Database Technology

Topic 6:

Functional Dependencies and Normalization

Olaf Hartig
olaf.hartig@liu.se
Make sure you have a sheet of paper and a pen.

You will need them for the exercises today.

Quiz

- Constraint between two sets of attributes from a relation

Let R be a relational schema with the attributes $A_{1}, A_{2}, \ldots, A_{n}$ and let X and Y be subsets of $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$.
Then, the functional dependency $X \rightarrow Y$ specifies the following constraint on any valid relation state r of R.

For any two tuples t_{1} and t_{2} in state r we have that:

$$
\text { if } t_{1}[\mathrm{X}]=t_{2}[\mathrm{X}] \text {, then } t_{1}[\mathrm{Y}]=t_{2}[\mathrm{Y}] \text {. }
$$

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:

FD1: A \rightarrow BC
FD2: $\mathbf{C} \rightarrow \mathrm{AD}$
FD3: $\mathbf{D E} \rightarrow \mathrm{F}$

- Is a state that contains the tuples (3,8,1,2,3,4) and (3,7,1,2,3,4) valid?

1) Yes
2) No

Reasoning About FDs

- Logical implications can be derived by using inference rules called Armstrong's rules:
- Reflexivity: If Y is a subset of X, then $X \rightarrow Y$
- Augmentation: If $X \rightarrow Y$, then $X Z \rightarrow Y Z$ (we use $X Y$ as a short form for $X \cup Y$)
- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Additional rules can be derived:
- Decomposition: If $X \rightarrow Y Z$, then $X \rightarrow Y$
- Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow Y Z$
- Pseudo-transitivity: If $X \rightarrow Y$ and $W Y \rightarrow Z$, then $W X \rightarrow Z$

Exercises: Armstrong Rules

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: A $\rightarrow \mathbf{B C}$

```
Reflexivity: If }Y\mathrm{ is a subset of }X\mathrm{ , then }X->
Augmentation: If }X->Y\mathrm{ , then }XZ->Y
Transitivity: If }X->Y\mathrm{ and Y 
Decomposition: If }X->YZ, then X ->
Union: If }X->Y\mathrm{ and }X->Z\mathrm{ , then }X->Y
Pseudo-transitivity: If }X->Y\mathrm{ and WY }->Z\mathrm{ ,
    then WX }->
```

FD2: $\mathbf{C} \rightarrow \mathbf{A D}$
FD3: $\mathbf{D E} \rightarrow \mathbf{F}$

- Use the Armstrong rules to derive the following FD: AC $\rightarrow \mathbf{D}$

Exercises: Armstrong Rules

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: A $\rightarrow \mathbf{B C}$
FD2: $\mathbf{C} \rightarrow \mathbf{A D}$
FD3: $\mathbf{D E} \rightarrow \mathbf{F}$
- Use the Armstrong rules to derive the following FD: AC $\rightarrow \mathbf{D}$
- FD4: AC \rightarrow AD
(Augmentation of FD2 with A)
- FD5: AC \rightarrow D
(Decomposition of FD4)

Exercises: Armstrong Rules

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: A \rightarrow BC

```
Reflexivity: If }Y\mathrm{ is a subset of }X\mathrm{ , then }X->
Augmentation: If }X->Y\mathrm{ , then }XZ->Y
Transitivity: If }X->Y\mathrm{ and Y 
Decomposition: If }X->YZ, then X ->
Union: If }X->Y\mathrm{ and }X->Z\mathrm{ , then }X->Y
Pseudo-transitivity: If }X->Y\mathrm{ and WY }->Z\mathrm{ ,
                                    then WX }->
```

FD2: $\mathbf{C} \rightarrow \mathbf{A D}$
FD3: $\mathbf{D E} \rightarrow \mathbf{F}$

- Use the Armstrong rules to derive the following FD: AC $\rightarrow \mathbf{D}$
- FD4: AC \rightarrow AD
(Augmentation of FD2 with A)
- FD5: AC \rightarrow D
(Decomposition of FD4)
- Use the Armstrong rules to derive the following FD: A $\rightarrow \mathbf{D}$

Exercises: Armstrong Rules

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: A \rightarrow BC
FD2: $\mathbf{C} \rightarrow \mathbf{A D}$
FD3: $\mathbf{D E} \rightarrow \mathbf{F}$
- Use the Armstrong rules to derive the following FD: AC $\rightarrow \mathbf{D}$
- FD4: AC \rightarrow AD
- FD5: AC \rightarrow D
(Decomposition of FD4)
- Use the Armstrong rules to derive the following FD: A $\rightarrow \mathbf{D}$
- FD6: A \rightarrow C
(Decomposition of FD1)
- FD7: A \rightarrow AD
(Transitivity of FD6 and FD2)
- FD8: A \rightarrow D
(Decomposition of FD7)

Exercises: Armstrong Rules

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: A \rightarrow BC

```
Reflexivity: If }Y\mathrm{ is a subset of }X\mathrm{ , then }X->
Augmentation: If }X->Y\mathrm{ , then }XZ->Y
Transitivity: If }X->Y\mathrm{ and Y 
Decomposition: If }X->YZ, then X ->
Union: If }X->Y\mathrm{ and }X->Z\mathrm{ , then }X->Y
Pseudo-transitivity: If }X->Y\mathrm{ and WY }->Z\mathrm{ ,
    then WX }->
```

FD2: $\mathbf{C} \rightarrow \mathrm{AD}$
FD3: $\mathbf{D E} \rightarrow \mathbf{F}$

- Use the Armstrong rules to derive the following FD: $\mathbf{A E} \rightarrow \mathrm{ABCDEF}$

Exercises: Armstrong Rules

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:
FD1: A $\rightarrow \mathbf{B C}$
FD2: $\mathbf{C} \rightarrow \mathbf{A D}$
FD3: $\mathbf{D E} \rightarrow \mathrm{F}$
- Use the Armstrong rules to derive the following FD: AE \rightarrow ABCDEF
- FD9: $\mathrm{AE} \rightarrow \mathrm{BCE} \quad$ (Augmentation of FD1 with E)
- FD10: $\mathrm{AE} \rightarrow \mathrm{C}$ (Decomposition of FD9)
- FD11: AE \rightarrow AD (Transitivity of FD10 and FD2)
- FD12: AE \rightarrow ADE (Augmentation of FD11 with E)
- FD13: $\mathrm{AE} \rightarrow \mathrm{DE} \quad$ (Decomposition of FD12)
- FD14: AE \rightarrow F (Transitivity of FD13 and FD3)
- FD15: AE \rightarrow ABCDEF (Union of FD9, FD11, and FD14)

Computing (Super)Keys

```
function ComputeAttrClosure( X, F )
begin
    X+ := X;
    while F contains an FD Y 
            (i) Y is a subset of }\mp@subsup{X}{}{+}\mathrm{ , and
            (ii) }Z\mathrm{ is not a subset of }\mp@subsup{X}{}{+}\mathrm{ do
        X+ := X+ U Z;
    end while
    return X+;
end
```


Warmup (cont'd)

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
FD1: A $\rightarrow \mathbf{B C}$
FD2: $\mathbf{C} \rightarrow \mathbf{A D}$
FD3: $\mathbf{D E} \rightarrow \mathbf{F}$
- Compute the attribute closure of $X=\{\mathbf{A}, \mathbf{E}\}$ w.r.t. $F=\{$ FD1, FD2, FD3 $\}$ to show that we have: $\mathbf{A E} \rightarrow \mathbf{A B C D E F}$
- Initially: $\quad X^{+}=\{A, E\}$
- By using FD1: $X^{+}=\{A, E, B, C\}$
- By using FD2: $X^{+}=\{A, E, B, C, D\}$
- By using FD3: $\mathrm{X}^{+}=\{\mathrm{A}, \mathrm{E}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}\}$

Your Turn

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D})$ with the following set F of FDs:
FD1: $\mathrm{AB} \rightarrow \mathrm{C}$
FD2: BC \rightarrow D
FD3: $\mathbf{D} \rightarrow \mathbf{B}$
- Compute the following attribute closures w.r.t. $F=\{F D 1, F D 2, F D 3\}$
- $\{B, C, D\}^{+}=$?
- $\{A, C, D\}^{+}=$?
- $\{A, B, D\}^{+}=$?
- $\{A, B, C\}^{+}=$?

Your Turn

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D})$ with the following set F of FDs:
FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$
- Compute the following attribute closures w.r.t. $F=\{F D 1, F D 2, F D 3\}$
- $\{B, C, D\}^{+}=\{B, C, D\}$
- $\{A, C, D\}^{+}=\{A, C, D, B\}$
- $\{A, B, D\}^{+}=\{A, B, D, C\}$
- $\{A, B, C\}^{+}=\{A, B, C, D\}$

Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set F of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: BC \rightarrow D
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set X of attributes of R is a superkey if X^{+}contains all the attributes of R

$$
\begin{aligned}
- & \{B, C, D\}^{+}=\{B, C, D\} \\
- & \{A, C, D\}^{+}=\{A, C, D, B\} \\
- & \{A, B, D\}^{+}=\{A, B, D, C\} \\
- & \{A, B, C\}^{+}=\{A, B, C, D\}
\end{aligned}
$$

Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set F of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: BC \rightarrow D
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set X of attributes of R is a superkey if X^{+}contains all the attributes of R
- X is a candidate key (CK) if no proper subset X^{\prime} of X is a superkey

$$
\begin{aligned}
& -\{A, D\}^{+}=? \\
& -\{A, C\}^{+}=? \\
& -\{A, B\}^{+}=?
\end{aligned}
$$

Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set F of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: BC \rightarrow D
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set X of attributes of R is a superkey if X^{+}contains all the attributes of R
- X is a candidate key (CK) if no proper subset X^{\prime} of X is a superkey

$$
\left.\begin{array}{rl}
- & \{A, D\}^{+}
\end{array}=\{A, D, B, C\}\right\}
$$

Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set F of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: BC \rightarrow D
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set X of attributes of R is a superkey if X^{+}contains all the attributes of R
- X is a candidate key (CK) if no proper subset X^{\prime} of X is a superkey

$$
\left.\begin{array}{rl}
- & \{A, D\}^{+}
\end{array}=\{A, D, B, C\}\right\}
$$

Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set F of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: BC \rightarrow D
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set X of attributes of R is a superkey if X^{+}contains all the attributes of R
- X is a candidate key (CK) if no proper subset X^{\prime} of X is a superkey

ABCD

Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set F of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: BC \rightarrow D
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set X of attributes of R is a superkey if X^{+}contains all the attributes of R
- X is a candidate key (CK) if no proper subset X^{\prime} of X is a superkey

ABCD

Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set F of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: $\mathbf{B C} \rightarrow \mathbf{D}$
FD3: $\mathbf{D} \rightarrow \mathbf{B}$

- A set X of attributes of R is a superkey if X^{+}contains all the attributes of R
- X is a candidate key (CK) if no proper subset X^{\prime} of X is a superkey
- Some steps may be skipped
- If an attribute is in the RHS of FDs but nowhere in the LHS, it cannot be part of any CK
- If an attribute is nowhere in the RHS, it must be part of any candidate key (such as A in the example)

Superkeys and Candidate Keys

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ with the following set F of FDs :

FD1: $\mathbf{A B} \rightarrow \mathbf{C}$
FD2: BC \rightarrow D

- A set X of attributes of R is a superkey if X^{+}contains all the attributes of R
- X is a candidate key (CK) if no proper subset X^{\prime} of X is a superkey
- Some steps may be skipped
- If an attribute is in the RHS of FDs but nowhere in the LHS, it cannot be part of any CK
- If an attribute is nowhere in the RHS, it must be part of every candidate key (such as A in the example)
- For instance, if we had only FD1 and FD2 (i.e., not FD3), we could immediately say that:
- A and B must be in every CK
- and, since $\{A, B\}^{+}=\{A, B, C, D\}$, $\{A, B\}$ is a superkey and thus the only CK

Your Turn

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:

FD1: A \rightarrow BC
FD2: $\mathbf{C} \rightarrow \mathbf{A D}$
FD3: $\mathbf{D E} \rightarrow \mathrm{F}$

- What are the candidate keys?

Your Turn

- Consider the relation $\mathbf{R}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F})$ with the following FDs:

FD1: A \rightarrow BC
FD2: $\mathbf{C} \rightarrow \mathrm{AD}$
FD3: $\mathbf{D E} \rightarrow \mathrm{F}$

- What are the candidate keys?

```
- \{A,E\} and \{C,E\}
\(-\{E\}^{+}=\{E\}\)
- \(\{A, E\}^{+}=\{A, E, B, C, D, F\}\)
- \(\{C, E\}^{+}=\{C, E, A, D, B, F\}\)
\(-\quad\{D, E\}^{+}=\{D, E, F\}\)
\(-\{E\}^{+}=\{E\}\)
- \(\{A, E\}^{+}=\{A, E, B, C, D, F\}\)
- \(\{C, E\}^{+}=\{C, E, A, D, B, F\}\)
\(-\{D, E\}^{+}=\{D, E, F\}\)
```

B is only in the RHS of some FD but not in any LHS, same holds for F

AE

