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Abstract—Recent advances in the field of Unmanned Aerial
Vehicles (UAVs) make flying robots suitable platforms for
carrying sensors and computer systems capable of perform-
ing advanced tasks. This paper presents a technique which al-
lows detecting humans at a high frame rate on standard hard-
ware onboard an autonomous UAV in a real-world outdoor
environment using thermal and color imagery. Detected hu-
man positions are geolocated and a map of points of interest
is built. Such a saliency map can, for example, be used to
plan medical supply delivery during a disaster relief effort.
The technique has been implemented and tested on-board the
UAVTech 1 autonomous unmanned helicopter platform as a
part of a complete autonomous mission. The results of flight-
tests are presented and performance and limitations of the
technique are discussed.
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1. INTRODUCTION

Unmanned Aerial Vehicles have become more and more com-
mon and are able to perform missions with increasing levels
of complexity. At the same time, they require less human op-
erator involvement due to the increase in autonomous behav-
ior. Flying robots can perform a wide range of tasks which
are considered dirty, dull, or dangerous by humans. Mis-
sions such as search and rescue or surveillance, where camera
coverage of a given area must be guaranteed, are examples
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versity, Sweden, http://www.ida.liu.se/˜patdo/auttek/

of such tiresome tasks. They require high precision and en-
durance from human pilots. In the case of emergency situa-
tions such as natural disasters, finding potential survivors re-
quiring medical attention is of utmost importance. Such mis-
sions require high flight precision and long operation times
and this is tedious for human pilots. Our UAV systems can
autonomously plan and execute complete missions from take-
off to landing [1], where, for example, video footage of every
square meter of an area of interest must be collected.

In order to further reduce human involvement and speed up
the process of finding causalities, the task of analyzing col-
lected video can be delegated to an automated algorithm
which analyzes the video footage in real time, on-line. An al-
gorithm which can identify and geographically locate places
where human bodies can be found is required to achieve such
a task.

The technique presented in this paper takes advantage of two
video cameras. One of them delivers thermal video and the
second one is a standard color camera. Commercially avail-
able, low-cost thermal cameras are not sufficient to classify
humans at larger distances (40 meters) because of low image
resolution and quality. A human body becomes just a blob
and it is hard to distinguish it from any other object of the
same size. Human detection algorithms working with color
imagery also give best results at low distances and often have
to rely on downsizing of images to achieve high rate of de-
tection. The technique presented detects humans at a rate
up to 25Hz (sporadically lower for scenes with high num-
bers of potential bodies) by first analyzing an infrared im-
age to find human-temperature silhouettes and then using the
corresponding color image regions to classify human bodies.
Thanks to the high processing rate, the certainty of a correct
classification can be assessed by collecting statistics over hu-
man body positions. The algorithm presented is suitable for
real world operation on-board a UAV platform. Details of
the technique are presented in section 4. Sections 5 and 6
present an example flight test setup and results for the tech-
nique used on-board the UAVTech helicopter as part of a fully
autonomous mission.
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2. RELATED WORK

The task of observing and analyzing human appearance and
movement has been of interest to the computer vision com-
munity for many years. Techniques can be categorized in
many ways. One of them is the need for pre-processing,
such as background subtraction, which can be achieved by
frame differencing [2]. Other factors include the types of
features which are needed for describing human appearance
e.g. shape, color, contour. A considerable amount of work is
based on the idea of detecting humans by parts. For example
humans can be modeled as assemblies of parts which are de-
tected separately and represented by co-occurrences of local
features [3]. A cascade-of-rejectors with variable size blocks
of histograms of oriented gradients as features can also be
used. AdaBoost is used as a feature selection technique to
choose appropriate blocks from a large set of possible blocks.
The use of integral image representation and a rejection cas-
cade allows for 5 to 30 Hz human detection performance (for
images of 320x280 pixels size) [4]. Another approach takes
advantage of a classifier which is a cascade of boosted classi-
fiers working with Haar-like features. The classifier is learned
using boosting [5] and its details are presented in section 4.

Detecting humans in thermal imagery poses additional chal-
lenges such as lower resolution, halos around hot or cold ob-
jects and smudging artifacts in case of camera movement. An
approach which first performs a fast screening procedure us-
ing a template to locate potential person locations, which is
then tested using an AdaBoosted ensemble classifier using
automatically tuned filters has been proposed [6]. The tech-
nique, however, has been tested on footage collected by a sta-
tionary thermal camera and therefore the applicability of the
technique to a moving camera is unknown.

Techniques using both color and thermal images have been
suggested. One example uses color and infrared cameras and
a hierarchical scheme to find a correspondence between the
preliminary human silhouettes extracted from both cameras
using image registration in static scenes. Authors also dis-
cuss strategies for probabilistically combining cues from reg-
istered color and thermal images [7]. A technique for de-
tecting and tracking moving targets in overlapping electro-
optical and infrared sensors by a probabilistic framework for
integrating multiple cues from multiple sensors has been pro-
posed [8]. The method has been tested on footage collected
by a UAV but its computational requirements are not dis-
cussed and its usability onboard a UAV is unknown.

Finding humans from air vehicles in outdoor environments is
receiving more and more attention. A summary and a dis-
cussion about information flow requirements for Wilderness
Search and Rescue which takes advantage of Micro Aerial
Vehicles (MAVs) is presented in [9].

Figure 1. The UAVTech UAV and the on-board camera sys-
tem mounted on a pan-tilt unit.

3. HARDWARE PLATFORM

The UAVTech UAV platform [10] is a slightly modified
Yamaha RMAX helicopter (Fig. 1). It has a total length
of 3.6 m (including main rotor) and is powered by a 21hp
two-stroke engine with a maximum takeoff weight of 95 kg.
The on-board system contains three PC104 embedded com-
puters. The primary flight control (PFC) system includes a
Pentium III 700Mhz, a wireless Ethernet bridge, a GPS re-
ceiver, and several additional sensors including a baromet-
ric altitude sensor. The PFC is connected to the RMAX
helicopter through the Yamaha Attitude Sensor (YAS) and
Yamaha Attitude Control System (YACS), an image process-
ing computer and a computer responsible for deliberative ca-
pabilities. The deliberative/reactive system (DRC) runs on
the second PC104 embedded computer (Pentium-M 1.4GHz)
and executes all high-end autonomous functionalities such as
mission or path planning. Network communication between
computers is physically realized with serial lines RS232C and
Ethernet.

The image processing system (IPC) runs on the third PC104
embedded Pentium III 700MHz computer. The camera plat-
form suspended under the UAV fuselage is vibration isolated
by a system of springs. The platform consists of a Sony CCD
block camera FCB-780P and a ThermalEye-3600AS [11]
miniature infrared camera mounted rigidly on a Pan-Tilt Unit
(PTU) as presented in Fig. 1. The video footage from both
cameras is recorded at a full frame rate by two miniDV
recorders to allow processing after a flight.

Camera calibration

In order to find corresponding pixels in both images, as well
as calculate a geographical location of a classified human
body, both cameras have been calibrated to find their intrin-
sic and extrinsic parameters. The color camera has been cali-
brated using the Camera Calibration Toolbox for Matlab [12].
The same toolkit alone could not be used for finding optical
parameters of the thermal camera because it was infeasible
to obtain sharp images of the chessboard calibration pattern.
The results of image undistortion gave poor results. To find
focal length, principal point and the lens distortion parame-
ters, a custom calibration pattern and an add-on to the toolkit
have been used [13]. A specially prepared pattern has been
fabricated to allow using the calibration procedure normally
used for color images. The calibration setup is schematically
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depicted in Fig. 2A. The custom calibration pattern (b) made
out of a thin material (e.g. a sheet of overhead plastic) is
placed between a warmed up (or cooled down) metal plate
(a) and the camera to be calibrated. Black parts of the orig-
inal calibration pattern are cut out from the plastic to allow
the heat to pass through to produce an image similar to one
obtained during a standard calibration of a color camera. The
resulting image (after inverting colors) is shown in Fig. 2B.

A B

Figure 2. Thermal camera optical parameters calibration. A.
Schematic view of the procedure. B. Example image.

4. IMAGE PROCESSING

Video footage collected by a UAV differs substantially from
images acquired on the ground and the use of standard tech-
niques is not straight forward. The following aspects and as-
sumptions were taken into account when designing the image
processing algorithm. First of all, a typical distance from a
camera to an object of interest is larger than in the case of
standard ”ground” techniques (e.g. office-like environments).
Additionally, as a UAV flies over an object of interest, it stays
a short time in the camera field of view depending on the ve-
hicle velocity. Additional footage of an object might require
a UAV to return to the point of interest. It can, depending on
the platform, be time consuming. Both maximum and mini-
mum speeds are determined by an aircraft’s properties. Nev-
ertheless, high flight speed is preferred in case of search and
rescue applications. Therefore it is essential for the image
processing algorithm to perform close to the full frame rate
to process all frames of the video. The flight altitude depends
on a camera’s resolution and field of view. For a standard
PAL (768x576) resolution and a 50 degrees field of view, the
maximum flight altitude is approximately 50 meters in order
to obtain body sizes no less than 30 pixels. Higher resolu-
tion cameras would allow flight at higher altitudes. Flying
at lower altitudes makes the task of image processing easier
since a human body appears larger in a video frame. On the
other hand the flight at a lower altitude requires more time
to complete since the camera covers a smaller area per video
frame.

The algorithm takes as input two images (camera planes are
assumed to be close to parallel to the earth plane) and the pro-
cessing starts by analyzing the thermal image. The image is
first thresholded to find regions of human body temperature.
Shapes of the regions are analyzed and those which do not
resemble a human body (i.e. wrong ratio of minor and major
axes of the fitted ellipse and incorrect area) are rejected. Ad-
ditionally, regions which lie on the image border are rejected
as they may belong to a bigger warm object. Once human
body candidates are found in the thermal image, correspond-
ing regions in the color image are calculated.

Computation of the corresponding region in the color im-
age could be achieved by performing image registration or
feature matching in both images. The former technique is
too time consuming and the latter is infeasible because of
mostly different appearance of features in color and thermal
images. Pixel correspondences could also be encoded in a set
of lookup tables depending on the distance to the object of in-
terest. Such a solution would require additional memory for
accurately covering a depth of interest. Here, a closed form
solution is used which takes into account information about
the UAV’s state.

Computation of the corresponding region in the color image
starts with calculating coordinates of a point T (ṽ

T

) whose
projection is the pixel in the thermal image ũ

t

i.e.

ũ
t

= P
t

ṽ
T

ũ
t

2 P2 ṽ
T

2 P3 (1)

where P
t

represents extrinsic and intrinsic parameters of the
thermal camera. The general scheme of the problem is shown
in Figure 3. A line equation with the direction vector ṽ

cam

World frame
ut

Camera platform 
frame

XY
Z

GX

Y

Z

.

Image
plane

T

C

vcam

Figure 3. Calculation of a target coordinates.

which goes through camera center through pixel ũ
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sects the ground plane in point T is:

ṽ
T

� ṽ
C

= t · ṽ
cam

t 2 R (2)

The ground plane is defined by the point G(ṽ
G

) and the
normal vector ñ which is the down component of the NED
(North, East, Down) frame:

(ṽ
T

� ṽ
G

) · ñ = 0 (3)

Finally, the vector ṽ
T

which describes the point of intersec-
tion of a ray of light going through the camera center and the
pixel of the target can be calculated according to:

ṽ
T

= ṽ
C

+
(ṽ

G
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C

) · ñ
ṽ

cam

· ñ · ṽ
cam

(4)

In order to calculate ṽ
cam

the vector along the X axis of
the camera frame must be expressed in the world coordinate
frame. This transformation can be expressed as:

wṽ
cam

= P
heli

P
ptu

P
p

�
1 0 0

�
T (5)

where P
p

describes the transformation depending on the
undistorted pixel position ũ

t

. Matrix P
ptu

is built to repre-
sent a transformation introduced by the pan-tilt unit. P

heli

represents the attitude of the UAV and is built up from roll,
pitch and yaw angles delivered by the YAS system.

The method presented can be extended to relax the flat world
assumption. The point T can be found by performing ray-
tracing along the line described by equation Eq. 2 to find the
intersection with the ground elevation map.

Calculated world position can additionally be checked against
the on-board geographic information database to verify
whether the calculated point is valid. Depending on the situ-
ation, certain positions can be excluded from the map. If the
world position is accepted, its projection is calculated for the
color camera using the following formula:

ũ
c

= P
c

ṽ
T

ũ
c

2 P2 ṽ 2 P3 (6)

where P
c

constitutes the matrix encoding intrinsic and extrin-
sic parameters of the color camera.

The classifier

Once the corresponding pixel in the color image is identified,
a sub-window with the pixel P

c

in the center is selected and
it is subjected to an object detector first suggested in [5]. The
work was used as a basis for several improvements, one of
which was presented in [14]. One of these included extend-
ing the original feature set which is presented in Fig. 4.

Figure 4. Leinhart’s extended set of available features

The classifier which is in fact a cascade of boosted classifiers
working with Haar-like features requires training with a few
hundred positive and negative examples. During learning the
structure of a classifier is learned using boosting. The use of
a cascade of classifiers allows for dramatic speed up of com-
putations by skipping negative instances and only computing
features with high probability for positive classification. The
speed up comes from the fact that the classifier, as it slides a
window at all scales, works in stages and is applied to a re-
gion of interest until at some stage the candidate is rejected
or all the stages are passed. This way, the classifier quickly
rejects subregions which most probably do not include fea-
tures needed for positive classification (i.e. background pro-
cessing is quickly terminated). The classifier works with fea-
tures which can be quickly extracted using intermediate im-
age representations - integral images. The reason for working
with features instead of pixel intensities is that features en-
code knowledge about the domain, which is difficult to learn
from raw input data. The features encode the existence of ori-
ented contrasts between regions of an image. The Haar-like
features used here can be calculated at any position and any
scale in constant time using only eight look-ups in the integral
image.

The classifier parameters have been adjusted to minimize
false negative cases. In case of rescue operations it is bet-
ter to find more false positives then missing potential victims.
The number of neighboring rectangles needed for successful
identification has been set to 1 which makes the classifier ac-
cept very weak classifications. The factor by which the search
window is scaled between the subsequent scans has been set
to 1.2 meaning that the search window is increased by 20%.

The classifier used in this work is a part of the Open Source
Computer Vision Library [15] and the trained classifier for
upper-, lower- and full human body is a result of [16]. The
trained classifier is best suited for pedestrian detection in
frontal and backside views which is exactly the type of views
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a UAV has when flying above the bodies lying on the ground.

Since the body classifier is configured to be ”relaxed” it deliv-
ers sporadic false positive classifications. To counter for most
of them the following method is used to prune the results.
Every salient point in the map has two parameters which are
used to calculate certainty of a location being a human body:
T

frame

which describes the amount of time a certain loca-
tion was in the camera view and T

body

which describes the
amount of time a certain location was classified as a human
body. The certainty factor is calculated as follows:

p
body

(loc
i

) =
T

body

T
frame

(7)

A location is considered a body if p
body

(loc
i

) is larger than a
certain threshold (e.g. 0.5 during the flight tests) and T

frame

is larger than a desired minimal observation time. Locations
are considered equal if geographical distance between them
is smaller then a certain threshold (depending on the geoloca-
tion accuracy) and the final value of a geolocalized position
is an average of the observations (c.f. Section 6).

5. EXPERIMENTAL SETUP

Several flight tests were performed in a test field of the
Swedish Rescue Services Agency which is used by rescue
services, such as fire-fighters, police and medical personnel
to train for rescue routines. The flight presented took place
over several types of terrain such as asphalt and gravel roads,
grass, trees, water and building roof tops which resulted in a
variety of textures in the images. Generation of the saliency
map was performed as part of a fully autonomous mission
carried out by two UAVs over a search area of 290x185 me-
ters. The results of one of the UAVs are presented here. The
total number of eleven bodies (both human and dummies with
close to human temperature) were placed in the area. The
mission general plan is presented in Fig. 5. Before take-off
one of the UAVs, given a scan area (dashed line polygon),
planed scanning flight paths over the search area for both heli-
copters. The mission started with a simultaneous autonomous
take-off at positions H1 and H2 and the UAVs flew to scan-
ning starting positions S1 and S2. Throughout the flight the
saliency map was being built until the UAVs reached ending
positions E1 and E2. The mission finished by returning to
the take-off position for a simultaneous landing. The mission
took approximately ten minutes to complete and each UAV
travelled a distance of around 1km.

H1 H2

S2

S1

E2

E1

Figure 5. Mission overview.

6. EXPERIMENTAL RESULTS

The algorithm found all eleven bodies placed in the area.
The images of identified objects are presented in Fig. 7. Sev-
eral positions were rejected as they were not observed long
enough (i.e. 5 seconds). Images 7, 9, and 14 present three
falsely identified objects. Erroneous classifications were
caused by configuring the human body classifier to accept
weak classifications. A more restrictive setup could result in
missing potential victims. Both human bodies and dummies
were detected despite the lower temperature of the latter.

The accuracy of the body geolocation calculation was per-
formed by measuring GPS (without differential correction)
positions of bodies after an experimental flight. Figure 6
presents the error measurement for seven geolocated objects.
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Figure 6. Geolocation error for multiple objects.
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Figure 7. Images of classified bodies. Corresponding thermal images are placed under color images.

The measurement has a bias of approximately two meters
in both east and north directions. It is a sum of errors in
GPS measurement, accuracy of the camera platform mount-
ing, PTU measurement, and camera calibration inaccuracies.
The spread of measurement samples of approximately 2.5
meters in both east and north directions is a sum of errors of
the UAV’s attitude measurement, the system of springs in the
camera platform, the flat ground assumption, and time differ-
ences between UAV state estimate, PTU angle measurement
and image processing result acquisition. A detailed analysis
is required to accurately measure error contributing factors
and improve the precision. Nevertheless, the current accu-
racy of the system is sufficient for assessing a victim’s posi-
tion within 3 meters radius. A large geolocation error of ob-
ject 7 is caused by the erroneous GPS measurement. Object 7
was located on a metal foot-bridge and the GPS antenna dur-
ing static measurement was additionally partially occluded by
metal railings. The noise on the measurement however is con-
sistent with the rest of the objects.

7. CONCLUSIONS AND FUTURE WORK

The algorithm presented solves a task of finding humans lying
or sitting on the ground in video sequences collected onboard
an unmanned aerial vehicle. The technique presented uses
two video sources (thermal and color) and allows for high
rate human detection at larger distances then in the case of
using the video sources separately with standard techniques.
The high processing rate is essential in case of video collected

Figure 8. Flight path and geolocated body positions.

onboard a UAV in order not to miss potential objects as a
UAV flies over it. A thermal image is analyzed first to find
human body sized silhouettes. Corresponding regions in a
color image are subjected to a human body classifier which
is configured to allow weak classifications. This focus of at-
tention allows for maintaining a body classification at a rate
up to 25Hz. This high processing rate allows for collecting
statistics about classified humans and pruning false classifica-
tions of the ”weak” human body classifier. Detected human
bodies are geolocalized on a map which can be used to plan
supply delivery. The technique presented has been tested on-
board the UAVTech helicopter platform and is a part of an au-
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tonomous search and rescue mission. Details of the complete
mission (supply delivery planning etc.) can be found in [17].
The ongoing work includes integration of a winch system on
the UAV platform for delivering packages to victims detected
and geolocalized by the technique presented.
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