Database Technology

Topic 6: Functional Dependencies and Normalization

Olaf Hartig olaf.hartig@liu.se

Make sure you have a sheet of paper and a pen.

You will need them for the exercises today.

Quiz

Constraint between two sets of attributes from a relation

Let *R* be a relational schema with the attributes $A_1, A_2, ..., A_n$ and let *X* and *Y* be subsets of $\{A_1, A_2, ..., A_n\}$. Then, the functional dependency $X \rightarrow Y$ specifies the following constraint on *any* valid relation state *r* of *R*. For *any* two tuples t_1 and t_2 in state *r* we have that: if $t_1[X] = t_2[X]$, then $t_1[Y] = t_2[Y]$.

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: $A \rightarrow BC$ FD2: $C \rightarrow AD$ FD3: $DE \rightarrow F$

Is a state that contains the tuples (3,8,1,2,3,4) and (3,7,1,2,3,4) valid?
 1) Yes
 2) No

Reasoning About FDs

- Logical implications can be derived by using inference rules called Armstrong's rules:
 - Reflexivity: If Y is a subset of X, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$

(we use *XY* as a short form for *X* U *Y*)

- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Additional rules can be derived:
 - Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Pseudo-transitivity: If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

 Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: $A \rightarrow BC$ FD2: $C \rightarrow AD$

FD3: **DE** \rightarrow **F**

Reflexivity: If *Y* is a subset of *X*, then $X \rightarrow Y$ *Augmentation:* If $X \rightarrow Y$, then $XZ \rightarrow YZ$ *Transitivity:* If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$ *Decomposition:* If $X \rightarrow YZ$, then $X \rightarrow Y$ *Union:* If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$ *Pseudo-transitivity:* If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

■ Use the Armstrong rules to derive the following FD: AC → D

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: $\mathbf{A} \rightarrow \mathbf{BC}$

- FD2: **C** → **AD**
- FD3: **DE** \rightarrow **F**

Reflexivity: If *Y* is a subset of *X*, then $X \rightarrow Y$ *Augmentation:* If $X \rightarrow Y$, then $XZ \rightarrow YZ$ *Transitivity:* If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$ *Decomposition:* If $X \rightarrow YZ$, then $X \rightarrow Y$ *Union:* If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$ *Pseudo-transitivity:* If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

- Use the Armstrong rules to derive the following FD: AC → D
 - FD4: $AC \rightarrow AD$ (Augmentation of FD2 with A)
 - FD5: $AC \rightarrow D$ (Decomposition of FD4)

 Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: $A \rightarrow BC$ FD2: $C \rightarrow AD$

FD3: $DE \rightarrow F$

Reflexivity: If *Y* is a subset of *X*, then $X \rightarrow Y$ *Augmentation:* If $X \rightarrow Y$, then $XZ \rightarrow YZ$ *Transitivity:* If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$ *Decomposition:* If $X \rightarrow YZ$, then $X \rightarrow Y$ *Union:* If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$ *Pseudo-transitivity:* If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

- Use the Armstrong rules to derive the following FD: AC → D
 - FD4: $AC \rightarrow AD$ (Augmentation of FD2 with A)
 - FD5: $AC \rightarrow D$ (Decomposition of FD4)
- Use the Armstrong rules to derive the following FD: A → D

Consider the relation **R(A,B,C,D,E,F)** with the following FDs:

FD1: **A** → **BC** FD2: $\mathbf{C} \rightarrow \mathbf{AD}$

FD3: **DE** → **F**

Reflexivity: If Y is a subset of X, then $X \rightarrow Y$ Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ *Transitivity:* If $X \to Y$ and $Y \to Z$, then $X \to Z$ Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$ Pseudo-transitivity: If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

- Use the Armstrong rules to derive the following FD: $AC \rightarrow D$
 - FD4: AC → AD (Augmentation of FD2 with A)
 - (Decomposition of FD4) - FD5: AC → D
- Use the Armstrong rules to derive the following FD: $\mathbf{A} \rightarrow \mathbf{D}$
 - (Decomposition of FD1) - FD6: A → C
 - FD7: A → AD (Transitivity of FD6 and FD2)
 - FD8: A → D

(Decomposition of FD7)

 Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: $A \rightarrow BC$ FD2: $C \rightarrow AD$

FD3: **DE** \rightarrow **F**

Reflexivity: If *Y* is a subset of *X*, then $X \rightarrow Y$ *Augmentation:* If $X \rightarrow Y$, then $XZ \rightarrow YZ$ *Transitivity:* If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$ *Decomposition:* If $X \rightarrow YZ$, then $X \rightarrow Y$ *Union:* If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$ *Pseudo-transitivity:* If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

■ Use the Armstrong rules to derive the following FD: AE → ABCDEF

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: $\mathbf{A} \rightarrow \mathbf{BC}$ FD2: $\mathbf{C} \rightarrow \mathbf{AD}$

FD3: $DE \rightarrow F$

Reflexivity: If *Y* is a subset of *X*, then $X \rightarrow Y$ *Augmentation:* If $X \rightarrow Y$, then $XZ \rightarrow YZ$ *Transitivity:* If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$ *Decomposition:* If $X \rightarrow YZ$, then $X \rightarrow Y$ *Union:* If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$ *Pseudo-transitivity:* If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

- Use the Armstrong rules to derive the following FD: AE → ABCDEF
 - FD9: $AE \rightarrow BCE$ (Augmentation of FD1 with E)
 - FD10: $AE \rightarrow C$ (Decomposition of FD9)
 - FD11: $AE \rightarrow AD$ (Transitivity of FD10 and FD2)
 - FD12: $AE \rightarrow ADE$ (Augmentation of FD11 with E)
 - FD13: $AE \rightarrow DE$ (Decomposition of FD12)
 - FD14: $AE \rightarrow F$ (Transitivity of FD13 and FD3)
 - FD15: $AE \rightarrow ABCDEF$ (Union of FD9, FD11, and FD14)

Computing (Super)Keys

```
function ComputeAttrClosure(X, F)

begin

X^+ := X;

while F contains an FD Y \rightarrow Z such that

(i) Y is a subset of X^+, and

(ii) Z is not a subset of X^+ do

X^+ := X^+ \cup Z;

end while

return X^+;

end
```


Warmup (cont'd)

 Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: $A \rightarrow BC$ FD2: $C \rightarrow AD$ FD3: $DE \rightarrow F$

- function ComputeAttrClosure(X, F) begin $X^+ := X;$ while F contains an FD $Y \rightarrow Z$ such that (i) Y is a subset of X^+ , and (ii) Z is not a subset of X^+ do $X^+ := X^+ \cup Z;$ end while return $X^+;$ end
- Compute the **attribute closure** of $X = \{ A, E \}$ w.r.t. $F = \{FD1, FD2, FD3\}$ to show that we have: $AE \rightarrow ABCDEF$
 - Initially: X⁺ = { A,E }
 - By using FD1: X⁺ = { A,E,B,C }
 - By using FD2: X⁺ = { A,E,B,C,D }
 - By using FD3: X⁺ = { A,E,B,C,D,F }

Your Turn

- Consider the relation R(A,B,C,D) with the following set F of FDs:
 - FD1: $AB \rightarrow C$ FD2: $BC \rightarrow D$ FD3: $D \rightarrow B$

function ComputeAttrClosure(X, F) begin $X^+ := X;$ while F contains an FD Y \rightarrow Z such that (i) Y is a subset of X⁺, and (ii) Z is not a subset of X⁺ do $X^+ := X^+ \cup Z;$ end while return X⁺; end

Compute the following attribute closures w.r.t. F = {FD1, FD2, FD3}

- { B,C,D }⁺ = ?
- { A,C,D }⁺ = ?
- { A,B,D }⁺ = ?
- { A,B,C }⁺ = ?

Your Turn

- Consider the relation R(A,B,C,D) with the following set F of FDs:
 - FD1: $AB \rightarrow C$ FD2: $BC \rightarrow D$
 - FD3: $\mathbf{D} \rightarrow \mathbf{B}$

```
function ComputeAttrClosure(X, F)

begin

X^+ := X;

while F contains an FD Y \rightarrow Z such that

(i) Y is a subset of X^+, and

(ii) Z is not a subset of X^+ do

X^+ := X^+ \cup Z;

end while

return X^+;

end
```

- Compute the following attribute closures w.r.t. F = {FD1, FD2, FD3}
 - { B,C,D }* = { B,C,D }
 - $\{A,C,D\}^+ = \{A,C,D,B\}$
 - ${A,B,D}^+ = {A,B,D,C}$
 - $\{A,B,C\}^+ = \{A,B,C,D\}$

- Consider the relation R(A,B,C,D) with the following set *F* of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R
 - { B,C,D }* = { B,C,D }
 - { A,C,D }* = { A,C,D,B }
 - ${A,B,D}^+ = {A,B,D,C}$
 - $\{A,B,C\}^+ = \{A,B,C,D\}$

- Consider the relation R(A,B,C,D) with the following set F of FDs:
 FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R

- Consider the relation R(A,B,C,D) with the following set *F* of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R

- Consider the relation R(A,B,C,D) with the following set *F* of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R

- Consider the relation R(A,B,C,D) with the following set F of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R

- Consider the relation R(A,B,C,D) with the following set F of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R

- Consider the relation R(A,B,C,D) with the following set *F* of FDs:
 FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R
- X is a candidate key (CK) if no proper subset X' of X is a superkey
- Some steps may be skipped
 - If an attribute is in the RHS of FDs but nowhere in the LHS, it cannot be part of any CK
 - If an attribute is nowhere in the RHS, it must be part of any candidate key (such as A in the example)

- Consider the relation R(A,B,C,D) with the following set *F* of FDs:
 FD1: AB → C
 FD2: BC → D
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R
- X is a candidate key (CK) if no proper subset X' of X is a superkey
- Some steps may be skipped
 - If an attribute is in the RHS of FDs but nowhere in the LHS, it cannot be part of any CK
 - If an attribute is nowhere in the RHS, it must be part of every candidate key (such as A in the example)

- For instance, if we had only FD1 and FD2 (i.e., not FD3), we could immediately say that:
 - A and B must be in every CK
 - and, since {A,B}⁺ = {A,B,C,D},
 {A,B} is a superkey and thus the only CK

Your Turn

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
 - FD1: $A \rightarrow BC$ FD2: $C \rightarrow AD$ FD3: $DE \rightarrow F$
- What are the candidate keys?

Your Turn

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
 - FD1: $A \rightarrow BC$ FD2: $C \rightarrow AD$ FD3: $DE \rightarrow F$
- What are the candidate keys?
 - {A,E} and {C,E}
 - $\{ E \}^+ = \{ E \}$
 - { A,E }⁺ = { A,E,B,C,D,F }
 - $\{ C, E \}^+ = \{ C, E, A, D, B, F \}$
 - { D,E }* = { D,E,F }

