
TALplanner: A Temporal Logic Based Planner

Patrick Doherty and Jonas Kvarnström

Abstract

Talplanner is a forward-chaining planner which utilizes
domain-dependent knowledge to control search in the state
space generated by action invocation. The domain-dependent
control knowledge, background knowledge, plans and goals
are all represented using formulas in a temporal logic called
TAL. TAL has been developed independently as a formalism
for specifying agent narratives and reasoning about them. In
the recent AIPS’00 planning competition, TALplanner exhib-
ited impressive performance, winning the outstanding perfor-
mance award in the domain dependent planning competition.
In this article, we provide an overview of TALplanner.

This article is an invited submission to AI magazine,
2000.

Introduction
TALplanner (Doherty & Kvarnstr¨om 1999; Kvarnstr¨om,
Doherty, & Haslum 2000; Kvarnstr¨om & Doherty 2000a;
Kvarnström & Doherty 2000b) participated in the recent
planning competition at the 5th International Artificial In-
telligence Planning and Scheduling Conference, which took
place in Breckinridge, Colorado, May 2000. TALplanner
received the Outstanding Performance award in the domain
dependent planning competition and 1st place in the Mi-
conic 10 elevator control domain competition sponsored by
Schindler Lifts Ltd. For the domains used in the competi-
tion, TALplanner exhibited remarkable performance in com-
parison to many of the other state of the art planners which
participated in the competition.

Talplanner is a forward-chaining planner which uti-
lizes domain-dependent knowledge to control search in
the state space generated by action invocation. The
domain-dependent control knowledge, background knowl-
edge, plans and goals are all represented using formulas in
a temporal logic called TAL. TAL has been developed inde-
pendently as a formalism for specifying agent narratives and
reasoning about them. A narrative consists of a specification
of fluents which hold at various points in time, causal de-
pendencies which relate fluent change, action types which
characterize action occurrences which may be invoked by
an agent and domain constraints which characterize back-
ground knowledge. A logical model for a narrative describes
a linear sequence of states where fluents have unique values

in each state. A plan is viewed as a narrative, plan operators
are viewed as action types and domain-dependent control
knowledge and goals as temporal formulas entailed by the
generated narrative.

Although forward-chaining planners generally suffer
from a lack of goal-directedness when compared to other
types of planners such as regression-based or partial-order
planners, for many domains the use of explicitly represented
domain-dependent knowledge more than compensates for
this deficiency. More significantly, a forward chaining plan-
ner always has a complete description of the past and current
states, which facilitates the use of complex operator types
with complex preconditions and conditional effects.

The use of a 1st-order temporal logic language is well
suited to compactly represent both the complex operator fea-
tures and the control knowledge used to prune the search
space. This representation is highly amenable to the syn-
tactic transformations used in various types of optimizations
associated with the planning algorithm. In addition, the use
of logic for representation provides a natural semantics for
plans, goals and control knowledge.

How did TALplanner come about? As stated previously,
we have spent a number of years developing logical repre-
sentations of agent behaviors in the form of narratives using
temporal logic. More recently, we have been involved in
an unmanned aerial vehicle project which includes develop-
ment of deliberative/reactive systems to support autonomous
behavior. One of the central components of the architec-
ture is a planning module which more often than not must
generate plans in a timely or anytime manner. In addition,
the planner must have the capability to reason about explicit
time and represent actions with complex interactions and du-
ration.

After surveying the planning literature, we found few if
any planning approaches which had the potential for dealing
with the many constraints associated with the UAV project.
There was one exception though, TLplan (Bacchus & Ka-
banza 1996; 1998; 2000). We were immediately struck by
the simplicity and elegance of the approach in addition to
its performance. TLplan uses a modal tense logic to rep-
resent domain-dependent control knowledge and their for-
ward chaining algorithm is based on the use of formula pro-
gression, a technique similar to that used in tableau theorem
provers for tense logics.

In order to test the feasibility of the approach, we im-
plemented an initial version of TALplanner which trans-
lated between temporal formulas in our formalism and tense
logic formulas and used formula progression. The results
were promising. In fact, this implementation was faster then
TLplan when tested using a number of benchmarks from the
AIPS’98 competition. On the other hand, we were less satis-
fied with the need to translate and use a formula progression
algorithm. Consequently, we began experimentation with a
different approach which evaluates TAL formulas directly
without the use of formula progression. This latest version
of TALplanner is substantially different from TLplan and the
performance is markedly better than the original approach
both in terms of time and space complexity. In addition,
the relation between TALplanner and TAL is much more
comprehensive. This offers methodological advantages as
TALplanner is incrementally extended in the future.

In the rest of this article, we provide an overview of
TALplanner. We begin by introducing the temporal logic
TAL and then proceed to the methodological framework
used to develop TALplanner. We then describe a robotics
gripper domain example followed by a presentation of the
planning algorithm and its operation. This is followed by a
discussion about optimization techniques used in TALplan-
ner. A comparison between TALplanner and TLplan is made
using a number of benchmark examples from the AIPS’98
planning competition which are similar to those used in
AIPS’00 and equally challenging. We conclude with a dis-
cussion about additional extensions to TALplanner not de-
scribed in this article and some future directions for re-
search.

TAL: Temporal Action Logics
TAL, Temporal Action Logics (Dohertyet al. 1998), is
a family of narrative-based first-order temporal logics de-
veloped for reasoning about action and change in incom-
pletely specified dynamic worlds. The TAL logics share a
1st-order base languageL(FL), used for formally reason-
ing about narratives. From a knowledge engineering per-
spective, viewing narratives as sets of 1st-order formulas
lacks structure and modularity. Instead, we developed a
higher-level macro language calledL(ND) which permits
structured representation of narratives using labeled state-
ments. One can automatically transform a set of statements
in L(ND) into a set of 1st-order formulas inL(FL).

Because our worlds are incompletely specified such is-
sues as the frame, qualification and ramification problems
arise. We provide solutions to these problems using a com-
bination of representational techniques and Circumscrip-
tion (McCarthy 1980) which enable the encoding of flexi-
ble closed world and persistence assumptions. Efficient in-
ference from the resulting theories is made possible via the
use of quantifier elimination techniques, a subject for an-
other paper. Currently, TALplanner only requires the eval-
uation of a TAL formula in a model where the domain is
restricted to be finite. In (Doherty & Kvarnstr¨om 1999;
Kvarnström & Doherty 2000a) we presented a version of
L(ND) calledL(ND)�, suitable for modeling planning do-
mains and problem instances. Compared to otherL(ND)

versions,L(ND)� contains two additional statement classes
for goals and control rules. In a following section, we will
provide examples of some of these statement classes.

Framework and Methodology

Figure 1 provides an abstract overview of TALplanner’s ar-
chitecture in terms of input and output and the relation be-
tween TAL and TALplanner. The figure also provides a
means of understanding the research methodology used in
the development of TALplanner.

Goal Narrative
TAL TALPlanner

Plan Narrative
TAL

L(ND)

1st-order
theory

1st-order

L(FL)

theory T
Circ(T) +

Quantifier Elimination

Goal

L(FL)

L(ND)*

Figure 1: TAL/TALplanner relation

In figure 1, TALplanner takes a TAL goal narrative in
L(ND)� as input. The planner translates the goal narrative
into a suitable internal representation and then searches for a
plan, an operator sequence satisfying the goal statement and
the control rules. If a plan exists, the result is a new narrative
in L(ND) where goals and control rules have been removed
and a set of TAL action occurrences (corresponding to plan
steps) has been added. Observe that one can use standard
inference techniques or techniques specific to TAL to reason
about both the input goal narrative and the output narrative.
The output narrative is always guaranteed to entail the orig-
inal goal and the domain dependent control knowledge.

The methodology we use to incrementally extend
TALplanner is based on our experience with TAL. TAL
serves as a reference formalism for TALplanner, where the
language used to represent narratives in TAL may be viewed
as a rich and expressive plan representation language. The
plan synthesis algorithm associated with TALplanner is in-
crementally extended by increasing the expressivity of the
plan operators and other narrative statement classes. The
semantics and understanding of the extensions is always
grounded in the formal semantics associated with TAL.

Observe that TALplanner does not subscribe to theplan-
ning as theorem provingparadigm. Instead, the associated
logic TAL, serves as a formal plan specification language
with an associated semantics for understanding the intrica-
cies of operator invocation in incompletely specified world
domains. The implementation reflects this by constructing
partial models which are incremented as plan operators are
added and filtered as control formulas are evaluated in these
partial models.

2

A Gripper Domain Example
We will use a simple gripper domain as an example. In
this domain, a robot, Robby, can move objects between a
number of rooms. For simplicity, we will assume Robby
only has a single gripper. Each object is initially in a room,
and the goal requires some objects to end up in certain
rooms. We model this using the sortsboolean = ftrue,falseg,
obj containing objects androom containing locations and
the propositional (boolean) state variablesat-robby(room),
at(obj, room), carry(obj) andfree. Moving takes three time-
points, while picking up and dropping objects takes a single
timepoint.

The following three operator descriptions are shown with
the internal representation used in TAlplanner:
#operator move(from, to) :at t

:precond [t] at-robby(from)
:effects [+3] at-robby(to) := true,

[+3] at-robby(from) := false
#operator pick(ball, room) :at t

:precond [t] at(ball, room) ^ at-robby(room) ^ free
:effects [+1] carry(ball) := true,

[+1] at(ball, room) := false,
[+1] free := false

#operator drop(ball, room) :at t
:precond [t] carry(ball) ^ at-robby(room)
:effects [+1] carry(ball) := false,

[+1] at(ball, room) := true,
[+1] free := true

In the narrative languageL(ND), the move operator be-
longs to the narrative statement classaction typeand would
be represented as follows:
acs [t; t0] move(from; to)

t0 = t+ 3 ^
([t] at-robby(from)!
R([t+ 3] at-robby(to) =̂ true) ^
R([t+ 3] at-robby(from) =̂ false))

In the logical language L(FL), the move operator would be
represented as follows:
8t; t0; from; to:Occurs(t; t0;move(from; to))!
t0 = t+ 3 ^
(Holds(t; at-robby(from); true)!
Holds(t+ 3; at-robby(to); true) ^
Occlude(t+ 3; at-robby(to)) ^
Holds(t+ 3; at-robby(from); false) ^
Occlude(t+ 3; at-robby(from)))

Similar translations are used for the other narrative statement
classes.

For the following problem instance, we can assume
the following sorts: room = froomA; roomBg, obj =
fball1; ball2g.

A plan problem instance description contains a spec-
ification of initial state, eg. [0] 8obj[at(obj; roomA) ^
:carry(obj)] ^ at-robby(roomA), and a goal state, eg.
8obj[at(obj; roomB)].

Control Formulas for the Gripper Domain
For the gripper domain, we will use the following three con-
trol statements specified inL(ND).

First, suppose Robby is carrying an object that should be
in the current room. Clearly, he should not move before

putting it down – if he does, he will have to return later. In
other words, he should remain in the same location in the
following state:
8t; r; o: [t] at-robby(r) ^ carry(o) ^ goal(at(o; r)) !

[t+ 1] at-robby(r)
Second, a similar condition applies if Robby’s gripper is

free and there is an object here that should be moved to an-
other room. Again, in order to avoid having to return later,
he should not move until he has picked it up:
8t; r; o: [t] free ^ at-robby(r) ^ at(o; r) ^

[t] 9r0[r0 6= r ^ goal(at(o; r0))] !
[t+ 1] at-robby(r).

Third, only pick up an object if the goal requires it to be
in another room:
8t; o: [t] :carry(o) ^

[t] 8r; r0[at(o; r) ^ goal(at(o; r0))! r = r0]!
[t+ 1] :carry(o).

The task of specifying control statements is currently the
responsibility of the domain designer. For many domains,
the process is intuitive and straightforward. We imagine that
for other domains, the process will be quite complex and
finding a means of automatically generating at least some of
the control statements is highly desirable and a challenging
research issue.

TALplanner
In the previous section, we provided a description of the
components in a TAL goal narrative using the Gripper Do-
main example. TALplanner takes a TAL goal narrative as
input, and generates a new narrative where a set of timed
action occurrences has been added. Internally, however,
TALplanner is basically a forward chaining planner, search-
ing through the space of states reachable from the initial
state. In order to be able to describe this search space in
more detail, we must first provide a few definitions.

Due to the use of actions with non-unit duration, plans
cannot be simple sequences of operators but must also con-
tain timing information. This information is provided as
timed operator instancesof the form [s; t] o, denoting the
invocation of the operator instanceo between timess andt,
wheres < t.

An executable operator sequenceis a tuple of timed op-
erator instances with the following constraints. First, the
empty tuple is an executable operator sequence. Second,
given a sequence ofn operators ending in[tn�1; tn] on,
its successors are exactly those sequences adding one new
timed operator instance[tn; tn+1]on+1 such thaton+1 is ap-
plicable at[tn; tn+1] (wheretn = 0 if n = 0).

A plan is an executable operator sequence that corre-
sponds to an infinite state sequence that satisfies all control
rules as well as the goal.

These definitions induce a search tree where the root is
labeled with the empty sequence and the children of a node
labeledl are labeled with the successors ofl. Clearly, this
search tree must contain all plans. Therefore, a complete
planner can be generated by using a complete search algo-
rithm such as breadth first search or iterative deepening.

Conceptually, each node in the search space contains an

3

executable operator sequence. Each node represents a par-
tial model in TAL for the narrative being constructed. Each
partial model contains a sequence of states (or prefix to the
final state sequence) which will entail the goal statement if
successful. Nodes are filtered if they do not satisfy domain
dependent control formulas and other constraints associated
with the narrative. Figure 2 provides a diagram of the search
and pruning process. The initial node is a goal narrative, the
internal nodes in the tree are representations of partial TAL
models (executable operator sequences). The goal node is
transformed into a standard TAL narrative containing a gen-
erated sequence of plan operator instances.

filtering

Control

A11

formula

A3

A2

A1 A7

Goal
node

Initial
node

Figure 2: Pruning

Below, we provide an abstract description of the
TALplanner algorithm which generates the search space de-
picted in figure 2 above.
Input : An initial goal narrativeGN in L(ND)�.
Output : A plan narrativeNp in L(ND) which entails the
goal and the control rules.

1 procedureTALplan(GN)
2 Open hh0;GNii // Stack (depth-first search)
3 while Open 6= hi do
4 h�;GNi pop(Open)
5 N (GN minus goals and control rules)
6 if the pruning constraints are satisfied inN then
7 if the state goal and control rules are satisfiedreturn N
8 if cycle checking disabledor there is no cyclethen
9 for every action[�; � 0] o applicable at� do

10 pushh� 0;GN [f[�; � 0] ogi on Open
11 fail

The algorithm itself is straightforward; one forward
chains on operator invocations using (in this case) a depth-
first search strategy. Branches in the search space are pruned
usingpruning constraintswhich are derived from the set of
control statements supplied to the planning algorithm. The
bottleneck in the algorithm is checking when a formula is
satisfied in a narrative model. We consider these issues in
the next section.

The expressiveness of the operators and use of other nar-
rative statement classes was highly constrained in the com-
petition. Plan operators were restricted to be determinis-
tic, complete information about initial state was assumed
and actions were single step. In spite of this, the version
of TALplanner used in the competition allows for order-
sorted finite value domains for fluents (both boolean and
non-boolean domains are allowed), fluents (state variables)

can take arbitrary numbers of arguments, action types (oper-
ators) can be context dependent with arbitrary preconditions
and conditional effects. They can also have arbitrary integer
duration, and effects are not limited to the final timepoint but
can take place anywhere in the duration of the action. Ar-
bitrary goals are allowed, including existential goals. TAL
provides a semantics for all of these extensions.

Optimization Techniques
Where is the magic in the algorithm which would explain its
extraordinary performance in the domains used in the com-
petition? Clearly, it is not the algorithm itself which is a
forward chaining algorithm with a depth first search strat-
egy.

The ability to represent complex domain dependent con-
trol knowledge compactly in a 1st-order language without
compiling to a propositional representation is one of the an-
swers.

Since the bottleneck in the algorithm is to evaluate a 1st-
order formula in a data structure representing a TAL model,
syntactic transformations which simplify the original con-
trol formulas into equivalent, but more efficiently evaluated
formulas is another answer. We call such formulaspruning
constraints.

Pruning constraints themselves can be optimized by tak-
ing advantage of information implicit in plan operators.
Each pruning constraint is analyzed separately for each op-
erator type in a domain, under the assumption that some in-
stance of that operator has just been invoked. Although this
is done during a pre-processing phase, where exact argu-
ments and timepoints are not yet known, the operator de-
scriptions contain considerable information about the states
in which the pruning constraints will eventually be evalu-
ated. In some cases, the process completely removes prun-
ing constraints for certain operators, thus saving the time it
takes to evaluate the constraint.

In many cases, the operator-specific analysis described
above results in pruning constraints where some conjuncts,
or even the entire constraints, only refer to the invocation
state of the operator. TALplanner moves such conjuncts into
the precondition of the operator, automatically generating
so calledprecondition control(Bacchus & Ady 1999). This
improves performance significantly, since control rule vio-
lations can be detected before the planner even attempts to
invoke an operator.

TALplanner allows the domain designer to specify a
set of assertions, conditions that must necessarily hold
in any state sequence reachable from any valid initial
state. In the gripper domain, one such assertion would
be8t; room; room0:[t] at-robby(room) ^ at-robby(room0) !
room= room0: Robby can never be in two rooms at once.

Assertions are mainly used during the analysis phase. For
example, when analyzing pruning constraints relative to op-
erators, assertions can be used to infer additional informa-
tion about an invocation state given what is explicitly stated
in a precondition. This sometimes allows TALplanner to
simplify pruning constraints further, improving the chances
of converting constraints into precondition control.

4

In figure 3 below, the preprocessing phase used in
TALplanner is depicted. The optimizer takes the control
rules, assertions and plan operators as input and outputs a set
of optimized pruning constraints per operator. The process
is fully automated and will be described in detail in a forth-
coming paper. Note that the complete pre-processing phase
normally takes about 10-100 milliseconds. Future versions
of TALplanner may integrate domain analysis techniques to
automatically generate assertions.

rules

Optimized
constraints

for operator 1
Control

for operator n
constraints

Pruning
constraints

Control

Optimized
analyzer optimizer

Control

definitions
Operator

Assertions

Figure 3: Optimization

Comparison with TLplan

TLplan did not compete in this year’s competition to avoid
any conflict of interest due to Fahiem Bacchus role as orga-
nizer of the competition. Although he did a fantastic job or-
ganizing and running the competition, TLplan’s absence was
unfortunate since it is one of the fastest planner’s around and
surely would have done well in the competition. In addition,
TALplanner uses the same planning paradigm and compar-
isons between the two are of some interest. In the following,
we make an attempt at comparing the two planners via the
use of benchmark problems used in the AIPS’98 competi-
tion.

As stated in the beginning of the article, the first prototype
implementation of TALplanner basically tried to emulate
TLplan by using translations of TAL formulas into tense log-
ical formulas and using formula progression techniques. We
call this version of TALplannerTALplanner/progressionin
the diagrams below. The second prototype implementation
of TALplanner based on direct evaluation of TAL formu-
las and a preprocessing optimization phase was used in the
competition. We call this version of TALplannerTALplan-
ner/evaluationin the diagrams below.

All benchmarks were run on the same 333 MHz Pen-
tium II computer running Windows NT 4.0 SP3, using
256 MB of memory. The machine is quite slow by cur-
rent standards. For comparison with TLPLAN, we used
the precompiled version that can be downloaded from
http://www.lpaig.uwaterloo.ca/˜ fbacchus/. TALplanner is
written in Java, and we used TALplanner 2.741 with the Java
Development Kit 1.2.2-001 and the HotSpot virtual machine
(1.0fcs), both of which can be downloaded fromhttp://java.
sun.com. In all cases, we made sure that the computer was
very lightly loaded and that it was never swapping.

Benchmark Results
We use two of the domains chosen for both the AIPS’98 and
AIPS’2000 competitions, the logistics and blocks domains.
All 30 problems from the logistics domain were taken from
the AIPS’98 competition. All 43 problems from the blocks
domain were randomly generated by us. For TLplan, the do-
main descriptions and control rules used are those from the
original description used by Bacchus and Kabanza (avail-
able in the TLplan software distribution). For TALplan-
ner/progression, the domain descriptions use exactly the
same modal control formulas. For TALplanner/evaluation,
the domain descriptions use control formulas based on the
modal control formulas used by Bacchus and Kabanza. The
rules are modified somewhat to allow TALplanner’s opti-
mizer to detect additional optimization opportunities.

Logistics

0.01

0.1

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

se
co

nd
s

Logistics problem (from AIPS-98)

TLplan
TALplanner/progression
TALplanner/evaluation

Figure 4: Logistics Time

Figure 4 shows how much time the planners needed for
the logistics problems. TLplan creates the first few plans in
around a second, but needs over 15 hours for some prob-
lems and cannot solve two of the problems with 256 MB
of memory. TALplanner is considerably faster even using
progression. With evaluation, TALplanner solves the largest
problem (number 28) in under 0.8 seconds and never ex-
ceeds the 4 MB of heap space automatically allocated by the
Java virtual machine. TLplan could not solve this problem at
all (with the amount of memory available). The largest prob-
lem it could solve was number 29, which required> 60000
seconds, compared to 15.422 seconds for modal TALplan-
ner and 0.391 seconds for TALplanner using evaluation.

Figure 5 shows how many worlds (states) the planners ex-
panded for the logistics problems.

Blocks
Figure 6 shows how much time the planners needed for the
blocks problems. TLplan creates the first few plans in un-
der 10 seconds, but needs almost nine hours for some prob-
lems and cannot solve the larger problems with 256 MB
of memory. TALplanner/progression is considerably faster
and handles considerably larger problems. With evaluation,
TALplanner solves the largest problem (number 43, with
5000 blocks and> 15000 operators) in under 20 seconds

5

10

100

1000

10000

100000

1e+06

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

W
or

ld
s

ex
pa

nd
ed

Logistics problem (from AIPS-98)

TLplan
TALplanner/progression
TALplanner/evaluation

Figure 5: Logistics Worlds

0.01

0.1

1

10

100

1000

10000

100000

24 26 28 30 32 34 36 38 40 42 44

se
co

nd
s

Blocks world problem

TLplan
TALplanner/progression
TALplanner/evaluation

TALplanner/evaluation, delta states
Number of blocks

Figure 6: Blocks Time Delta

using 63MB of memory. Clearly, 5000 blocks and 15000
operators is nowhere near the limit. TALplanner/evaluation
with delta states1 is somewhat slower, requiring up to 26 sec-
onds, but only uses 27MB of memory. The first 34 problems
are solved using less than the 4MB heap space allocated by
the Java VM.

10

100

1000

10000

100000

1e+06

1e+07

24 26 28 30 32 34 36 38 40 42 44

W
or

ld
s

ex
pa

nd
ed

Blocks world problem

TLplan
TALplanner/progression
TALplanner/evaluation
TALplanner/evaluation, delta states

Figure 7: Blocks Worlds Delta

Figures 7 shows how many worlds (states) the planners
expanded for the blocks problems.

Additional Extensions and Future Work
Clearly, TALplanner has shown some potentially promising
results with an ability to scale up for larger problems. It
remains to be seen how well the planner works for other do-
mains, especially where the constraints on complete states
and deterministic actions are lifted. TALplanner has been
extended for concurrent actions and resources (Kvarnstr¨om,
Doherty, & Haslum 2000). See (Kvarnstr¨om & Doherty
2000a) for a more detailed description of the sequential
and concurrent versions of the planner. Current work with
TALplanner includes extending it to work with incomplete
information states and applying it to the UAV domain.

Acknowledgments
This research is supported in part by the Swedish Research
Council for Engineering Sciences (TFR) and the Wallenberg
Foundation, Sweden.

References
Bacchus, F., and Ady, M. 1999. Precondi-
tion control. Available atftp://newlogos.uwaterloo.ca/
pub/bacchus/BApre.ps.gz.
Bacchus, F., and Kabanza, F. 1996. Using temporal logic to
control search in a forward chaining planner. In Ghallab,
M., and Milani, A., eds.,New Directions in AI Planning.
ISO Press. 141–153.
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals.Annals of Mathematics and Artificial
Intelligence22:5–27.

1Delta states is a more memory efficient, but less time efficient
state space representation.

6

Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning.Artificial
Intelligence116:123–191.
Doherty, P., and Kvarnstr¨om, J. 1999. TALplanner: An
empirical investigation of a temporal logic-based forward
chaining planner. InProc. of the 6th Int’l Workshop on
Temporal Representation and Reasoning, 47–54.
Doherty, P.; Gustafsson, J.; Karlsson, L.; and Kvarnstr¨om,
J. 1998. TAL: Temporal Action Logics – language spec-
ification and tutorial. Linköping Electronic Articles in
Computer and Information Science3(15). Available at
http://www.ep.liu.se/ea/cis/1998/015.
Kvarnström, J., and Doherty, P. 2000a. Talplanner: A
temporal logic based forward chaining planner.Annals of
Mathematics and Artificial Intelligence. Accepted for pub-
lication.
Kvarnström, J.; Doherty, P.; and Haslum, P. 2000. Ex-
tending TALplanner with concurrency and resources. In
Proceedings of the 14th European Conference on Artificial
Intelligence.
Kvarnström, J., and Doherty, P. 2000b. TALplanner home
page.http://www.ida.liu.se/labs/kplab/talplanner.
McCarthy, J. 1980. Circumscription – a form of non-
monotonic reasoning.Artificial Intelligence13:27–39.

7

