
New Admissible Heuristics for Domain-Independent Planning

Patrik Haslum
Dept. of Computer Science

Linköpings Universitet
Linköping, Sweden

pahas@ida.liu.se

Blai Bonet
Depto. de Computación

Universidad Simón Bolı́var
Caracas, Venezuela

bonet@ldc.usb.ve

Héctor Geffner
ICREA/Universidad Pompeu Fabra

Paseo Circunvalación, #8
Barcelona, Spain

hector.geffner@upf.edu

Abstract

Admissible heuristics are critical for effective domain-
independent planning when optimal solutions must be guar-
anteed. Two useful heuristics are the �

� heuristics, which
generalize the reachability heuristic underlying the planning
graph, and pattern database heuristics. These heuristics, how-
ever, have serious limitations: reachability heuristics capture
only the cost of critical paths in a relaxed problem, ignoring
the cost of other relevant paths, while PDB heuristics, addi-
tive or not, cannot accommodate too many variables in pat-
terns, and methods for automatically selecting patterns that
produce good estimates are not known.
We introduce two refinements of these heuristics: First, the
additive �� heuristic which yields an admissible sum of ��

heuristics using a partitioning of the set of actions. Second,
the constrained PDB heuristic which uses constraints from
the original problem to strengthen the lower bounds obtained
from abstractions.
The new heuristics depend on the way the actions or prob-
lem variables are partitioned. We advance methods for au-
tomatically deriving additive �

� and PDB heuristics from
STRIPS encodings. Evaluation shows improvement over ex-
isting heuristics in several domains, although, not surpris-
ingly, no heuristic dominates all the others over all domains.

Introduction
Admissible heuristics are critical for effective planning
when optimal solutions must be guaranteed. So far, two
heuristics have been found useful in domain-independent
planning: the �� heuristics, which generalize the reach-
ability heuristic underlying the planning graph (Blum &
Furst 1997), and pattern database heuristics, which general-
ize domain-specific heuristics used successfully in domains
such as the 15-puzzle and Rubik’s Cube (Culberson & Scha-
effer 1996; Korf & Felner 2002). Both of these heuristics,
however, suffer from some serious limitations.

The �� (� � �� �� � � �) family of heuristics is defined by
a relaxation in which the cost of achieving a set of atoms is
approximated by the cost of the most costly subset of size
�. This relaxation is then applied recursively in a reachabil-
ity computation (Haslum & Geffner 2000). For example, the
value of �������, for an atom �, is � if � can be achieved

Copyright c� 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

by means of an action � such that for each precondition �
of �, ������� � � � 	
�����, with equality holding for
at least one of the preconditions. This recursive focus on
the most costly subgoal means that �� measures in effect the
cost of the “critical path” to each goal. In temporal planning,
where the cost of a plan equals the makespan, this is often
a fairly good approximation since actions needed to achieve
separate goals can often be applied concurrently. But in se-
quential planning, where the cost of a plan is the sum of the
costs of all actions in the plan, ignoring the costs of achiev-
ing several easier goals in favor of considering only the most
difficult goal often results in poor heuristic estimates.

As an example, consider a Blocksworld problem involv-
ing blocks, ��� � � � � ��, and the goal of assembling an or-
dered tower with �� on top and �� at the bottom, starting
with all blocks on the table. The optimal solution is sim-
ply to stack the � � blocks that are not on the table in the
goal state in correct order, resulting in an optimal plan cost
of � � (assuming all actions have unit cost). But the ��

estimate for this goal is �, since each of the � � subgoals
on(��,����) can be achieved in a single step. The value
of �� is �, since two steps are needed to achieve any pair of
goal atoms. In general, �� will yield a value of �, but since
the cost of computing �� grows exponentially with �, it
does not scale up as grows in this problem.

In cases like this, adding the estimated costs of each sub-
goal (Bonet & Geffner 1999) or counting actions in the re-
laxed plan (Hoffmann & Nebel 2001) tends to give more
accurate estimates. However, these simple solutions forfeit
admissibility since they fail to take into account the fact that
some actions may contribute to the achievement of more
than one subgoal. Here, and to our knowledge for the first
time, we introduce an additive heuristic that is also admissi-
ble. The idea is simple: Given the heuristic �� and a parti-
tioning of the set of actions into disjoint sets ��� � � � � ��, we
define additive �� as the sum

�
� �

�
��

, where ����
is defined

exactly like �� except that the cost of any action not in � �

is considered to be zero. In the example above, for instance,
if each set �� contains the actions that move block ��, the
resulting additive �� yields the exact solution cost. This is
in fact a general principle which can be applied to any ad-
missible heuristic when the cost of a solution is the sum of
individual action costs.

Pattern Databases (PDBs) are memory-based heuristic

functions obtained by abstracting away certain problem vari-
ables, so that the remaining problem (the “pattern”) is small
enough to be solved optimally for every state by blind ex-
haustive search. The results, stored in a table in memory,
constitute a PDB for the original problem. This gives an ad-
missible heuristic function, mapping states to lower bounds
by mapping the states into “abstract states” and reading
their associated value from the table. Recently, Edelkamp
(2001) has shown how the idea of PDBs can be applied to
domain-independent planning. For effective use of memory,
Edelkamp bases patterns on multi-valued variables implicit
in many STRIPS problems and makes use of a certain form
of independence between such variables which enables esti-
mates from several PDBs to be added together, while still ad-
missible. The implicit variables correspond to sets of atoms
that share with every state reachable from the initial situation
exactly one atom (the “value” of the variable in that state).
Multi-valued variables are thus a kind of invariant, and can
be extracted automatically from the STRIPS problem.

For example, in the Blocksworld domain, there are vari-
ables pos(�), encoding the position of block �, with val-
ues (on � ��), for every other block � �, and (on-table
�). In the example problem above, of constructing a tower
from the blocks initially on the table, a PDB with vari-
able pos(��) as the pattern yields an estimate of �, for ev-
ery block except the bottom-most in the tower. Moreover,
the variables are independent, in the sense that every action
changes the value of only one variable (every action only
moves one block), and therefore the values of these PDBs
can be admissibly added, for a total estimate of ��, which
is also the optimal cost. Consider now a different problem,
in which the blocks are stacked in a single tower in the ini-
tial state, again with �� on top and �� at the bottom, and the
goal is to reverse the two blocks at the base of the tower, i.e.
the goal is (on �� ����). This goal requires steps to
solve. But the value obtained from a PDB over the pattern
pos(��) is �. This is because two of the preconditions for
moving block ��, that it and the destination are clear, are
abstracted away in the computation of this PDB. Including
more pos(��) variables in the pattern will not help: this is
the best value that can be obtained from a standard PDB built
over these variables. However, in the Blocksworld domain
there are also variables top(�), encoding what is on top
of block �, with values (on �� �), for every other block � �,
and (clear �). These variables are not additive with each
other, nor with the position variables. A PDB for a pattern
consisting of the two variables top(��) and top(����)
gives a value of �; in general, a PDB for a pattern consisting
of the “top-of” variables for the � blocks at the base of the
tower will yield an estimate of � � � (for � � � �).

Because PDB heuristics solve the abstracted problem ex-
haustively, time and memory constraints prevent patterns
from including too many variables. This raises the prob-
lem of selecting patterns that will produce good estimates,
within given limits, a problem that has been only partially
addressed in previous work on PDBs for planning (Holte et
al. 2004; Edelkamp 2001), yet is critical for the efficient
use of PDB heuristics. Additivity is one important crite-
rion, since adding yields better estimates than maximizing,

while keeping patterns small, but alone this is not enough.
We present two improvements to the basic PDB heuristic
for domain-independent planning: the first is “constrained
abstraction”, where constraints from the original problem
are used to prune possible state transitions during the com-
putation of the PDB; the second is a method for selecting
variable patterns, under limitation on the size of each indi-
vidual PDB, by iteratively building PDBs, examining them
for weaknesses and extending the pattern with variables that
counter them.

Reachability Heuristics

We restrict our attention to propositional STRIPS planning
with additive costs. A planning problem � consists of a fi-
nite set of atoms, a finite set of actions, an initial state, ��,
represented by the set of all atoms initially true, and a goal
description, �, represented by the set of atoms required to
be true in any goal state. Each action � is described by three
set of atoms: ������, ������ and ������, known as the pre-
condition, add and delete lists respectively. Associated with
every action is a cost, 	
�����, and the cost of a plan is the
sum of the costs of the actions in the plan. In most bench-
mark domains the cost is � for all actions, i.e. the objective
is to minimize the number of actions in the plan.

We consider regression planning, in which the search for
a plan is carried out backwards from the goal, and associate
with a planning problem � a search space (directed graph)
��� �. States are subsets of atoms, representing sets of sub-
goals to be achieved. There is a transition ��� �� � �� � ��� �
iff there is an action � such that � regressed through � yields
�� (i.e. � � ������ � � and �� � �� � ������� � ������).
The cost of the transition equals 	
�����. We define �����
to be the minimum cost of any path in ��� � from � to any
state contained in �� (� if no path exists). In other words,
����� is the optimal cost of a plan that when executed in ��
achieves �. Where necessary, we will subscript �� with an
indication of which search space it refers to.

The �� Heuristics

The �� (� � �� �� � � �) family of heuristics is defined by a
relaxation where the cost of a set of atoms is approximated
by the cost of the most costly subset of size �. Formally,
they can be defined as the solution to

����� ���
�

� if � 	 ��
	
���������������	 � �

����� � 	
����� if
�
 � �
	������������ ������
���

(1)
This equation applies the relaxation to the Bellman equa-
tion, which characterizes the optimal cost function �����.
For small values of � (typically, � � �), an explicit solu-
tion can be computed efficiently by a simple shortest-path
algorithm. The solution is stored in the form of a table of
heuristic values for sets of � or fewer atoms, so that only
	������������ ������ needs to be computed when a state �
is evaluated during search.

Additive �� Heuristics
We devise an additive version of the �� heuristic by intro-
ducing a cost relaxation: For any subset � of the actions
in a planning problem � , the heuristic ��� ��� is defined ex-
actly the same as �� above, except that the cost of every
action that does not belong to � is considered to be zero. In
other words, ��� counts the cost of actions in �, but does
not count the cost of actions not in � (we’ll say the costs of
those actions are relaxed).

Theorem 1 Let ��� � � � � �� be disjoint subsets of the ac-
tions in planning problem � . Then ��� ��� �

�
� �

�
��
��� �

����� for all �, i.e. ��� ��� is an admissible heuristic for re-
gression planning.
Proof: The cost of any solution path � � ���� � � � � �
�,�

����
	
������, can be split over the action sets

��� � � � � ��, plus the set of actions not in any set ��:�
������������

	
�������� � ��
�

������������
	
��������

�������� 	�
�
� ���

	
������, thus
�

� �
�
��
��� � �����.

From this follows that
�

� ���
��� � ����� for any function

� that underestimates ��, including ��. �

In other words, cost relaxation can be applied to any ad-
missible heuristic for sequential planning, or indeed any set-
ting where the cost of a solution is the sum of individual
action costs. Theorem 1 is a special case of the fact that�

� ���
��� � ����� holds for any admissible heuristic func-

tion �.
Consider again the first Blocksworld problem described

in the introduction, of building a tower out of blocks that
are initially all on the table, and suppose actions are par-
titioned into sets, such that set �� contains all actions
that move block ��. The shortest solution for each subgoal
on(��,����) is a single step plan that moves only block
�� to its goal position, so ��

��
�on(��,����)� � �, and this

is also the value of ��
��
���, for � the goal of having all

blocks in their goal positions. In exactly the same way,
����

�on(��,����)� � �, while ����
�on(��,����)� � � for

every � �� �, since the action moving block � � is counted
as having cost zero in ��

��
. Thus, the sum ��

��
��� � � � � �

����
��� will be � �, the optimal plan length.

In practice, the collection of subsets ��� � � � � �� will be
a partitioning of the set of actions, so that the cost of every
action is counted in some ����

. We will return to the prob-
lem of how the actions are partitioned after the discussion of
pattern database heuristics in the next section.

Pattern Database Heuristics
Pattern database heuristics are based on abstractions (or
projections) of problems: functions mapping states of the
search space into a smaller space, with the property that the
projection of a solution path in the original space is also a
solution in the abstract space (Culberson & Schaeffer 1996).

Abstractions of planning problems are defined as follows:
Any subset, �, of the atoms in problem� defines an abstrac-
tion ��, in which the initial and goal states, and the precon-
dition, add and delete lists of each action are simply inter-
sected with �. The problem � � can be seen as a relaxation

of � where only the status of some propositions is impor-
tant – all atoms that are not in the “pattern” � are abstracted
away. We associate with �� the search space ����� in the
same way as for the original problem� . We’ll use ����� for
the minimum cost of any path in ��� �� from � to the ab-
stract initial state (i.e. �� � ��

��	��): this is a lower bound

on the corresponding cost in � , i.e. ����� � ����� for all
�. Given that the abstract problem is sufficiently small, the
optimal cost function ����� can be computed for all � by
means of a breadth-first search in the reversed search space,
starting from the projection of ��. The results are stored in a
table, which we’ll refer to as the pattern database (PDB) for
pattern �. By projecting a state and looking up the cost of
the corresponding abstract state, stored in the table, we ob-
tain an admissible heuristic. Immediate from the preceding
definitions, we have that for all �

	�������� ����� � ��
��� (2)

for any patterns � and�. Also, under certain conditions this
can be strengthened to

	�������� ����� � ����� � ���� � ��
��� (3)

in which case we say that � and � are additive. A sufficient
condition for additivity between two patterns, which is also
easy to check, is that no action adds atoms in both sets.

The memory required to store the PDB, and the time
needed to compute it, grows exponentially with the size
of the atom set retained by the abstraction. However, as
shown by Edelkamp (2001), memory can be used more ef-
fectively by basing abstractions on multi-valued variables
implicit in the planning problem. Such variables corre-
spond to a particular type of invariant, the property that
exactly one from a set of atoms is true in every reachable
state. Methods for automatically extracting such “exactly-
one-of” invariants from STRIPS encodings have been pro-
posed (e.g. Edelkamp & Helmert 1999; Scholz 2000;
Rintanen 2000).

Constrained PDBs
Let us return to the second Blocksworld problem described
in the introduction: blocks, ��� � � � � ��, are in an ordered
tower with �� at the base and �� at the top, and the goal is to
swap the two bottom blocks, i.e. the goal is (on �� ����).
As stated earlier, a PDB with only variable pos(��) as pat-
tern gives an estimate of only �. This is because the single-
step plan moving �� directly onto ���� is possible in the ab-
stract space, where everything except the atoms specifying
the position of block ��, including the atoms clear(��)
and clear(����), has been abstracted away from the pre-
conditions of this move action. For the same reason, the
estimate is still � even if the position of the block immedi-
ately above ��, i.e. variable pos(����), is also included in
the pattern. This, however, is less reasonable, since the value
of this variable in the initial state is (on ���� ��), which
means block �� can not be clear. In fact, the two atoms (on
���� ��) and (clear ��) are mutex, a fact that the PDB
computation fails to take advantage of.

Let � � ���� � � � � ��� be a collection of subsets of the
atoms in a STRIPS problem� , such that
����
 � � for any

state � reachable from ��. In other words, each �� is an in-
variant of the ‘at-most-one-atom’ kind. Static problem mu-
texes are examples of (binary) invariants of this kind. Given
an abstraction of the problem, � �, we define the search
space of the constrained abstraction, ����

��, as the sub-
graph of ����� containing all and only states satisfying all
the invariants in �, i.e. states � such that
�� � �
 � � for
all �� � �, and edges ��� �� ��� between such states except
those corresponding to an action � such that � � � ������ vi-
olates some invariant in �. In other words, the constrained
abstraction excludes states that are “impossible” in the origi-
nal problem, and transitions that are known to be impossible
given only the part of the problem kept by the abstraction.
We denote the optimal cost function associated with the con-
strained abstract space ������.

Theorem 2 ����� � ������ � �����, for all �, i.e. opti-
mal cost in the constrained abstract space is a lower bound
on optimal solution cost in the original problem, and it is
at least as strong as the lower bound obtained from uncon-
strained abstraction.
Proof: A solution path in ��� � corresponds to an action se-
quence executable in ��, so it must satisfy all invariants and
hence it exists also in the constrained abstract space, as well
as in the unconstrained abstraction. �

Thus, PDBs computed under constraints still yield admissi-
ble heuristics, provided the constraints are of the “at-most-
one-atom” (or “exactly-one-atom”) kind. The condition for
additivity of PDBs, i.e. that no action adds atoms in both
patterns, holds also for constrained PDBs.

If we compute the PDB �
�pos(��)�pos(����)�
� , using the

static problem mutexes as the set of constraints �, we obtain
an estimated cost of � for the problem of swapping blocks
���� and �� at the bottom of a tower, since �� must now
be cleared before it can be moved. Moreover, if we include
also pos(����) in the pattern, the estimated cost is �, since
also (clear ����) is a precondition of the move and this
is mutex with the position of block ����, which is on ����

in the initial state.
The use of constraints in the computation of PDBs is

an improvement over Edelkamp’s formulation of PDBs for
planning, and makes it possible to derive e.g. the sum-of-
pairs heuristic for the ��-Puzzle (Korf & Felner 2002): with-
out mutex constraints, a PDB for a pattern consisting of the
variables representing the positions of two of the tiles will
not give the correct value, since the STRIPS encoding of the
problem enforces the condition that two tiles can not occupy
the same square by preconditioning actions with the “blank”
being in the square moved to, and the position of the blank
is not part of the 2-tile pattern.

Using Additive �� and PDB Heuristics
The additive �� and PDB heuristics both have “free param-
eters”: for additive �� the choice of disjoint sets of actions,
for PDBs the choice of patterns. The quality of the resulting
heuristics often depends very much on these choices, and
thus for effective use of the heuristics it is crucial to make

them well. Yet, good choices are rarely obvious, and must
also be made automatically from the STRIPS formulation.
This problem has been addressed only partially in previous
work on the use of PDB heuristics for domain-independent
planning. Here, we propose methods for the automatic se-
lection of an action partitioning for the �� heuristic and pat-
terns for the PDB heuristic.

Partitioning Actions

While the sum
�

� �
�
��

is admissible for any collection
��� � � � � �� of disjoint sets of actions, we should of course
choose a partitioning of the actions that yields as high values
as possible for the states visited during the search. Our ba-
sic approach is to create one partition �� for each goal atom
��, and assign actions to the partition where they appear to
contribute the most to the sum.

To determine if an action � is relevant for goal atom � �,
we compare the heuristic resulting from relaxing the cost
of � to the one that does not: if the value of ��

��������� is

less than �������, then action � belongs to the critical path to
��, and is clearly relevant. (For efficiency, the �� heuristic
is used for this test even though it is �� that will be com-
puted for the final partitions.) By computing the “loss”,
�������� �����������, we also get a (rough) measure of the
strength of the relevance of action � to each of the different
goals, and the action can be assigned to the goal where re-
laxing its cost causes the greatest loss. Initially, each of the
partitions ��� � � � � �� contains all actions. When an action
is “assigned” to one partition it is removed from all the other,
so that at the end, when all actions have been assigned, the
partitions are disjoint.

The test ����������� � �������, however, is not enough:

because �� considers, recursively, the most costly atom in
any set, the value of ������ is in most cases not determined
by a single critical path, but rather a “critical tree”, branch-
ing out on the preconditions of actions. Thus, relaxing the
cost of a single action often does not change the �� esti-
mate of an atom. To counter this problem, we perform a
preliminary division of actions into sets of related actions
and perform the test on these sets, i.e. instead of checking
the effect of relaxing the cost of a single action, we check the
effect on the heuristic value of simultaneously relaxing the
cost for a set of actions. The preliminary division of actions
is based on the same kind of multi-valued variables implicit
in the problem as is used for PDB heuristics: we simply find
a maximal set of additive variables and let the actions that
affect each of the variables form a set. By selecting additive
variables, we ensure that the corresponding action sets are
disjoint.

When the partitioning of the action set is done, we com-
pute ����

for each partition ��, as well as the standard ��.
The final heuristic is 	�����

�
� �

�
��
�. Because the cost of

both precomputing and evaluating
�

� �
�
��

dominates that of
precomputing and evaluating ��, there is no motivation not
to do the extra maximization step.

Pattern Selection
Basing patterns on the multi-valued variables implicit in a
STRIPS problem, and on additive variables in particular, is
useful as it allows the PDB to be represented more com-
pactly. Thus, a first approach to using PDB heuristics is to
make a pattern out of each variable, sum the values from
maximal sets of additive PDBs, and take the maximum of
the resulting sums. However, recall that for two additive
atom sets, � and�, ���������� � ��
���. Thus, while
the sum of individual variable PDBs is admissible, it may
not be the best heuristic obtainable. The example of disas-
sembling a tower of blocks, discussed in the preceding sec-
tion illustrates the point. Experimental results also confirm
that this example is not at all unusual. On the other hand, it
is not always the case that grouping additive variables leads
to a better heuristic, and since the size of the PDB ��

equals the product of the sizes of PDBs �� and � , we do
not want to use ��
 in those cases where ����� � ����
is just as good.

We approach this problem by constructing patterns itera-
tively. First, we compute a PDB for each variable alone; then
we analyze the projected solutions for possible conflicts, and
merge the patterns that appear to be most strongly interde-
pendent. This is repeated until no conflicts are found, or
no more mergers can be made without making the resulting
PDB too large. The process is applied to each set of additive
variables separately, so that the resulting collection of PDBs
is additive. The final heuristic maximizes over the sums ob-
tained from each such set. All PDBs are computed using the
static mutexes of the problem as constraints1.

To detect conflicts, we make use of the PDB itself: re-
call that a PDB is computed by an exhaustive breadth-first
exploration of the search space in the direction opposite to
that of the search for a plan. Thus, a PDB for regression
planning is computed by exploring forwards from the ini-
tial state. During this exploration, we can store with every
abstract state a “backpointer” indicating which action was
applied in which (abstract) state to reach this state. Using
these, we can for any entry in the PDB quickly extract a
corresponding projected plan. Given a pattern �, consisting
of a set of variables, and the corresponding PDB, we find
conflicts by extracting the projected plan for the goal (pro-
jected onto �) and simulating this plan, forwards from the
initial state, using the original (unprojected) actions. When
we find that a precondition of an action in the projected plan
is inconsistent with the value of a variable � not in the pat-
tern, either because the precondition is on the value of � and
contradicts the current value or because the precondition is
mutex with the value of � , a conflict between pattern � and
the pattern that � is part of is noted.

As mentioned, the iterative process is applied to each set
of additive variables separately. For each such set of additive
variables, ���� � � � � ���, we start with a corresponding col-
lection of patterns ��� � � � � ��, and compute for each pat-

1Since computing all static mutex relations for a planning prob-
lem is in general as hard as solving the problem itself, we compute
only a sound approximation, i.e. a subset, of this set, using essen-
tially the same method as in (Bonet & Geffner 1999).

��-Puzzle Blocksworld

1 24

10k

100k

1M

Problems (sorted by median)

#N
od

es
 E

xp
an

de
d

Min/Max Random
Iterative Selection

1 19
10

1k

10k

100k

Problems (sorted by median)

#N
od

es
 E

xp
an

de
d

Min/Max Random
Iterative Selection

Figure 1: Comparison of PDB heuristic resulting from itera-
tive random pattern selection. The min/max random curves
are taken over five different random trials.

tern a PDB and its conflicts with the other patterns. Each
conflict is assigned a weight, given by the �� value of the
inconsistent atom set. A pair of patterns �� and �� is a
feasible merge iff the size of the PDB for �� � �� is be-
low a given limit (a parameter of the procedure). We find
the feasible pair with the heaviest conflict, merge the two
patterns and compute the new PDB and its conflicts, and re-
peat until there are no more conflicts or no feasible pair to
merge. Values from the resulting PDBs are added together,
and the maximum over the sums corresponding to each ad-
ditive variable set is the final heuristic value.

Experimental Results
As a measure of the quality of a heuristic we take the number
of node expansions an A� search using the heuristic requires
to solve a given problem. The usefulness of a heuristic, on
the other hand, is determined by the ability of the search
to solve problems within given time and/or memory limits
using the heuristic, and thus depends also on the time over-
head in precomputing and evaluating the heuristic. The ad-
ditive �� and PDB heuristics spend more time precomputing
heuristics than standard ��, and additive �� also has a higher
computational cost per evaluation.

First, we assess the effectiveness of the iterative pattern
selection method, by comparing it to a PDB heuristic which
groups variables at random, up to the given limit on the size
of each PDB (� million entries in this experiment). Like the
iterative selection, the random grouping is applied to each
additive set of variables separately, and the final heuristic
is the maximum over the sums thus obtained. We repeat
this construction for several (in this experiment, five) dif-
ferent random groupings and consider the best and worst of
the heuristics, for each problem. Figure 1 shows the result.
There are two conclusions we can draw from this experi-
ment: first, the gap between the best and worst randomly
constructed PDB heuristic indicates the potential for im-
provement of heuristic quality by taking more than just addi-
tivity into account when selecting patterns; second, the iter-
ative selection compares fairly well with the result of taking
the max of five random PDB heuristics – in the ��-puzzle, it
even yields better results for more than half the instances.

Second, we compare the ��, additive �� (as mentioned,
the heuristic here referred to as “additive ��” is in fact

��-Puzzle Blocksworld

1k 10k 100k 1M
0

10

20

30

40

50

60

70

80

90

100

#Nodes Expanded

%
 P

ro
bl

em
s

so
lv

ed
 in

 ≤

Add. h2

C. PDB
U. PDB

10 1k 100k
0

10

20

30

40

50

60

70

80

90

100

#Nodes Expanded

%
 P

ro
bl

em
s

so
lv

ed
 in

 ≤

h2

Add. h2

C. PDB
U. PDB

Figure 2: Distribution of the number of node expansions
needed to solve a problem using ��, additive �� and Con-
strained and Unconstrained PDB heuristcis (created by iter-
ative pattern selection).

	�����
�

� �
�
��
�) and the PDB heuristics (created by it-

erative pattern selection) with and without mutex con-
strained projection, over a number of domains, including
Blocksworld, a STRIPS encoding of the ��-puzzle, and five
domains from the �th IPC.

Figure 2 shows distributions of the number of node ex-
pansions required to solve problems in the Blocksworld and
��-puzzle domains using the different heuristics (instances
count as unsolved if requiring more than � million nodes, ��
hours CPU time, or �Gb memory). Clearly, additive �� and
the constrained PDB heuristic both improve significantly
over �� and the PDB heuristic without constraints, respec-
tively, in terms of heuristic quality in these domains. Also,
the constrained PDB heuristic very clearly outperforms ad-
ditive �� in the ��-puzzle domain, while in Blocksworld it
is the other way around. Comparing CPU time instead of
node expansions gives a similar picture, except that additive
�� generally uses more time than unconstrained PDBs in the
��-puzzle, and that �� is faster than PDBs for very simple
Blocksworld problems. Note that A� search using �� fails
to solve any ��-puzzle instance within limits.

In the remaining domains, additive �� improves over ��

in terms of quality in the Airport, Promela (philosophers),
PSR and Satellite domains, while in the Pipesworld they are
equal. Additive �� takes more CPU time in all IPC domains,
but is still able to solve more problems in the Promela and
Satellite domains, where search using �� quickly exhausts
memory. The constrained PDB heuristic works well in the
Satellite domain, where it outperforms additive �� for harder
instances, in both quality and runtime. In the other IPC do-
mains, however, it performs worse than the other heuristics,
even worse than plain ��.

Conclusions
We have introduced two refinements of existing admissible
heuristics for domain-independent planning. The additive
�� heuristic is defined by computing several instances of
��, each counting the cost of only a subset of the actions
in the problem, while relaxing the cost of remaining actions.
To our knowledge, this is the first admissible additive alter-
native to pattern database heuristics for domain-independent
planning. Moreover, the principle of cost relaxation is gen-

eral, and applicable to any admissible heuristic in any set-
ting where the cost of a solution is the sum of individual
action costs. For PDB heuristics, we introduced constrained
abstraction, which strengthens PDB heuristics by carrying
generalized mutex constraints from the original problem into
the abstracted problem.

Both PDBs and the additive �� heuristic have free pa-
rameters (the action partitioning and the set of patterns, re-
spectively) which need to be set properly for producing good
heuristic estimates. We have proposed methods for selecting
these parameters, automatically from the STRIPS encoding.
This is a critical problem in the domain-independent setting,
which had not been adequately addressed before.

Experimental evaluation shows improvements over ex-
isting admissible heuristics, in some case quite significant,
though no heuristic dominates all others over all the domains
considered. This, however, is not necessary for improving
performance of a planner, as the new heuristics need not re-
place existing ones. They can all be part of the toolbox, and
if needed they can be effectively and admissibly combined
by maximizing over several alternatives.

References
Blum, A., and Furst, M. 1997. Fast planning through graph
analysis. Artificial Intelligence 90(1-2):281 – 300.

Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proc. 5th European Conference on
Planning (ECP’99), 360 – 372.

Culberson, J., and Schaeffer, J. 1996. Searching with pat-
tern databases. In Canadian Conference on AI, volume
1081 of LNCS, 402 – 416. Springer.

Edelkamp, S., and Helmert, M. 1999. Exhibiting knowl-
edge in planning problems to minimize state encoding
length. In Proc. 5th European Conference on Planning
(ECP’99), 135 – 147.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. 6th European Conference on Planning (ECP’01), 13
– 24.

Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. In Proc. 5th International Con-
ference on Artificial Intelligence Planning and Scheduling
(AIPS’00), 140 – 149. AAAI Press.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of AI Research 14:253 – 302.

Holte, R.; Newton, J.; Felner, A.; Meshulam, R.; and
Furcy, D. 2004. Multiple pattern databases. In 14th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’04), 122 – 131.

Korf, R., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134(1-2):9 – 22.

Rintanen, J. 2000. An iterative algorithm for synthesizing
invariants. In Proc. 17th National Conference on Artificial
Intelligence (AAAI’00), 806 – 811.

Scholz, U. 2000. Extracting state constraints from PDDL-
like planning domains. In Proc. AIPS 2000 Workshop on

Analyzing and Exploiting Domain Knowledge for Efficient
Planning, 43 – 48.

