## Database Technology

## Functional Dependencies and Normalization

Olaf Hartig
olaf.hartig@liu.se

You will need them for the exercises today.
Make sure you have a sheet of paper and a pen.

## Quiz

- Constraint between two sets of attributes from a relation

Let $R$ be a relational schema with the attributes $A_{1}, A_{2}, \ldots, A_{n}$ and let $X$ and $Y$ be subsets of $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.
Then, the functional dependency $X \rightarrow Y$ specifies the following constraint on any valid relation state $r$ of $R$.

For any two tuples $t_{1}$ and $t_{2}$ in state $r$ we have that:

$$
\text { if } t_{1}[\mathrm{X}]=t_{2}[\mathrm{X}] \text {, then } t_{1}[\mathrm{Y}]=t_{2}[\mathrm{Y}] .
$$

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs: FD1: $\mathbf{A} \rightarrow \mathbf{B C} \quad$ FD2: $\mathbf{C} \rightarrow \mathbf{A D} \quad$ FD3: $\mathbf{D E} \rightarrow \mathbf{F}$
- Is a state of $R$ that contains the two tuples $(3,8,1,2,3,4)$ and (3, $8,1,7,3,9)$ valid?
A) Yes
B) No

| A | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{F}$ |  |  |  |  |
| 3 | 8 | 1 | 2 | 3 |
| 3 | 8 | 1 | 7 | 3 |

## Reasoning About FDs

- Logical implications can be derived by using inference rules called Armstrong's rules:
- Reflexivity: If $Y$ is a subset of $X$, then $X \rightarrow Y$
- Augmentation: If $X \rightarrow Y$, then $X Z \rightarrow Y Z$ (we use $X Y$ as a short form for $X \cup Y$ )
- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Additional rules can be derived:
- Decomposition: If $X \rightarrow Y Z$, then $X \rightarrow Y$
- Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow Y Z$
- Pseudo-transitivity: If $X \rightarrow Y$ and $W Y \rightarrow Z$, then $W X \rightarrow Z$


## Exercises: Armstrong Rules

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: A $\rightarrow \mathbf{B C}$

```
Reflexivity: If Y is a subset of X, then X }->
Augmentation: If X 
Transitivity: If X Y 年 Y 
```



```
Union: If X 
Pseudo-transitivity: If X }->Y\mathrm{ and WY }->Z\mathrm{ ,
    then WX }->
```

FD2: $\mathbf{C} \rightarrow \mathrm{AD}$
FD3: $\mathbf{D E} \rightarrow \mathrm{F}$

- Use the Armstrong rules to derive the following FD: $\mathbf{A C} \rightarrow \mathbf{D}$


## Exercises: Armstrong Rules

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: A $\rightarrow$ BC

```
Reflexivity: If }Y\mathrm{ is a subset of }X\mathrm{ , then }X->
Augmentation: If }X->Y\mathrm{ , then XZ 
Transitivity: If X Y 年 Y 
Decomposition: If }X->YZ\mathrm{ , then }X->
Union: If X 
Pseudo-transitivity: If }X->Y\mathrm{ and WY }->Z\mathrm{ ,
    then WX }->
```

- Use the Armstrong rules to derive the following FD: AC $\rightarrow \mathbf{D}$
- FD4: AC $\rightarrow$ AD (Augmentation of FD2 with A)
- FD5: AC $\rightarrow \mathrm{D}$ (Decomposition of FD4)


## Exercises: Armstrong Rules

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: A $\rightarrow$ BC

```
Reflexivity: If Y is a subset of X, then }X->
Augmentation: If X 
Transitivity: If X Y 年 Y 
Decomposition: If }X->YZ, then X ->
Union: If X 
Pseudo-transitivity: If X }->Y\mathrm{ and WY }->Z\mathrm{ ,
                                    then WX }->
```

FD2: $\mathbf{C} \rightarrow \mathrm{AD}$
FD3: $\mathbf{D E} \rightarrow \mathrm{F}$

- Use the Armstrong rules to derive the following FD: AC $\rightarrow \mathbf{D}$
- FD4: AC $\rightarrow$ AD (Augmentation of FD2 with A)
- FD5: AC $\rightarrow \mathrm{D}$ (Decomposition of FD4)
- Use the Armstrong rules to derive the following FD: $\mathbf{A} \rightarrow \mathbf{D}$


## Exercises: Armstrong Rules

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: $\mathbf{A} \rightarrow \mathbf{B C}$
FD2: $\mathbf{C} \rightarrow \mathbf{A D}$
FD3: $\mathbf{D E} \rightarrow \mathrm{F}$
- Use the Armstrong rules to derive the following FD: AC $\rightarrow \mathbf{D}$
- FD4: AC $\rightarrow$ AD (Augmentation of FD2 with A)
- FD5: AC $\rightarrow \mathrm{D}$ (Decomposition of FD4)
- Use the Armstrong rules to derive the following FD: A $\rightarrow \mathbf{D}$
- FD6: A $\rightarrow$ C (Decomposition of FD1)
- FD7: A $\rightarrow$ AD (Transitivity of FD6 and FD2)
- FD8: A $\rightarrow$ D (Decomposition of FD7)


## Exercises: Armstrong Rules

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: A $\rightarrow$ BC

```
Reflexivity: If }Y\mathrm{ is a subset of }X\mathrm{ , then }X->
Augmentation: If X 
Transitivity: If }X->Y\mathrm{ and }Y->Z\mathrm{ , then }X->
Decomposition: If }X->YZ\mathrm{ , then }X->
Union: If X 
Pseudo-transitivity: If X }->Y\mathrm{ and WY }->Z\mathrm{ ,
    then WX }->
```

FD2: $\mathbf{C} \rightarrow \mathrm{AD}$
FD3: $\mathbf{D E} \rightarrow \mathrm{F}$

- Use the Armstrong rules to derive the following FD: AE $\rightarrow$ ABCDEF


## Exercises: Armstrong Rules

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D}, \mathrm{E}, \mathrm{F})$ with the following FDs:
FD1: $\mathrm{A} \rightarrow \mathrm{BC}$
FD2: $\mathbf{C} \rightarrow \mathrm{AD}$
FD3: $\mathbf{D E} \rightarrow \mathrm{F}$
- Use the Armstrong rules to derive the following FD: $\mathbf{A E} \rightarrow \mathbf{A B C D E F}$
- FD9: $\mathrm{AE} \rightarrow \mathrm{BCE} \quad$ (Augmentation of FD1 with E )
- FD10: $\mathrm{AE} \rightarrow \mathrm{C}$ (Decomposition of FD9)
- FD11: AE $\rightarrow$ AD (Transitivity of FD10 and FD2)
- FD12: AE $\rightarrow$ ADE (Augmentation of FD11 with E)
- FD13: $\mathrm{AE} \rightarrow \mathrm{DE} \quad$ (Decomposition of FD12)
- FD14: $\mathrm{AE} \rightarrow \mathrm{F}$ (Transitivity of FD13 and FD3)
- FD15: AE $\rightarrow$ ABCDEF (Union of FD9, FD11, and FD14)


## Exercise

- Consider the relation $\mathbf{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F})$ with the following FDs:
FD1: A $\rightarrow$ BC
FD2: $\mathbf{C} \rightarrow \mathrm{AD}$
FD3: $\mathrm{DE} \rightarrow \mathrm{F}$
- Use the Armstrong rules to derive the following FD: $\mathbf{A E} \rightarrow \mathbf{A B C D E F}$
- Consider the following state of relation R:

| A | B | C | D | E | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 8 | 1 | 2 | 3 | 4 |

- Add another tuple to this state such that the resulting extended state is valid with respect to the new FD (i.e., does not violate the FD)


## Exercise

- Consider the relation $R(A, B, C, D, E, F)$ with the following FDs:
FD1: $A \rightarrow B C$
FD2: $\mathbf{C} \rightarrow \mathrm{AD}$
FD3: $D E \rightarrow F$
- Use the Armstrong rules to derive the following FD: AE $\rightarrow$ ABCDEF
- Consider the following state of relation R :

| A | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{F}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 8 | 1 | 2 | 3 | 4 |
| 4 | .. | .. | .. | 3 | .. |
| 3 |  |  | .. |  | .. |

- Add another tuple to this state such that the resulting extended state is valid with respect to the new FD (i.e., does not violate the FD)
- any tuple in which the value for $A$ or $E$ (or both) is different from the corresponding values of the given tuple


## Computing (Super)Keys

```
function ComputeAttrClosure( X, F )
begin
    X+ := X;
    while F contains an FD Y 
            (i) Y is a subset of }\mp@subsup{X}{}{+}\mathrm{ , and
            (ii) }Z\mathrm{ is not a subset of }\mp@subsup{X}{}{+}\mathrm{ do
        X+ := X+ U Z;
    end while
    return X+;
end
```


## Warmup (cont'd)

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
FD1: $\mathbf{A} \rightarrow \mathbf{B C}$
FD2: $\mathbf{C} \rightarrow \mathrm{AD}$
FD3: $\mathbf{D E} \rightarrow \mathbf{F}$
- Compute the attribute closure of $X=\{\mathbf{A}, \mathbf{E}\}$ w.r.t. $F=\{$ FD1, FD2, FD3 $\}$ to show that we have: $\mathbf{A E} \rightarrow \mathrm{ABCDEF}$
- Initially: $\quad X^{+}=\{A, E\}$
- By using FD1: $X^{+}=\{\mathbf{A}, \mathrm{E}, \mathrm{B}, \mathrm{C}\}$
- By using FD2: $X^{+}=\{A, E, B, C, D\}$
- By using FD3: $X^{+}=\{\mathbf{A}, \mathrm{E}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}\}$

```
function ComputeAttrClosure( X, F )
begin
begin
    while F contains an FD Y->Z such that
            (i) Y is a subset of }\mp@subsup{X}{}{+}\mathrm{ , and
            (ii) }Z\mathrm{ is not a subset of }\mp@subsup{X}{}{+}\mathrm{ do
            X+ := X+ U Z;
    end while
    return X+;
end
```


## Your Turn

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D})$ with the following set $F$ of FDs:
FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$

```
```

function ComputeAttrClosure( X, F )

```
```

function ComputeAttrClosure( X, F )
begin
begin
X+ := X;
X+ := X;
while F contains an FD Y->Z such that
while F contains an FD Y->Z such that
(i) Y is a subset of }\mp@subsup{X}{}{+}\mathrm{ , and
(i) Y is a subset of }\mp@subsup{X}{}{+}\mathrm{ , and
(ii) }Z\mathrm{ is not a subset of }\mp@subsup{X}{}{+}\mathrm{ do
(ii) }Z\mathrm{ is not a subset of }\mp@subsup{X}{}{+}\mathrm{ do
X+:= X+ \cup Z;
X+:= X+ \cup Z;
end while
end while
return X+;
return X+;
end

```
```

end

```
```

FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Compute the following attribute closures w.r.t. $F=\{F D 1$, FD2, FD3 $\}$

$$
\begin{aligned}
& -\{B, C, D\}^{+}=? \\
& -\{A, C, D\}^{+}=? \\
& -\{A, B, D\}^{+}=? \\
& -\{A, B, C\}^{+}=?
\end{aligned}
$$

## Your Turn

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D})$ with the following set $F$ of FDs:

$$
\begin{aligned}
& \text { FD1: } \mathrm{AB} \rightarrow \mathrm{C} \\
& \text { FD2: } \mathrm{BC} \rightarrow \mathrm{D}
\end{aligned}
$$

```
```

function ComputeAttrClosure( X, F )

```
```

function ComputeAttrClosure( X, F )
begin
begin
X+ := X;
X+ := X;
while F contains an FD Y->Z such that
while F contains an FD Y->Z such that
(i) Y is a subset of }\mp@subsup{X}{}{+}\mathrm{ , and
(i) Y is a subset of }\mp@subsup{X}{}{+}\mathrm{ , and
(ii) }Z\mathrm{ is not a subset of }\mp@subsup{X}{}{+}\mathrm{ do
(ii) }Z\mathrm{ is not a subset of }\mp@subsup{X}{}{+}\mathrm{ do
X+ := X+ U Z;
X+ := X+ U Z;
end while
end while
return X+;
return X+;
end

```
```

end

```
```

FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Compute the following attribute closures w.r.t. $F=\{F D 1$, FD2, FD3 $\}$

$$
\begin{aligned}
-\{B, C, D\}^{+} & =\{B, C, D\} \\
-\{A, C, D\}^{+} & =\{A, C, D, B\} \\
-\{A, B, D\}^{+} & =\{A, B, D, C\} \\
-\{A, B, C\}^{+} & =\{A, B, C, D\}
\end{aligned}
$$

## Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set $X$ of attributes of $R$ is a superkey if $X^{+}$contains all the attributes of $R$

$$
\begin{aligned}
& -\{B, C, D\}^{+}=\{B, C, D\} \\
& -\{A, C, D\}^{+}=\{A, C, D, B\} \\
& -\{A, B, D\}^{+}=\{A, B, D, C\} \\
& -\{A, B, C\}^{+}=\{A, B, C, D\}
\end{aligned}
$$



## Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set $X$ of attributes of $R$ is a superkey if $X^{+}$contains all the attributes of $R$
- $X$ is a candidate key (CK) if no proper subset $X^{\prime}$ of $X$ is a superkey

$$
\begin{aligned}
& -\{A, D\}^{+}=? \\
& -\{A, C\}^{+}=? \\
& -\{A, B\}^{+}=?
\end{aligned}
$$

ABCD


## Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set $X$ of attributes of $R$ is a superkey if $X^{+}$contains all the attributes of $R$
- $X$ is a candidate key (CK) if no proper subset $X^{\prime}$ of $X$ is a superkey

$$
\begin{aligned}
-\{A, D\}^{+} & =\{A, D, B, C\} \\
- & \{A, C\}^{+}=\{A, C\} \\
- & \{A, B\}^{+}=\{A, B, C, D\}
\end{aligned}
$$

ABCD
BCD ACD ABD ABC


## Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set $X$ of attributes of $R$ is a superkey if $X^{+}$contains all the attributes of $R$
- $X$ is a candidate key (CK) if no proper subset $X^{\prime}$ of $X$ is a superkey

$$
\begin{aligned}
-\{A, D\}^{+} & =\{A, D, B, C\} \\
- & \{A, C\}^{+}=\{A, C\} \\
- & \{A, B\}^{+}=\{A, B, C, D\}
\end{aligned}
$$

ABCD
Bicb ACD ABD ABC


## Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set $X$ of attributes of $R$ is a superkey if $X^{+}$contains all the attributes of $R$
- $X$ is a candidate key (CK) if no proper subset $X^{\prime}$ of $X$ is a superkey

ABCD


## Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set $X$ of attributes of $R$ is a superkey if $X^{+}$contains all the attributes of $R$
- $X$ is a candidate key (CK) if no proper subset $X^{\prime}$ of $X$ is a superkey

ABCD
BCD $A C D$ ABD $A B C$


## Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set $X$ of attributes of $R$ is a superkey if $X^{+}$contains all the attributes of $R$
- $X$ is a candidate key (CK) if no proper subset $X^{\prime}$ of $X$ is a superkey
- Some steps may be skipped
- If an attribute is nowhere in the RHS, it must be part of every candidate key (such as $A$ in the example)
- If an attribute is in the RHS of FDs but nowhere in the LHS, it cannot be part of any CK



## Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set $X$ of attributes of $R$ is a superkey if $X^{+}$contains all the attributes of $R$
- $X$ is a candidate key (CK) if no proper subset $X^{\prime}$ of $X$ is a superkey
- Some steps may be skipped

- If an attribute is nowhere in the RHS, it must be part of every candidate keyCD
of,
SBCD ACD$\widehat{A B D} \quad \stackrel{A B C}{ }$ (such as $A$ in the example)
- If an attribute is in the RHS of FDs but nowhere in the LHS, it cannot be part of any CK



## Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
"FD3.".'........

- A set $X$ of attributes of $R$ is a superkey if $X^{+}$contains all the attributes of $R$
- $X$ is a candidate key (CK) if no proper subset $X^{\prime}$ of $X$ is a superkey
- Some steps may be skipped
- If an attribute is nowhere in the RHS, it must be part of every candidate key (such as $A$ in the example)
- If an attribute is in the RHS of FDs but nowhere in the LHS, it cannot be part of any CK
- For instance, if we had only FD1 and FD2 (i.e., not FD3), we could immediately say that:
- $D$ cannot be in any CK
- $A$ and $B$ must be in every CK
- and, since $\{A, B\}^{+}=\{A, B, C, D\}$, we see that $\{A, B\}$ is a superkey and, thus, the only CK


## Your Turn

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:

FD1: $\mathbf{A} \rightarrow \mathrm{BC}$
FD2: $\mathbf{C} \rightarrow \mathbf{A D}$
FD3: $\mathbf{D E} \rightarrow \mathbf{F}$

- What are the candidate keys?


## Your Turn

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \boldsymbol{F})$ with the following FDs:

FD1: A $\rightarrow$ BC
FD2: $\mathbf{C} \rightarrow \mathrm{AD}$
FD3: $\mathbf{D E} \rightarrow \mathrm{F}$

- What are the candidate keys?
- $\{A, E\}$ and $\{C, E\}$
- $\{E\}^{+}=\{E\}$
$-\{A, E\}^{+}=\{A, E, B, C, D, F\}$
$-\{C, E\}^{+}=\{C, E, A, D, B, F\}$
$-\quad\{D, E\}^{+}=\{D, E, F\}$

$B$ is only in the RHS of some FD but not in any LHS, same holds for $F$


## Boyce-Codd Normal Form (BCNF)

- Relation schema $R$ with a set $F$ of functional dependencies is in BCNF if for every non-trivial FD $X \rightarrow Y$ in $F^{+}$we have that $X$ is a superkey
- Consider the relation $\mathbf{R}(A, B, C, D, E, F)$ with the following FDs:

FD1: A $\rightarrow$ BC
FD2: $\mathrm{C} \rightarrow \mathrm{AD}$
FD3: $D E \rightarrow F$

- What are the candidate keys?

$$
\begin{aligned}
- & \{A, E\} \text { and }\{C, E\} \\
- & \{E\}^{+}=\{E\} \\
- & \{A, E\}^{+}=\{A, E, B, C, D, F\} \\
- & \{C, E\}^{+}=\{C, E, A, D, B, F\} \\
- & \{D, E\}^{+}=\{D, E, F\}
\end{aligned}
$$

$B$ is only in the RHS of some FD but not in any LHS, same holds for $F$


## BCNF Example

- Relation schema $R$ with a set $F$ of functional dependencies is in BCNF if for every non-trivial FD $X \rightarrow Y$ in $F^{+}$we have that $X$ is a superkey
- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:

FD1: A $\rightarrow$ BC
FD2: $\mathbf{C} \rightarrow \mathbf{A D}$
FD3: $\mathbf{D E} \rightarrow \mathrm{F}$

- What are the candidate keys?
- $\{A, E\}$ and $\{C, E\}$
- Is the given relation in BCNF?
- If not, identify the FDs that violate the BCNF condition.


## Your Turn

- Relation schema $R$ with a set $F$ of functional dependencies is in BCNF if for every non-trivial FD $X \rightarrow Y$ in $F^{+}$we have that $X$ is a superkey
- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Candidate keys: $\{\mathrm{A}, \mathrm{B}\}$ and $\{\mathrm{A}, \mathrm{D}\}$
- Is the given relation in BCNF? If not, identify the FDs that violate the BCNF condition.

1) Yes, $B C N F$


## BCNF Decomposition Step

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation $\mathbf{R ( A , B , C , D})$ with the following set $F$ of $F D$ :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Let's decompose based on FD2


## BCNF Decomposition Step

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Let's decompose based on FD2
- R1(B,C,D)
- R2(A,B,C)


## BCNF Decomposition Step

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of $F D$ :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Let's decompose based on FD2 - and don't forget to determine the FDs of the resulting relation schemas
- R1(B,C,D )
- R2(A,B,C )


## BCNF Decomposition Step

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Let's decompose based on FD2 - and don't forget to determine the FDs of the resulting relation schemas
- R1(B,C,D) with FDs: FD2 and FD3
- R2(A,B,C) with FDs: FD1


## BCNF Decomposition Step

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Let's decompose based on FD2 - and don't forget to determine the FDs of the resulting relation schemas, and the CKs
- R1(B,C,D) with FDs: FD2 and FD3
- R2(A,B,C) with FDs: FD1


## BCNF Decomposition Step

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of $F D$ :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $B C \rightarrow D$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Let's decompose based on FD2 - and don't forget to determine the FDs of the resulting relation schemas, and the CKs
- R1( B,C,D ) with FDs: FD2 and FD3, CKs: $\{B, C\},\{C, D\}$
- R2(A,B,C ) with FDs: FD1, CK: $\{A, B\}$


## BCNF Decomposition Step

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Let's decompose based on FD2 - and don't forget to determine the FDs of the resulting relation schemas, and the CKs
- R1(B,C,D ) with FDs: FD2 and FD3, CKs: $\{B, C\},\{C, D\}$
- R2(A,B,C) with FDs: FD1, CK: \{A,B\}
- Are they in BCNF?


## BCNF Decomposition Step

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Let's decompose based on FD2 - and don't forget to determine the FDs of the resulting relation schemas, and the CKs
- R1(B,C,D ) with FDs: FD2 and FD3, CKs: $\{B, C\},\{C, D\}$
- R2(A,B,C) with FDs: FD1, CK: \{A,B\}
- Are they in BCNF? No, R1 is not because of FD3 (but R2 is)


## BCNF Decomposition Step

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of $F D$ :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Let's decompose based on FD2 - and don't forget to determine the FDs of the resulting relation schemas, and the CKs
- R1( B,C,D ) with FDs: FD2 and FD3, CKs: $\{B, C\},\{C, D\}$
- R2(A,B,C ) with FDs: FD1, CK: $\{A, B\}$
- Your turn: decompose R1 based on FD3 (and don't forget ...)


## BCNF Decomposition Step

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set $F$ of $F D$ :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $B C \rightarrow D$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Let's decompose based on FD2 - and don't forget to determine the FDs of the resulting relation schemas, and the CKs

- R2(A,B,C ) with FDs: FD1, CK: $\{A, B\}$
- R3(D,B) with FD3, CK \{D\} - R4(C,D) only trivial FDs, CK: \{C,D\}


## Your Turn

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation $\mathbf{R ( A , B , C , D})$ with the following set $F$ of $F D$ :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Let's decompose based on FD3 - and don't forget to determine the FDs of the resulting relation schemas, and the CKs


## Your Turn

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation $\mathbf{R ( A , B , C , D})$ with the following set $F$ of $F D$ :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $B C \rightarrow D$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- Let's decompose based on FD3 - and don't forget to determine the FDs of the resulting relation schemas, and the CKs
- R1(B,D) with FD3, CK: \{D\}
- R2(A,C,D ) with FD4: AD $\rightarrow C, C K:\{A, D\}$

R1 and R2 are in BCNF $\quad$.can be derived from FD3 and FD1 by using
the augmentation rule and the transitivity rule

## Different Example

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- $R 2$ with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation schema $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:

FD1: AB $\rightarrow$ CDEF
FD2: $\mathbf{E} \rightarrow \mathbf{F}$

- Your turn:
- Determine candidate key(s)
- Is $R$ in BCNF?
- If not, normalize into a set of BCNF relation schemas (and don't forget to determine FDs and CKs along the way)


## Different Example

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- $R 2$ with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation schema $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:

FD1: AB $\rightarrow$ CDEF
FD2: $\mathbf{E} \rightarrow \mathbf{F}$

- Your turn:
- Determine candidate key(s) $\{A, B\}$
- Is $R$ in BCNF? No, FD2 violates the BCNF condition.
- If not, normalize into a set of BCNF relation schemas

We decompose $R$ based on FD2:

- R1(E,F) with FD2; candidate key is $\{E\}$
- R2 $(A, B, C, D, E)$ with a new $F D: A B \rightarrow C D E$; candidate key is $\{A, B\}$
$R 1$ and $R 2$ are in BCNF


## One More

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation schema $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:

FD1: AB $\rightarrow$ CDEF
FD2: $\mathbf{E} \rightarrow \mathrm{F}$
FD3: $\mathbf{A} \rightarrow \mathbf{D}$

- Your turn:
- Determine candidate key(s)
- Is $R$ in BCNF?
- If not, normalize into a set of BCNF relation schemas (and don't forget to determine FDs and CKs along the way)


## One More

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- $R 2$ with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation schema $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:

FD1: AB $\rightarrow$ CDEF
FD2: $\mathbf{E} \rightarrow \mathrm{F}$
FD3: $\mathbf{A} \rightarrow \mathbf{D}$

- Solution: CK is $\{A, B\} ; R$ is not in BCNF because of FD2 and FD3. We decompose $R$ based on FD2:
- R1(E,F) with FD2; candidate key is $\{E\}$
- R2(A,B,C,D,E) with FD3 and a new FD: $A B \rightarrow C D E$; candidate key is $\{A, B\}$
$R 1$ is in BCNF, but $R 2$ is not because of FD3. So, we have to decompose R2 using FD3:
- R3(A,D) with FD3; candidate key is $\{A\}$
- R4(A,B,C,E) with new FD: $A B \rightarrow C E ;$ candidate key is $\{A B\}$
$R 3$ and $R 4$ are in BCNF. Hence, the result of normalizing $R$ consists of R1, R3, and $R 4$.


## Back to the Earlier Running Example

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- R2 with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation schema $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: $\mathbf{A} \rightarrow \mathbf{B C} \quad$ FD2: $\mathbf{C} \rightarrow \mathbf{A D} \quad$ FD3: $\mathbf{D E} \rightarrow \mathbf{F}$
- Recall: CKs are $\{A, E\},\{C, E\}$; all three FDs violate the BCNF condition
- Your turn: Normalize into a set of BCNF relation schemas (and don't forget to determine FDs and CKs along the way)


## Back to the Earlier Running Example

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose $R$ into
- R1 with all the attributes in $X$ and in $Y$, and
- $R 2$ with all attributes from $R$ except those that are in $Y$ and not in $X$
- Consider the relation schema $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: $\mathbf{A} \rightarrow \mathbf{B C} \quad$ FD2: $\mathbf{C} \rightarrow \mathbf{A D} \quad$ FD3: $\mathbf{D E} \rightarrow \mathbf{F}$
- Recall: CKs are $\{A, E\},\{C, E\}$; all three FDs violate the BCNF condition
- A possible solution: We decompose $R$ based on FD1:
- R1(A,B,C) with FD1 and a new FD: $C \rightarrow A$; candidate keys are $\{A\}$ and $\{C\}$
- R2(A,D,E,F) with FD3 and a new FD: $A \rightarrow D$; candidate key is $\{A, E\}$
$R 1$ is in BCNF, but $R 2$ is not because of $F D 3$ and $A \rightarrow D$. Let's decompose $R 2$ based on FD3:
- R3(D,E,F) with FD3; candidate key is $\{D, E\}$
$-R 4(A, D, E)$ with $A \rightarrow D$; candidate key is $\{A, E\}$
$R 3$ is in BCNF, but R4 is not because of $A \rightarrow D$. Let's decompose $R 4$ based on $A \rightarrow D$
$-R 5(A, D)$ with $A \rightarrow D$; candidate key is $\{A\}$
- R6(A,E) with only trivial FDs; candidate key is $\{A, E\}$
$R 5$ and $R 6$ are in BCNF. Hence, the result of the normalization consists of R1, R3, R5, R6.


## www.liu.se

