes results well-known from deductive databases
(see e.g. [1, 12]).

The last item follows from the fact that for such formulas the Ackermann
Lemma [2] is applicable - see also [6].

3 I.e. calculus in which �xpoint are de�ned on monotone formulas - see e.g. [1].



5 The LCW Algorithm

Theorem 2 together with results in [8] provides us with a complete and tractable
algorithm for deduction from a database M and LCW database L, assuming
that formulas in L and � are formulated as semi-Horn formulas and M consists
of literals. An un-optimized abstract version of the algorithm is shown below:

Function LCWQuery(�;M;L): 3-boolean

ML := M [ Reduce(L)

if RQuery(ML; �) 6= ; then return T

else if RQuery(ML;:�) 6= ; then return F

else return U;

end.

Reduce() is the quanti�er elimination technique described in [8] extended
with the result from Theorem 2. It is assumed that Reduce() provides us with
de�nitions of the predicates eliminated from CIRC(M 0; �R; �S).

RQuery() is based on [12] and returns a set of tuples satisfying �. However,
CWA is not assumed by RQuery().

6 Related Work

In this section, we show that our approach subsumes the approaches proposed
in [9], [3] and [10].

In [9] it is assumed that the LCW database, L, consists of formulas that are
conjunctions of atoms. We write M;L j=E � to denote that a formula � follows
from a pair M;L in Etzioni et al. [9] approach. The following theorem holds.

Theorem 3. For all M and L

M;L j=E � impliesM;L j= �:

Similarly, the  -forms considered in [3] are simply expressible in the language
we deal with. Moreover, the semantics of both approaches is equivalent when
restricted to the  -forms only.

In fact, the approach presented in [3] is subsumed by the one provided in [10].
In [10] Horn clauses, with additional built-in predicates, are used to express LCW
constraints. These are easily expressible in our approach as we deal with semi-
Horn formulas that are substantially more expressive than Horn clauses.

Note that the subsumption results are related to reasoning in a static state
under the LCWA and not to sequences of dynamic states where updating the
LCWA database is an additional issue considered in both [9] and [3].



7 Example

Example 1. The following example demonstrates the versatility of the approach
by representing the UAV example in section 1. There are four cars with di�erent
signatures based on color. The UAV's focus of attention (FOA) is region r3.
In L, we assume complete information about the ContainedIn() relation by
minimizing it (6), and the In() relation by maximizing it (5). (7) encodes the
following LCWA by maximizing the relation See():

After sensing region r3 with a camera, we want to assume that we have seen
all moving vehicles in the FOA (r3) except for those with signature gray.

In querying the database using the LCWQuery algorithm, we can infer that
See(c1; r3) holds, but it is unknown whether See(c2; r3), due to its signature;
unknown whether See(c3; r3), because it is unknown whether it is moving; and
unknown whether See(c4; r3) because it is not in the FOA. Note that the latter
queries return unknown and not false due to the incompleteness of the database.
In fact, other sensors may contribute to whether the unknown vehicles are seen.

L = fIn(x; r0) � :(In(x; r) ^ ContainedIn(r; r0)); (5)

ContainedIn(r; r0); (6)

See(x; r3) � :(InFOA(r3) ^ In(x; r3) ^ Sig(x; s) ^

s 6= gray ^Moving(x))g (7)

M = fIn(c1; r1); In(c2; r2); In(c3; r1); In(c4; r4);

Moving(c1);Moving(c2);Moving(c4);

sig(c1; blue); sig(c2; gray); sig(c3; green); sig(c4; yellow);

ContainedIn(r1; r3); ContainedIn(r2; r3); InFOA(r3)g

In order to understand why the constraints for In() and See() in L are
represented in the manner above, it is important to observe that the relations
we want to minimize or maximize are in fact relations that are varied in the
circumscriptive de�nition used for LCWA. Consequently, the minimization and
maximization are achieved indirectly.

Another interesting observation is that the query generated by the quanti�er
elimination procedure results in a �xpoint formula due to the recursive de�nition
of In().

8 Conclusions

We have extended and subsumed the LCW querying techniques described in
[9], [3, 4], and [10] and presented a tractable algorithm. The technique is based
on the use of circumscription and results from the deductive database commu-
nity and is consequently amenable to generalization. We have demonstrated the



versatility of the approach by encoding a relatively complex UAV sensing sce-
nario. We have not yet dealt with the LCW update problem associated with the
query mechanism's integration with other planning and state sequential reason-
ing techniques considered in the other approaches, but are currently pursuing
the problem.
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