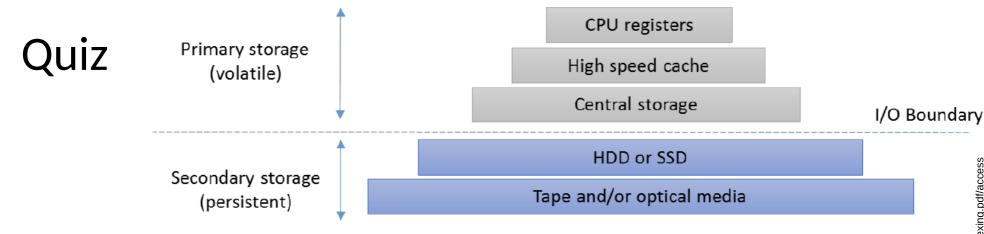
Database Technology

Data Structures for Databases

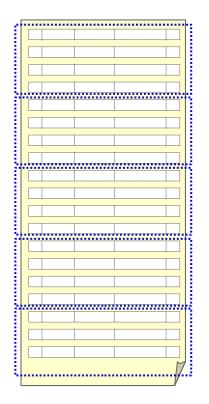

Olaf Hartig

olaf.hartig@liu.se

Storage Hierarchy

Which of the following statements *is correct*?

- 1) Secondary storage devices are usually faster than primary storage devices.
- 2) Data in a primary storage device may be lost when switching off the power.
- 3) The CPU may operate directly on data that is in a secondary storage device.
- 4) A piece of data (e.g., a record) may not be held both in a primary storage device and in a secondary storage device at the same time.



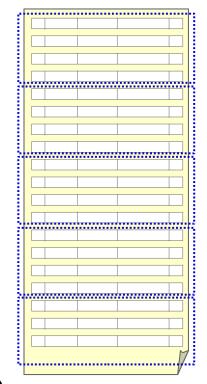
Record Allocation

(Allocating Records to File Blocks)

- Assume a file with
 - -r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block

How many blocks are needed to store the file?

1)
$$b = 1,000$$


2)
$$b = 2,000$$

3)
$$b = 8,000$$

1)
$$b = 1,000$$
 2) $b = 2,000$ 3) $b = 8,000$ 4) $b = 10,000$

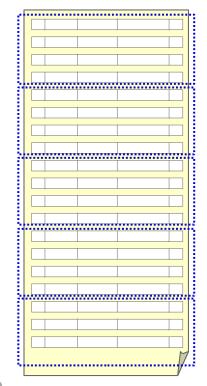
- Assume a file with
 - -r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block

How many blocks are needed to store the file?

1)
$$-b = 1,000$$

2)
$$b = 2,000$$

3)
$$b = 8,000$$


1)
$$b = 1,000$$
 2) $b = 2,000$ 3) $b = 8,000$ 4) $b = 10,000$

$$bfr = \left\lfloor \frac{B}{R} \right\rfloor = \left\lfloor \frac{8,000}{400} \right\rfloor = 20$$
 $b = \left\lceil \frac{r}{bfr} \right\rceil = \left\lceil \frac{200,000}{20} \right\rceil = 10,000$

blocking factor

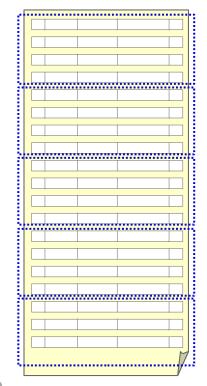
- Assume a file with
 - -r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block

How many blocks are needed to store the file?

1)
$$-b = 1,000$$

$$(2) b = 2,000$$

3)
$$b = 8,000$$


1)
$$b = 1,000$$
 2) $b = 2,000$ 3) $b = 8,000$ 4) $b = 10,000$

$$bfr = \left\lfloor \frac{B}{R} \right\rfloor = \left\lfloor \frac{8,000}{400} \right\rfloor = 20$$
 $b = \left\lceil \frac{r}{bfr} \right\rceil = \left\lceil \frac{200,000}{20} \right\rceil = 10,000$

- How much space is wasted per block?
 - 1) 0 bytes 2) 10 bytes 3) 20 bytes 4) 100 bytes

- Assume a file with
 - -r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block

How many blocks are needed to store the file?

1)
$$-b = 1,000$$

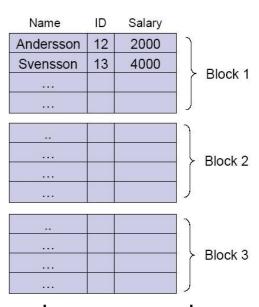
$$b = 2,000$$

3)
$$b = 8,000$$

1)
$$b = 1,000$$
 2) $b = 2,000$ 3) $b = 8,000$ 4) $b = 10,000$

$$bfr = \left\lfloor \frac{B}{R} \right\rfloor = \left\lfloor \frac{8,000}{400} \right\rfloor = 20$$
 $b = \left\lceil \frac{r}{bfr} \right\rceil = \left\lceil \frac{200,000}{20} \right\rceil = 10,000$

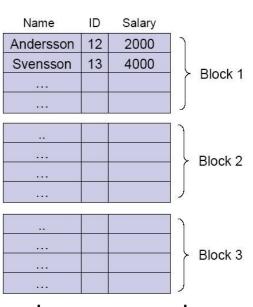
- How much space is wasted per block? B bfr * R
 - 1) 0 bytes 2) 10 bytes 3) 20 bytes 4) 100 bytes



File Organization

(Organizing Records in Files)

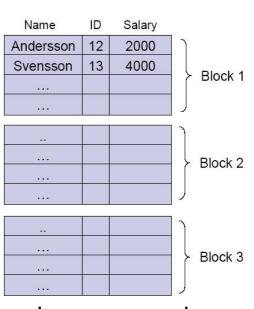
- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block



- Hence, b = 10,000 blocks needed to store the file:
- Assume we organize the file as a heap file
 - i.e., new records are always appended to the end of the file
- How many blocks do we need to read?

	search field = ID value = 43	search field = Name value = Smith
	(unique)	(non-unique)
worst case	?	
best case	?	
average case	?	

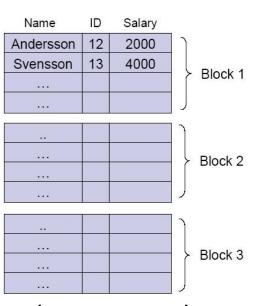
- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block



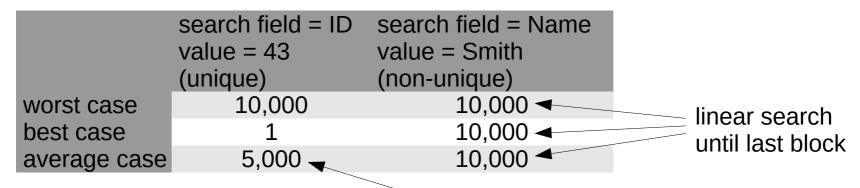
- Hence, b = 10,000 blocks needed to store the file:
- Assume we organize the file as a heap file
 - i.e., new records are always appended to the end of the file
- How many blocks do we need to read?

	search field = ID	search field = Name
	value = 43	value = Smith
	(unique)	(non-unique)
worst case	10,000	
best case	1	
average case	5,000 🔻	

- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block


- Hence, b = 10,000 blocks needed to store the file:
- Assume we organize the file as a heap file
 - i.e., new records are always appended to the end of the file
- How many blocks do we need to read?

	search field = ID value = 43 (unique)	search field = Name value = Smith (non-unique)	
worst case	10,000	?	
best case	1	?	
average case	5,000 🗨	?	



 $\frac{b}{2}$

- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block

- Hence, b = 10,000 blocks needed to store the file
- Assume we organize the file as a heap file
 - i.e., new records are always appended to the end of the file
- How many blocks do we need to read?

Exercise: Sorted File (a.k.a. Sequential File)

- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block
- Hence, b = 10,000 blocks needed for the file
- Assume we organize the file as a sorted file by using the ID field as the sorting field
 - i.e., records inserted based on their ID value

Name	ID	Salary	
Andersson	12	2000])
Svensson	13	4000	Blook 1
•••			Block 1
•••			
]]
			Block 2
			DIOCK 2
])
	á v])
			Block 3
•••			- Diock o
	4 4]]
•			•

log (256) = 8

	search field = ID value = 43 (unique)	search field = Name value = Smith (non-unique)
worst case	?	?
best case	?	?
average case	?	?

$106_{2}(2)-1$	$106_{2}(230) - 0$
$\log_2(4)=2$	$\log_2(512) = 9$
$\log_2(8)=3$	$\log_2(1024) = 10$
$\log_2(16) = 4$	$\log_2(2048) = 11$
$\log_2(32) = 5$	$\log_2(4096) = 12$
$\log_2(64) = 6$	$\log_2(8192) = 13$
$\log_2(128) = 7$	$\log_2(16384) = 14$

log(2)=1

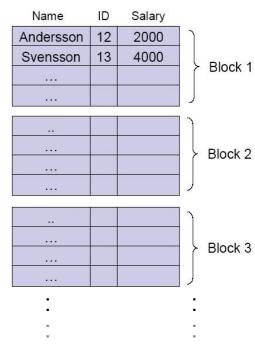
Exercise: Sorted File (a.k.a. Sequential File)

- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block
- Hence, b = 10,000 blocks needed for the file
- Assume we organize the file as a sorted file by using the ID field as the sorting field
 - i.e., records inserted based on their ID value

Name	ID	Salary		
Andersson	12	2000)	
Svensson	13	4000		Disal: 1
•••				Block 1
••]]	
•••				Block 2
				2.002
•••])	
***	`		}	
•••			}	Block 3

•••])	
:			:	
•				

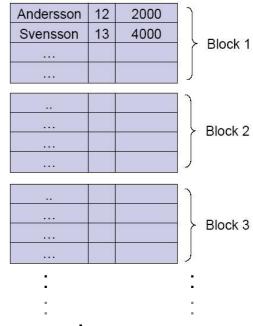
	search field = ID value = 43 (unique)	search field = Name value = Smith (non-unique)
worst case best case	14	10,000
average case	ca. 14 🛶	10,000


 $\log_{2}(4)=2 \qquad \log_{2}(512)=9$ $\log_{2}(8)=3 \qquad \log_{2}(1024)=10$ $\log_{2}(16)=4 \qquad \log_{2}(2048)=11$ $\log_{2}(32)=5 \qquad \log_{2}(4096)=12$ $\log_{2}(64)=6 \qquad \log_{2}(8192)=13$ $\log_{2}(128)=7 \qquad \log_{2}(16384)=14$

 $\log_2(2)=1$ $\log_2(256)=8$

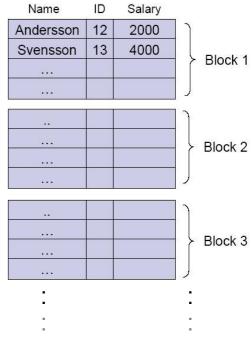
Database Technology Topic: Data Structures for Databases $|\log_2 b|$

- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block
- Hence, b = 10,000 blocks needed for the file
- Assume we organize the file as a hash file by using the ID field as the hash field
 - i.e., find relevant bucket by applying hash function to the
 ID value; assume 5,000 buckets with 4 blocks per bucket


	search field = ID value = 43	search field = Name value = Smith	
	(unique)	(non-unique)	
worst case	?	?	
best case	?	?	
average case	?	?	

- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block
- Hence, b = 10,000 blocks needed for the file
- Assume we organize the file as a hash file by using the ID field as the hash field
 - i.e., find relevant bucket by applying hash function to the
 ID value; assume 5,000 buckets with 4 blocks per bucket

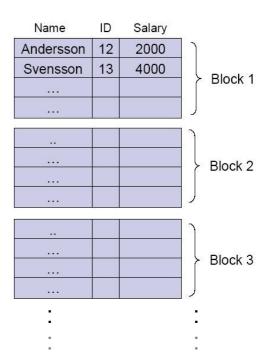
	search field = ID value = 43	search field = Name value = Smith	
	(unique)	(non-unique)	
worst case	4	≥ 10,000 ◀	scan all non-empty
best case	1	≥ 10,000 ◀	blocks of all buckets
average case	depends	≥ 10,000 ◀	DIOCKS OF AIR DUCKERS


Salary

Name

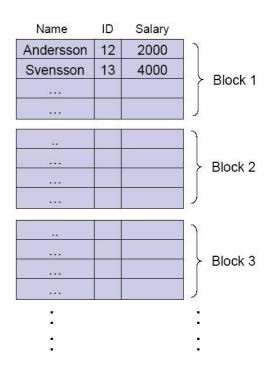
- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block
- Hence, b = 10,000 blocks needed for the file
- Assume we organize the file as a hash file by using the ID field as the hash field
 - i.e., find relevant bucket by applying hash function to the
 ID value; assume 5,000 buckets with 4 blocks per bucket
- What if we want to retrieve all records with an ID value smaller than 10? (assuming IDs cannot be smaller than 1)

worst case	?
best case	?



- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block
- Hence, b = 10,000 blocks needed for the file
- Assume we organize the file as a hash file by using the ID field as the hash field
 - i.e., find relevant bucket by applying hash function to the ID value; assume 5,000 buckets with 4 blocks per bucket
- What if we want to retrieve all records with an ID value smaller than 10? (assuming IDs cannot be smaller than 1)

worst case	9 · 4 = 36	
best case	1 👞	
	·	unlikely


Single-Level Ordered Indexes

Quiz: Types of Single-Level Ordered Indexes

- Back to the case of a sorted file, sorted on ID
- If we try to speed up finding records with a particular ID value by adding a single-level ordered index, which type would we need?
 - A) Primary index
 - B) Clustering index
 - C) Secondary index on a key field
 - D) Secondary index on a non-key field

	search field = ID value = 43	search field = Name value = Smith
	(unique)	(non-unique)
worst case	14	10,000
best case	1	10,000
average case	ca. 14	10,000

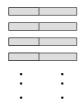
Summary of Single-Level Ordered Indexes

	Index field used for sorting the data records	Index field <i>not</i> used for sorting the data records
Index field is a key	Primary index	Secondary index (key)
Index field is not a key	Clustering index	Secondary index (non-key)

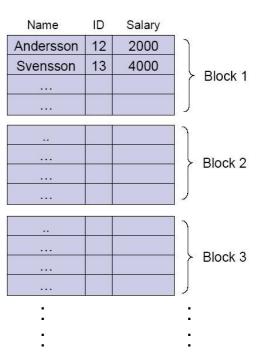
	Index field used for sorting the data records	Index field <i>not</i> used for sorting the data records
Index field is a key	Primary index	Secondary index (key)
Index field is not a key	Clustering index	Secondary index (non-key)

Which of these four types of indexes has the *smallest number of index records*?

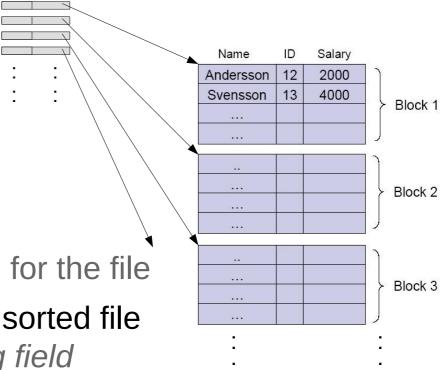
- A) Primary index
- B) Clustering index
- C) Secondary index on a key field
- D) Secondary index on a non-key field



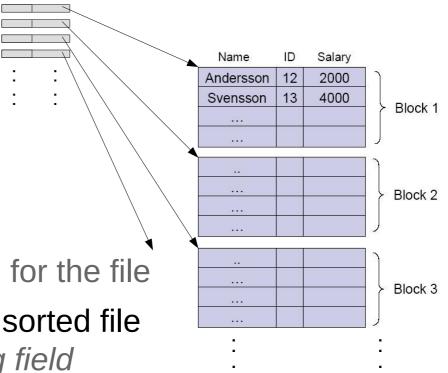
Summary of Single-Level Indexes (cont'd)


	Index field used for sorting the data records	Index field <i>not</i> used for sorting the data records
Index field is a key	Primary index	Secondary index (key)
Index field is not a key	Clustering index	Secondary index (non-key)

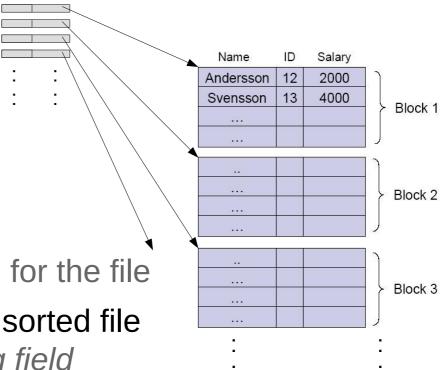
Type of index	Number of index entries
Primary	Number of blocks in data file
Clustering	Number of distinct index field values
Secondary (key)	Number of records in data file
Secondary (non-key)	Number of records or number of distinct index field values


- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block
- Hence, b = 10,000 blocks needed for the file
- Assume we organize the file as a sorted file by using the ID field as the sorting field

- Assume we create a primary index on the ID field
 - same block size for the index file: $B_{idx} = B = 8,000$ bytes
 - but smaller records: R_{idx} = 200 bytes per index record
- How many index records does this index contain?
 - A) 8,000
- B) 10,000
- C) 20,000
- D) 200,000

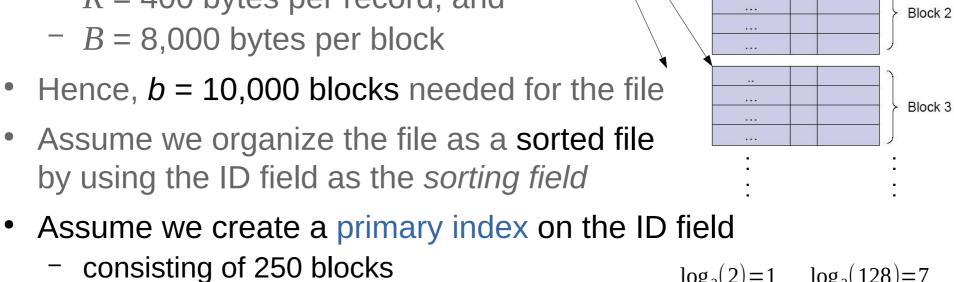

- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block
- Hence, b = 10,000 blocks needed for the file
- Assume we organize the file as a sorted file by using the ID field as the sorting field

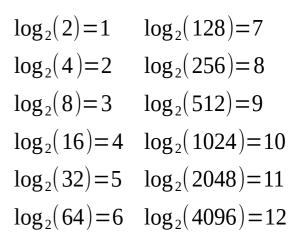
- Assume we create a primary index on the ID field
 - same block size for the index file: $B_{idx} = B = 8,000$ bytes
 - but smaller records: R_{idx} = 200 bytes per index record
- How many index records does this index contain?
- A) -8,000 B) 10,000 C) -20,000


- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block
- Hence, b = 10,000 blocks needed for the file
- Assume we organize the file as a sorted file by using the ID field as the sorting field

- Assume we create a primary index on the ID field
 - same block size for the index file: $B_{idx} = B = 8,000$ bytes
 - but smaller records: R_{idx} = 200 bytes per index record
- How many blocks does the index file consist of?
 - A) 100
- B) 250
- C) 1,000
- D) 8,000

- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block
- Hence, b = 10,000 blocks needed for the file
- Assume we organize the file as a sorted file by using the ID field as the sorting field


- Assume we create a primary index on the ID field
 - same block size for the index file: $B_{idx} = B = 8,000$ bytes
 - but smaller records: R_{idx} = 200 bytes per index record
- How many blocks does the index file consist of?


$$b_{idx} = \left[\frac{r_{idx}}{bfr_{idx}} \right] = \left[\frac{10,000}{40} \right] = 250 \qquad bfr_{idx} = \left| \frac{B_{idx}}{R_{idx}} \right| = \left[\frac{8,000}{200} \right] = 40$$

$$bfr_{idx} = \left| \frac{B_{idx}}{R_{idx}} \right| = \left| \frac{8,000}{200} \right| = 40$$

- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
- by using the ID field as the sorting field

- Assume we create a primary index on the ID field
- How many blocks do we need to read if we want to retrieve the record with ID = 43?
- B) 8
- C) 9

Name

Andersson

Svensson

Salary

2000

4000

Block 1

13

- Assume a file with
 - r = 200,000 records,
 - -R = 400 bytes per record, and
 - -B = 8,000 bytes per block
- Hence, b = 10,000 blocks needed for the file
- Assume we organize the file as a sorted file by using the ID field as the sorting field

- consisting of 250 blocks
- How many blocks do we need to read if we want to retrieve the record with ID = 43?

 $[\log_2 b_{idx}] + 1$ binary search in the index

read data file block that contains the record

$$\log_2(2)=1$$
 $\log_2(128)=7$

Name

Andersson

Svensson

Salary 2000

4000

Block 1

Block 2

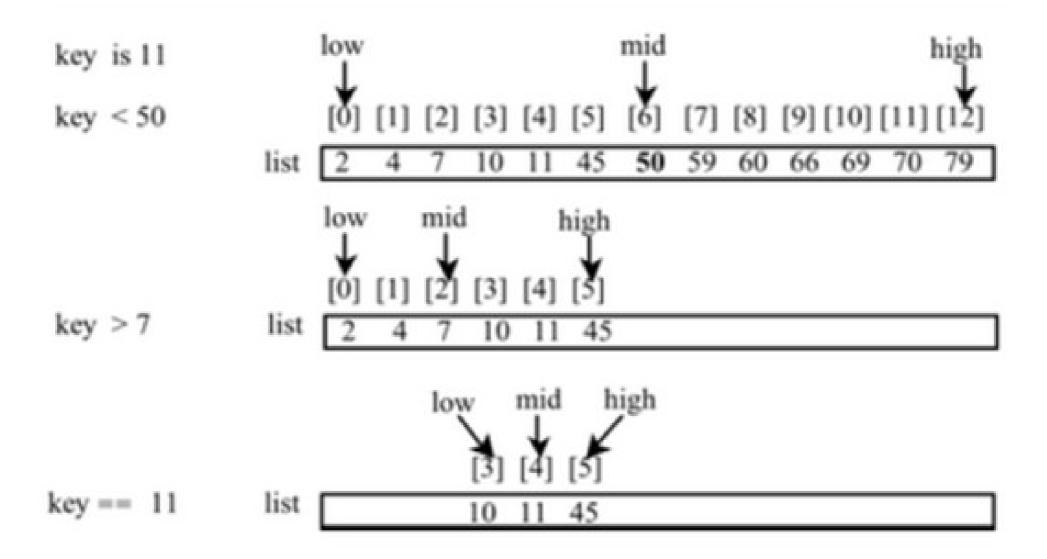
Block 3

$$\log_2(4)=2$$
 $\log_2(256)=8$

$$\log_2(8)=3$$
 $\log_2(512)=9$

$$\log_2(16) = 4 \quad \log_2(1024) = 10$$

$$\log_2(32) = 5 \quad \log_2(2048) = 11$$


$$\log_2(64) = 6 \quad \log_2(4096) = 12$$

www.liu.se

Binary Search

