Database Technology

Topic 3: Relational Databases

Olaf Hartig olaf.hartig@liu.se

Relations

Relational Model Concepts

- Relational database: represent data as a collection of *relations*
- Example relation:

	Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
1	Benjamin Bayer	305-61-2435	<mark>(817)373-1616</mark>	2918 Bluebonnet Lane	NULL	19	3.21
	Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
Æ	Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
	Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
	Barbara Benson	533-69-1238	<mark>(817)839-8461</mark>	7384 Fontana Lane	NULL	19	3.25

STUDENT

• Quiz: in the relation data model (!), each of these things is called a ...

A) record / B) tuple / C) row

Quiz (NULL Values)

 Notice the value NULL that the Barbara Benson tuple has for the Office_phone attribute

	STODENT						
	Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
	Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21
1.	Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
	Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
	Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	<mark>(817)749-6492</mark>	28	3.93
	Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25

- What can this value mean?
 - A) Barbara Benson doesn't have an office phone.
 - B) Barbara Benson has an office phone but we don't know the number (perhaps withheld).
 - C) Any of the previous two.

CTUDENT

• A *relation schema* consists of:

A) relation name, attribute names and domains, and tuples;

or

B) relation name, attribute names and domains, and restrictions;

or

C) relation name, tuples, and NULL values.

A relation schema consists of:

A) relation name, attribute names and domains, and tuples;

or

B) relation name, attribute names and domains, and restrictions; integrity constraints

or

C) relation name, tuples, and NULL values.

Integrity Constraints

Uniqueness, Keys, and Superkeys

 Consider the following relation and assume a uniqueness constraint has been defined for the attribute set {Code, Year}

C	Course			
	Code	Title	Year	Leader
	TDDD12	Database Technology	2020	49
	TDDD12	Database Technology	2021	49
	TDDE49	Databases and Information Security	2021	49
	TDDD43	Advanced Databases and Data Models	2020	31
	753A01	Sports Analytics	2021	31

Suppose we want to insert the following tuple
TDDD43
Advanced Databases

2021 31

Would this be a violation of the uniqueness constraint?

A) yes B) no C) it depends

 Consider the following relation and assume a uniqueness constraint has been defined for the attribute set {Code, Year}

С	Course						
	Code	Title	Year	Leader			
	TDDD12	Database Technology	2020	49			
	TDDD12	Database Technology	2021	49			
	TDDE49	Databases and Information Security	2021	49			
	TDDD43	Advanced Databases and Data Models	2020	31			
	753A01	Sports Analytics	2021	31			

Specify a superkey for this relation that is not a key

 Consider the following relation and assume a uniqueness constraint has been defined for the attribute set {Code, Year}

С	course			
	Code	Title	Year	Leader
	TDDD12	Database Technology	2020	49
	TDDD12	Database Technology	2021	49
	TDDE49	Databases and Information Security	2021	49
	TDDD43	Advanced Databases and Data Models	2020	31
	753A01	Sports Analytics	2021	31
	TDDD43	Advanced Databases and Data Models	2020	31

- Specify a superkey for this relation that is not a key
- Each of the following sets of attributes is a possible answer
 - { Code, Year, Title }
 - { Code, Year, Leader }
 - { Code, Year, Title, Leader }

Which set of attributes could be a key for the following relation?

License_number	Engine_serial_number	Make	Model	Year		
Texas ABC-739	A69352	Ford	Mustang	02		
Florida TVP-347	B43696	Oldsmobile	Cutlass	05		
New York MPO-22	X83554	Oldsmobile	Delta	01		
California 432-TFY	C43742	Mercedes	190-D	99		
California RSK-629	Y82935	Toyota	Camry	04		
Texas RSK-629	U028365	Jaguar	XJS	04		

CAR

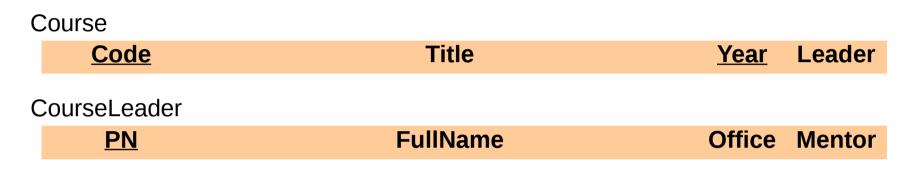
• Which set of attributes could be a key for the following relation?

CAR						
License_number	Engine_serial_number	Make	Model	Year		
Texas ABC-739	A69352	Ford	Mustang	02		
Florida TVP-347	B43696	Oldsmobile	Cutlass	05		
New York MPO-22	X83554	Oldsmobile	Delta	01		
California 432-TFY	C43742	Mercedes	190-D	99		
California RSK-629	Y82935	Toyota	Camry	04		
Texas RSK-629	U028365	Jaguar	XJS	04		

- The following two keys are possible
 - { License_number }

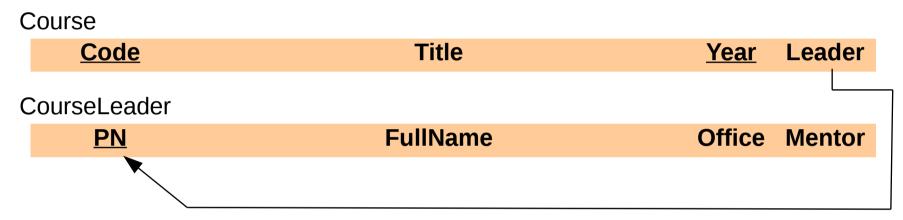
CAP

- { Engine_serial_number }
- Remember that we call each of them a candidate key, and we have to select one of them to be the primary key



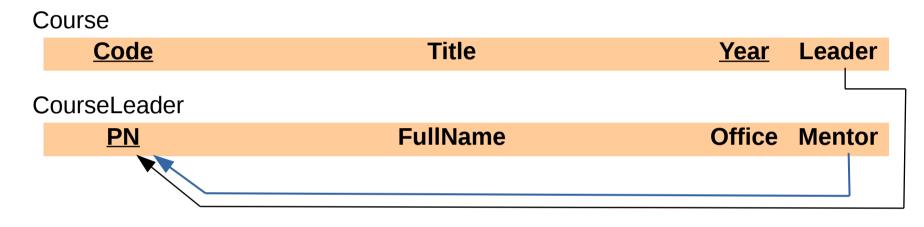
Integrity Constraints

Referential Integrity Constraints (Foreign Keys)


Consider the following two relation schemas

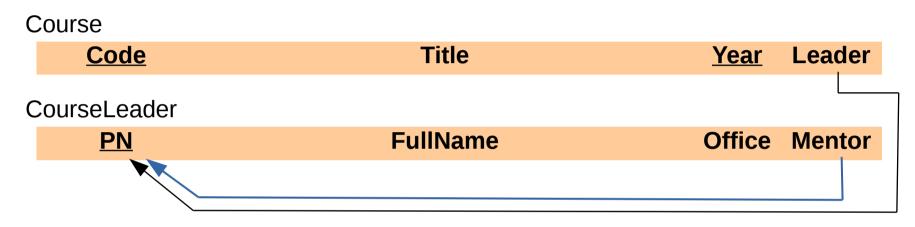
- Let's make sure that, for every course leader mentioned in the Course relation, data about that course leader is present in CourseLeader
- What do we have to do?
- A) Define the attribute PN to be a foreign key that refers to the attribute Leader.
- B) Define the attribute Leader to be a foreign key that refers to the attribute PN.
- C) Define that the attributes Leader and PN form a foreign key.

Consider the following two relation schemas



- Let's make sure that, for every course leader mentioned in the Course relation, data about that course leader is present in CourseLeader
- What do we have to do?
- -A) -Define the attribute-PN to be a foreign key that refers to the attribute Leader.
 - B) Define the attribute Leader to be a foreign key that refers to the attribute PN.
- --C)-Define-that-the-attributes Leader-and PN-form-a-foreign key:-

Another Example


Consider the following two relation schemas

Question

Consider the following two relation schemas

- Assume we want to record for every course leader the course that is her/his favorite course, which we may do by adding a foreign key from the CourseLeader relation to the Course relation.
- To do so, we might have to attributes to the CourseLeader relation. How many attributes?

A) 2 B) 1 C) 0 (i.e., the existing attributes can be used)

Feedback

How difficult/easy did you find the quizzes and exercise today in general?

A) quite difficult (most of them)

B) just right (most of them)

C) too easy (most of them)

www.liu.se

