
Maintainability: a weaker stabilizability like notion for high level con trol

Mutsumi Nakamura Chitta Baral Marcus Bj äreland
Department of CSE Department of CSE Department of Comp and Info Sc

University of Texas at Arlington Arizona State University Linköping University
Arlington, TX 76019, USA Tempe, AZ 85287, USA S-581 83 Linkoping, Sweden

nakamura@cse.uta.edu chitta@asu.edu marbj@ida.liu.se

Abstract

The goal of most agents is not just to reach a goal state, but
rather also (or alternatively) to put restrictions on its trajec-
tory, in terms of states it must avoid and goals that it must
‘maintain’. This is analogous to the notions of ‘safety’ and
‘stability’ in the discrete event systems and temporal logic
community.
In this paper we argue that the notion of ‘stability’ is too
strong for formulating ‘maintenance’ goals of an agent – in
particular, reactive andsoftware agents, and give examples of
such agents. We present a weaker notion of ‘maintainability’
and show that our agents which do not satisfy the stability cri-
teria, do satisfy the weaker criteria. We give algorithms totest
maintainability, and also to generate control for maintainabil-
ity. We then develop the notion of ‘supportability’ that gen-
eralizes both ‘maintainability’ and ‘stabilizability, develop an
automata theory that distinguishes between exogenous and
control actions, and develop a temporal logic based on it.

Motivation and Introduction
Stability has undergone extensive investigations in the con-
trol theory community (Passino & Burgess 1998), both for
continuous systems (e.g. Lyapunov stability and asymptotic
stability) and Discrete Event Dynamic Systems (DEDS)
(Ramadge & Wonham 1987b; 1987a; Ozveren, Willsky, &
Antsaklis 1991). All these notions can be summarized as in
(Passino & Burgess 1998):

We say that a system is stable if when it begins in a
good state and is perturbed into any other state it will
always return to a good state.

The appropriate stability notion in a particular case depends
on how the notions “system”, “begins”, “state”, “good”, and
“perturbed” are defined, For DEDS the mainstream defini-
tion can be found in (Ozveren, Willsky, & Antsaklis 1991),
and that definition is the one we use in this paper. They also
mention that relation between stability and the notions of
safety, fairness, livelock, deadlock are well studied.In this
paper we present a related notion which we callmaintain-
ability , and argue its importance, particularly for high level
control of agents.

Copyright c 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Intuitively, we can view stabilizability as a hard constraint
of the system while maintainability is a softer constraint. In
both maintainability and stabilizability our goal is that the
system should be among a given set of statesE as much
as possible. In stabilizability, we want a control such that
regardless of where the system is now and what exogenous
actions may happen, the system will reach one of the states
in E within a finite number of transitions and keep visit-
ing it infinitely often after that. In maintainability, we have
a weaker requirement where the system reaches a state inE within a finite number of transitions, provided it is not
interfered with during those transitions. Thus in maintain-
ability, we admit that if there is continuous interference (by
exogenous actions) we can not get toE in a finite number
of transition. Such a system will not satisfy the condition of
stabilizability, but may satisfy the condition of maintainabil-
ity.

Many practical closed-loop systems are not stabilizable, but
they still serve a purpose and we believe that such sys-
tems purpose can be specified by using the weaker notion
of maintainability. An example of such a system is an active
database system (Widom & Ceri 1996) where ‘consistency’
of data is ‘maintained’ using active rules (also referred to
as triggers). In such a database system, external updates
are made to the database through Insert, Delete and Update
commands. But the direct result of the updates may take
the database to an inconsistent state where ‘integrity con-
straints’ of the database may be violated. In that case, the
active part of the database triggers rules that result in addi-
tional changes to the database to bring it back to a consistent
state. Now supposeE is the set of consistent states of a
database. We can not capture the correctness of the triggers
by directly using the notions of ‘stability’. That is because,
if there is a continuous stream of external updates with no
time in between for getting back to consistency, then there is
no guarantee that the database will reach a state inE within
a finite number of transitions. But we can have a different
notion of correctness of triggers, where the triggers are cor-
rect if given a window of non-interference (from external
updates) the triggers will ultimately make the database con-
sistent. In fact that is what happens in a database system
where external updates are blocked until the triggers bring
back the database to a consistent state.

Another example is a mobile robot (Brooks 1986; Maes
1991) which is asked to ‘maintain’ a state where there are
no obstacles in its front. Here, if there is a belligerent adver-
sary that keeps on putting an obstacle in front of the robot,
then the robot can not get to a state with no obstacle in its
front. But often we will be satisfied if the robot avoids ob-
stacle in its front when it is not continually harassed. Of
course, we would rather have the robot take a path that does
not have such an adversary, but in the absence of such a path,
it would be acceptable if it takes an available path and ‘main-
tains’ states where there are no obstacle in front.

Other examples include agents that perform tasks based on
commands. Here, the correctness of the agent’s behavior
can be formalized as ‘maintaining’ states where there are no
commands in the queue. We can not use the notion of sta-
bility because if there is a continuous stream of commands,
then there is no guarantee that the agent would get to a state
with no commands in its queue within a finite number of
transitions.

The rest of the paper is structured as follows. We first for-
mally define the notion of stability and stabilizability. We
then introduce the notion of maintainability and compare it
with the notion of stabilizability. Next we show that the cor-
rectness of an active database can be formalized as main-
tainability of consistent states. We then present algorithms
to verify maintainability, and to construct controls to make a
system maintain a set of states. Finally, we develop a general
notion calledsupportabilityand show that stabilizability and
maintainability are special cases of it.

Reviewing stability and stabilizability
In this section we review the notions of stability and stabi-
lizability adapted from the definitions in (Ozveren, Willsky,
& Antsaklis 1991).

Stability and aliveness
Definition 0.1 A systemA is a 4-tuple(X;�; f; d), whereX is a finite set of states,� is a finite set of actions,d is a
function fromX to 2� listing what actions may occur (or
are executable) in what state, andf is a non-deterministic
transition function fromX and� to 2X . 2
Definition 0.2 A trajectory is an alternating sequence of
states and actions, and could be either a finite trajectory that
starts and ends with a state or an infinite trajectory.

A trajectoryx0; a1; x1; a2; : : : ; xk ; ak+1; xk+1(: : :) is said
to be consistent with a systemA if:� xk+1 2 f(xk; ak+1), and� ak+1 2 d(xk). 2
Definition 0.3 Given a systemA and a set of statesE, a
statex is said to bestablein A w.r.t. E if all trajectories
consistent withA and starting fromx go through a state inE in a finite number of transitions and they visitE infinitely
often afterwards.

We sayA = (X;�; f; d) is a stable system if all states inX
are stable inA w.r.t. E. 2

Alternatively,A is stable w.r.t.E if, for any statex 62 E,
every infinite trajectory starting withx will lead to E in a
finite number of steps.

Definition 0.4 R(A; x) denotes the set of states that can be
reached fromx in a systemA.

A statex is said to bealive if d(y) 6= ;, for all y 2 R(A; x).
(I.e., we can not reach a statey from x, where no action is
possible.)

We sayA = (X;�; f; d) is alive if all states inX are alive.2
Stabilizability
We now consider control and exogenous actions. The set of
control actionsU is a subset of�, that can be performed by
the (controlling) agent. A particular controlK is a function
fromX toU . The set of exogenous actions that can occur in
a state (and that are beyond the control of the agent) is given
by a functione fromX to 2�, such thate(x) � d(x).
Definition 0.5 Let A = (X;�; f; d) be a system. In pres-
ence ofe, U , andK, we defineAK1 , the closed loop sys-
tem ofA as the four-tuple(X;�; f; dK), wheredK(x) =(d(X) \ fK(x)g) [e(x). 2.

Definition 0.6 Given a systemA, a functione, and a set of
statesE, we sayS � X is stabilizablewith respect toE if
there exists a control law2 K such that for allx in S, x is
alive and stable with respect toE in the closed loop systemAk. If S = X , we sayA is stabilizable with respect toE.2

Maintainability
Our intuition behind maintainability is that we would like
our system to ‘maintain’ a formula (or a set of states where
the formula is satisfied) in presence of exogenous actions.
By ‘maintain’ we mean a weaker requirement than the tem-
poral operatoralways (2) where2f means thatf should
be true inall the states in the trajectory. The weaker require-
ment is that our system needs to get to a desired state within
a finite number of transitions provided it is not interfered in
between by exogenous actions. The question then is what
role the exogenous actions play.

Our definition of maintainability has parameters as a set of
initial statesS, that the system may be initially in, a set of
desired stateE, that we want to maintain, a systemA and
a control lawK. Our goal is to formulate when the control
law K maintainsE assuming that the system is initially in
one of the states inS. We account for the exogenous actions
by defining the notion –Closure(S;A) – of a closure ofS with respect toA. This closure is the set of states that
the system may get into starting fromS. Then we define
maintainabilityby requiring that the control law be such that1A more appropriate terminology would beAK;e. We useAK to remain consistent with the usage in (Ozveren, Willsky, &
Antsaklis 1991).2It is also referred to as ‘feedback law’, ‘feedback control’or
‘state feedback’ in the literature.

if the system is in any state in the closure and is given a
window of non-interference from exogenous actions then it
gets into a desired state.

Now a question might be that suppose the above condition
of maintainability is satisfied, and while the control law is
leading the system towards a desired state an exogenous ac-
tion happens and takes the system off that path. What then?
The answer is that the state that the system will reach after
the exogenous action will be a state from the closure. Thus,
if the system is then left alone (without interference from
exogenous actions) it will be again on its way to a desired
state. So in our notion of maintainability, the control is al-
ways taking the system towards a desired state, and after any
disturbance from an exogenous action, the control again puts
the system on a path to a desired state.

We now formally define the notions of closure and maintain-
ability.

Definition 0.7 Let A = (X;�; f; d) be a system andS
be a set of states. ByClosure(S;A) we refer to the setSx2S R(A; x). 2
Definition 0.8 Given a systemA = (X;�; f; d), a set of
control actionsU � �, a specification of exogenous ac-
tions e, and a set of statesE, we say a set of statesS is
k-maintainablewith respect toE if there exists a feedback
controlK such that from each statex in Closure(S;AK),
we will get to a state inE with at mostk transitions, where
each action (behind the transitions) is dictated by the controlK.

If there exists an integern such thatS isn-maintainablewith
respect toE, we sayS is maintainablewith respect toE.

If S = X , then we sayA is maintainable with respect toE.2
We now show that while stabilizability guarantees maintain-
ability, the opposite is not true.

Proposition 0.1 Given a systemA, if a set of statesS is
stabilizable with respect to a set of statesE, thenS is main-
tainable with respect toE. 2
Proof : Suppose that a setS � X andS is stabilizable with
respect toE. Then there exists a control lawK such that for
eachx 2 S, x is alive and is stable with respectE.
Claim: There is a trajectory from each statex in S to a state
in E with a finite transitions.
Case 1. Supposex 2 S. Thenx is stable, therefore we can
get fromx to a state inE with a finite number of transitions
dictated byK, saynx transitions.
Case 2. Supposex 2 Closure(S;A)nS. Then there ex-
ists y 2 S such that there is a trajectoryT from y which
goes throughx. Sincey 2 S, y is stabilizable. Thus
all trajectories consistent withA and starting fromy go
through a state inE in a finite number of transitions and
they visitE infinitely often afterwards. Therefore any tra-
jectory fromy which goes throughx will visit E infinitely.
Thus there must be a sub trajectoryT 0 from x to a state inE which is contained in the trajectoryT from y to a state
in E throughx. Through this trajectoryT 0, we can reach

from x to a state inE in a finite number of transitions dic-
tated byK, saynx. Note that the maximum possible car-
dinality of Closure(S;A) is the cardinality ofX . Thus it
is finite. Letn bemaxfnxjx 2 Closure(S;A)g. SinceClosure(S;A) is finite, n exists (n < 1) and from all
states inClosure(S;A) we can reach a state inE withinn transitions dictated byK. HenceS isn-maintainable with
respect toE and thusS is maintainable with respect toE. 2
But the converse of the above proposition is not true. I.e.
Maintainability does not necessarily imply stabilizability.
We now show an example of a system which is maintain-
able but is not stabilizable.

Consider a systemA = (X;P; f; d) with the following:X = fs1; s2; s3; s4; s5g,P = fa1; a2; a3; a4; a5gSfe1; e2g;d(s1) = fa1g, d(s2) = fa2; e1; e2g, d(s3) = fa3g,d(s4) = fa4g, d(s5) = fa5gf(s1; a1) = fs2g, f(s2; a2) = fs4g, f(s2; e1) = fs3g,f(s2; e2) = fs2g, f(s3; a3) = fs4g, f(s4; a4) = fs5g,f(s5; a5) = fs4g
GivenE = fs4; s5g, this system is maintainable, but is not
stabilizable. With the control lawK, whereK(si) = ai,
with at most 3 transitions, we can reach from any state inX
to a state inE, therefore it is maintainable. But if we con-
sider all trajectories, at the states2, the exogenous actione2
can keep interfering and we might never reach from the states2 to a state inE. Therefore it is not stabilizable.2

Maintainability in an active database
In this section we show how the notion of ‘maintainability’
is useful in defining the correctness of an active database.

Consider an active database with the following aspects:� Relational Schema:Employee(Emp#; Name; Salary;Dept#)Dept(Dept#;Mgr#)� Goal of the active database: Maintain Integrity con-
straints. I.e., Maintain the database in states where

(i) If (e; n; s; d) is a tuple inEmployee then there
must be a tuple(d0;m0) in Dept such thatd = d0;
and

(ii) If (d;m) is a tuple inDept, then there must be
a tuple(e0; n0; s0; d0) in Employee such thatd = d0
andm = e0

(In addition we may have other constraints – which we
do not focus here – such as each department has a sin-
gle manager and each employee works in a single depart-
ment.)� Exogenous actions are of the kind: Delete(E;N; S;D)
from Employee. (The direct effect of this action is the
deletion of the tuple.)

� Triggers are of the kind:

1. For any Delete(e; n; s; d) from Employee, if (d; e) is
a tuple inDept, delete that tuple fromDept and delete
all tuples of the form(e0; n0; s0; d0) from Employee,
whered = d0.

To formulate the correctness of such an active database, we
can treat the triggers as control laws, as was done initially
in (Ceri & Widom 1990). The overall system operates in a
way that whenever an exogenous action occurs if it modifies
the database such that integrity constraints are violated, the
triggers (control laws) kick in and force additional changes
to the database such that it reaches a state where the integrity
constraints are satisfied. This can be formulated asmainte-
nance of the integrity constraints.

Now, if there were a continuous stream of exogenous ac-
tions (whose direct effects were immediately reflected in the
database) then there is no guarantee that the database would
reach a state satisfying the integrity constraints within a fi-
nite number of transitions. Hence, we can not formulate this
as stabilizability.

Another important aspect of maintainability is that in reac-
tive software systems like this, if we know that our sys-
tem is k-maintainable, and each transition takes say at mostt time units, then we can implement a transaction mecha-
nism that will regulate the number of exogenous actions al-
lowed per unit time to be 1k�t . This will also be useful in
web-based transaction softwares where exogenous actions
are external interactions and the internal service mechanism
is modeled as control laws. On the other hand, given a re-
quirement that we must allowm requests (exogenous ac-
tions) per unit time, we can work backwards to determine
the value ofk, and then find a control to make the system
k-maintainable. In general, since in high level controls we
may have the opportunity to limit (say through a transaction
mechanism) the exogenous actions, we think ‘maintainabil-
ity’ is an important notion for high level control.

Algorithms
In this section we give two simple algorithms to verify main-
tainability, and to generate control for maintainability. We
will further analyze them in the full paper.

Testing maintainability
Input: A systemA = (X;�; f; d), a set of statesE, a set of
statesS, and a controlK.

Output: To find out ifS is maintainable with respect toE,
using the controlK.

Algorithm:

Step 1: ComputeClosure(S;AK).
Step 2: For eachx in Closure(S;AK) compute the se-
quencex0; x1; : : : ; xk; xk+1; : : : ; xjXj, wherex0 = x, andxk+1 =xk if xk 2 E, andxk+1 = f(xk;K(xk)) otherwise.

Step 3: If for all x, fx0; : : : ; xjXjg \E 6= ; thenS is main-
tainable with respect toE, using the controlK; Otherwise it
is not maintainable with respect toE, using the controlK.

Generating control for maintainability of a set of
states
Input: A systemA = (X;�; f; d), a set of statesE, and a
set of statesS.

Output: Find a controlK such thatS is maintainable with
respect toE, using the controlK.

Algorithm:

Step 0: Sin := S, Sout = ;.
Step 1:While Sin 6= Sout Do.

Pick anx fromSinnSout. Find ashortest path (or a minimal
cost path)from x to a state inE using only control actions.

If no such path exists then EXIT and return(FAIL).

Let a be the first action of that path.
AssignK(x) = a.Sout := Sout [fxgSin := Sin [ff(x; a)g [fx : x 2 f(x; b); for someb 2e(X)g.
Step 2: If Sin = Sout, return(Sout;K).

Proposition 0.2 If the above algorithm terminates by re-
turningS0 andK, then: (i)S0 = Closure(S;AK), and (ii)S is maintainable with respect toE, using the controlK. 2
One important aspect of the above algorithm and its proof
of correctness is the requirement of picking the first action
of a shortest path or a minimal cost path. Picking the first
action of a minimal path (as normally used in the notions of
minimal plans) will not be sufficient as that may lead to cy-
cles and the system may never reach its goal. An algorithm
based on a minimal path will have to be more complicated
so as to avoid this. On the other hand, our use of shortest
path allows us to easily enhance the control when additional
states are added toS. We then only need to consider the new
states in the closure, find shortest paths from each of these
states (sayx), and have the first action as the value ofK(x).
Thus our algorithm is useful in incrementally broadening the
control when the set of initial statesS is broadened.

At this point we would like to point out the relation between
our work here and some research on reactive and situated
agents (Kaelbling & Rosenschein 1991). In (Kaelbling &
Rosenschein 1991), they say that in a control rule ‘ifc thena’, the actiona, must be the action thatleadsto the goal from
any situation that satisfies the conditionc. The above algo-
rithm interprets the notion of ‘leading to’ as the first action
of a minimal cost plan.

Supportability: a notion that generalizes
stabilizability and maintainability

In this section we generalize the notion of maintainability
and show that the notion of stabilizability is a special case

of this generalization. Our generalization is based on the
intuition that perhaps, we can allow a limited number of
exogenous actions during our so called ‘window of non-
interference’ and still be able to get back to a state inE.
We refer to this general notion assupportability.

Definition 0.9 Given a systemA = (X;�; f; d), a set of
agents actionU � �, a specification of exogenous actionse, and a set of statesE, we say a set of statesS is (k,l)-
supportable(l � k) with respect toE if there exists a control
law K such that for each statex in Closure(S;AK), all
trajectories – consistent withAK – from x whose nextk
transitions contain at mostl transitions due to exogenous
actions and the rest is dictated by the controlK, reach a
state inE by thek-th transition. 2
Proposition 0.3 (k; 0)-supportable is equivalent tok-
maintainable. (A set of statesS is (k; 0)-supportable with
respect to a set of statesE if and only if S is k-maintainable
with respect toE.)

Proposition 0.4 A set of statesS is stabilizable iffS is
alive and there exists an integerm such thatS is (m,m)-
supportablewith respect toE.

An automata and a temporal logic for
‘maintainability’ and ‘supportability’

The notion of a system defined earlier does not distinguish
between exogenous action and control action. They are both
part of�. In this section we first define the notion of a 2-
system where we distinguish between exogenous and con-
trol actions. Using the notion of a two system we define the
notion of ‘maintained’ which is analogous to the notion of
being ‘stable’ and related it to our earlier notion of main-
tainability. We then use the notion of 2-systems to define
a temporal logic that makes the distinction between transi-
tions due to exogenous action and transitions due to control
actions.

Definition 0.10
A 2-systemA is a 5-tuple(X;�a;�e; f; d), whereX is a
finite set of states,�a is a finite set of control actions,�e
is a finite set of control events,d is a function fromX to2�a[�e listing what actions and events may occur (or are
executable) in what state, andf is a transition function fromX and�a [�e to 2X . 2
The notion of a trajectory with respect to a 2-system remains
the same as with respect to a system, which we earlier de-
fined in Definition 0.2.

Definition 0.11 Given a 2-systemA and a set of
statesE, a statex is said to bek-maintained in A
w.r.t. E if for all trajectories of the form x =x0; a1; x1; a2; : : : ; aj ; xj ; aj+1; : : : that is consistent withA
and for alli such thatfai+1; : : : ; ai+kg � �a, we have thatfxi+1; : : : ; xi+kg \ E 6= ;.
A 2-systemA = (X;�a;�e; f; d) is k-maintained with re-
spect toE if all its states are k-maintained.

A 2-systemA = (X;�a;�e; f; d) is maintained with re-
spect toE if there exists a positive integern such that it isn-maintained with respect toE. 2

Proposition 0.5 A state x is k-maintainable in a systemA = (X;�a [�e; f; d) with respect toE iff there exists
a control lawK such thatx is k-maintained with respect toE in the 2-systemAK = (X;�a;�e; f; dK), wheredK is
as defined earlier in Definition 0.5.

A temporal language with respect to 2-systems
In the past, temporal logic has been used to specify and ver-
ify the behavior of reactive systems (Manna & Pnueli 1992;
Clarke, Emerson, & Sistla 1986; Kabanza, Barbeau, & St-
Denis 1997). Most of these temporal logics do not (perhaps
with the exception of one description in (Singh 1994)) dis-
tinguish between transitions due to control actions and due
to exogenous actions. Hence, they are too strong to be able
to characterize the correctness of reactive software systems
such as an active database system. In this section we pro-
pose a temporal language that makes a distinction between
transitions due to control actions and exogenous actions and
is able to characterize correctness of reactive software sys-
tems such as an active database system. We plan to elaborate
on this in the full paper.

Some of the important future temporal operators as dis-
cussed in (Manna & Pnueli 1992) are: Next (), Always
(2), Eventually (�), and Until (U). There meaning with re-
spect a trajectory� = x0; a1; x1; : : : ; xj ; aj+1; xj+1; : : : is
defined as follows:� (�; j) j= p iff p is true inxj .� (�; j) j=p iff (�; j + 1) j= p� (�; j) j= 2p iff (�; k) j= p, for all k � j.� (�; j) j= �p iff (�; k) j= p, for somek � j.� (�; j) j= p U q iff there existsk � j such that(�; k) j= q
and for alli, j � i < k, (�; i) j= p.

It is easy to see that none of the above temporal operators
consider the action type (whether exogenous or control ac-
tion) behind the transitions. We now introduce some tem-
poral operators that do consider the action type behind the
transitions.� (�; j) j= kp iff i � j is the smallest index such thatfai+1; : : : ; ai+kg � �a and(�; i + r) j= p, for some1 �r � k.� (�; j) j= 2kp iff for all i � j if fai+1; : : : ; ai+kg � �a
then(�; i+ r) j= p for some1 � r � k.� (�; j) j=k;lp iff i � j is the smallest index such thatjfai+1; : : : ; ai+kg \ �ej � l and(�; i + r) j= p for some1 � r � k.� (�; j) j= 2k;lp iff for all i � j ifjfai+1; : : : ; ai+kg \ �ej � l then(�; i + r) j= p for some1 � r � k.

We can describe the intuitive meaning behind the above
formal definitions as follows: Intuitively,(�; j) j= 2kp
means that starting fromxj , within or after anyk consec-
utive transitions due to control actionsp holds. Similarly,(�; j) j= 2k;lp means that starting fromxj , within or after
anyk transitions with at mostl exogenous actionsp holds.

Proposition 0.6 (i) (�; j) j= 2kp iff (�; j) j= 2k;0p.

(ii) (�; j) j=kp iff (�; j) j=k;0p.

(iii) Let Ep be the set of states, where a formulap holds.S
is (k; l)-supportable w.r.t.Ep iff for all trajectories� whosex0 2 S, and for allj, (�; j) j= 2k;lp. 2
Corollary 0.7 1. LetEp be the set of states, where a for-
mulap holds.S is k maintainable w.r.t.Ep iff for all trajec-
tories� whosex0 2 S, and for allj, (�; j) j= 2kp.

2. LetEp be the set of states, where a formulap holds. S
is stabilizable w.r.t.Ep iff S is alive and there exists anm
such that for all trajectories� whosex0 2 S, and for allj,(�; j) j= 2m;mp.

Conclusion and related work
In this paper we formalized the notion of ‘maintenance’ of-
ten mentioned (Baral & Son 1998) in the context of robots
and agents, as a property of a discrete event dynamic sys-
tem (DEDS) and compared it with the notion of ‘stability’
and ‘stabilizability’ that are most popular in DEDS. We ar-
gued why ‘maintainability’ may be a more preferred notion
for certain systems and discussed active database systems
as an example. We then gave simple algorithms for testing
maintainability and generating control for maintainability.
We then developed the notion of ‘supportability’ that gener-
alizes both ‘maintainability’ and ‘stabilizability. Finally, we
developed an automata theory that distinguishes between ex-
ogenous and control actions, and developed a temporal logic
based on it. Our basic formulation of ‘maintainability’ is re-
lated to the work in (Baral & Son 1998).

Among the other related works, there has been some work
on defining stability of continuous systems in the presence
of discontinuities and disturbances; for example (Sontag
1999). In the planning literature there has been some work
on planning for temporal goals (Bacchus & Kabanza 1998;
Weld & Etzioni 1994) where goals are expressed as tem-
poral formulas. But they use the traditional temporal op-
erators which by themselves can not express our notion of
‘maintenance’. Another related notion is planning from the
current situation in a dynamic domain (Baral, Gelfond, &
Provetti 1997) and execution monitoring (DeGiacomo, Re-
iter, & Soutchanski 1998). In both these notions ‘mainte-
nance’ is achieved by monitoring (or observing) the world
for discrepancies and making new plans to recover. Fi-
nally, the notion of ‘self-stabilization’ (Dijkstra 1974) in dis-
tributed and fault-tolerant computing seems to be similar to
our notion of ‘maintenance’ and we plan to compare and
contrast them in the sequel.

References
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals.Annals of Math and AI22:5–27.

Baral, C., and Son, T. 1998. Relating theories of actions
and reactive control.Electronic transactions on Artificial
Intelligence2(3-4).

Baral, C.; Gelfond, M.; and Provetti, A. 1997. Represent-
ing Actions: Laws, Observations and Hypothesis.Journal
of Logic Programming31(1-3):201–243.
Brooks, R. 1986. A robust layered control system for a
mobile robot. IEEE journal of robotics and automation
14–23.
Ceri, S., and Widom, J. 1990. Deriving production rules
for constraint maintainance. InVLDB 90. 566–577.
Clarke, E.; Emerson, E.; and Sistla, A. 1986. Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications.ACM Transactions on Program-
ming Languages and Systems8(2):244–263.
DeGiacomo, G.; Reiter, R.; and Soutchanski, M. 1998. Ex-
ecution monitoring of high-level robot programs. InProc.
of KR 98, 453–464.
Dijkstra, E. W. 1974. Self-stabilizing systems in spite of
distributed control.CACM17(11):843–644.
Kabanza, F.; Barbeau, M.; and St-Denis, R. 1997. Plan-
ning control rules for reactive agents.Artificial Intelligence
5(1):67–113.
Kaelbling, L., and Rosenschein, S. 1991. Action and plan-
ning in embedded agents. In Maes, P., ed.,Designing Au-
tonomous Agents. MIT Press. 35–48.
Maes, P., ed. 1991. Designing Autonomous Agents.
MIT/Elsevier.
Manna, Z., and Pnueli, A. 1992.The temporal logic of
reactive and concurrent systems: specification. Springer
Verlag.
Ozveren, O.; Willsky, A.; and Antsaklis, P. 1991. Stabil-
ity and stabilizability of discrete event dynamic systems.
JACM38(3):730–752.
Passino, K., and Burgess, K. 1998.Stability Analysis of
Discrete Event Systems. Adaptive and Learning Systems
for Signal Processing, Communications, and Control. New
York: John Wiley and Sons, Inc.
Ramadge, P., and Wonham, W. 1987a. Modular feedback
logic for discrete event systems.SIAM Journal of Control
and Optimization25(5):1202–1217.
Ramadge, P., and Wonham, W. 1987b. Supervisory con-
trol of a class of discrete event process.SIAM Journal of
Control and Optimization25(1):206–230.
Singh, M. 1994. Multiagent systems - a theoretical
framework for intentions, know-how, and communications.
Springer-Verlag.
Sontag, E. 1999. Stability and stabilization: Discontinu-
ities and the effect of disturbances. In Clarke, F., and Stern,
R., eds.,Proc. NATO advanced study institute, July/Aug
1998. Kluwer. 551–598.
Weld, D., and Etzioni, O. 1994. The first law of robotics (a
call to arms). InAAAI, 1042–1047.
Widom, J., and Ceri, S., eds. 1996.Active Database Sys-
tems - Triggers and Rules for advanced database process-
ing. Morgan Kaufmann.

