Database Technology

Topic 6: Functional Dependencies and Normalization

Olaf Hartig olaf.hartig@liu.se

Quiz

Constraint between two sets of attributes from a relation

Let *R* be a relational schema with the attributes $A_1, A_2, ..., A_n$ and let *X* and *Y* be subsets of $\{A_1, A_2, ..., A_n\}$. Then, the functional dependency $X \rightarrow Y$ specifies the following constraint on *any* valid relation state *r* of *R*. For *any* two tuples t_1 and t_2 in state *r* we have that: if $t_1[X] = t_2[X]$, then $t_1[Y] = t_2[Y]$.

Consider the relation R(A,B,C,D,E,F) with the following FDs:

FD1: $A \rightarrow BC$ FD2: $C \rightarrow AD$ FD3: $DE \rightarrow F$

Is a state that contains the tuples (3,8,1,2,3,4) and (3,7,1,2,3,4) valid?
 1) Yes
 2) No

Reasoning About FDs

- Logical implications can be derived by using inference rules called Armstrong's rules:
 - Reflexivity: If Y is a subset of X, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$

(we use *XY* as a short form for *X* U *Y*)

- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Additional rules can be derived:
 - Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Pseudo-transitivity: If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
 FD1: A → BC
 FD2: C → AD
 - FD3: $DE \rightarrow F$
- Use the Armstrong rules to derive the following FD: AC → D

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
 FD1: A → BC
 - FD2: **C** → **AD**
 - FD3: $DE \rightarrow F$
- Use the Armstrong rules to derive the following FD: $AC \rightarrow D$
 - FD4: AC → AD

(Augmentation of FD2 with A)

- FD5: $AC \rightarrow D$ (Decomposition of FD4)

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
 FD1: A → BC
 FD2: C → AD
 - FD3: **DE** → **F**
- Use the Armstrong rules to derive the following FD: AC → D
 - FD4: $AC \rightarrow AD$ (Augmentation of FD2 with A)
 - FD5: $AC \rightarrow D$ (Decomposition of FD4)
- Use the Armstrong rules to derive the following FD: A → D

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
 FD1: A → BC
 FD2[·] C → AD
 - FD3: **DE** → **F**
- Use the Armstrong rules to derive the following FD: AC → D
 - FD4: $AC \rightarrow AD$ (Augmentation of FD2 with A)
 - FD5: $AC \rightarrow D$ (Decomposition of FD4)
- Use the Armstrong rules to derive the following FD: A → D
 - FD6: $\mathbf{A} \rightarrow \mathbf{C}$ (Decomposition of FD1)
 - FD7: $\mathbf{A} \rightarrow \mathbf{AD}$ (Transitivity of FD6 and FD2)
 - FD8: **A** → **D**
- (Decomposition of FD7)

Warmup (cont'd)

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
 FD1: A → BC
 FD2: C → AD
 - FD3: **DE** \rightarrow **F**
- Use the Armstrong rules to derive the following FD: AE → ABCDEF

Warmup (cont'd)

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
 FD1: A → BC
 - FD2: $\mathbf{C} \rightarrow \mathbf{AD}$
 - FD3: **DE** \rightarrow **F**
- Use the Armstrong rules to derive the following FD: AE → ABCDEF
 - FD9: $AE \rightarrow BCE$ (Augmentation of FD1 with E)
 - FD10: **AE** → **C** (Decomposition of FD9)
 - FD11: $AE \rightarrow AD$ (Transitivity of FD10 and FD2)
 - FD12: $AE \rightarrow ADE$ (Augmentation of FD11 with E)
 - FD13: $AE \rightarrow DE$ (Decomposition of FD12)
 - FD14: $AE \rightarrow F$ (Transitivity of FD13 and FD3)
 - FD15: $AE \rightarrow ABCDEF$ (Union of FD9, FD11, and FD14)

Computing (Super)Keys

```
function ComputeAttrClosure(X, F)

begin

X^+ := X;

while F contains an FD Y \rightarrow Z such that

(i) Y is a subset of X^+, and

(ii) Z is not a subset of X^+ do

X^+ := X^+ \cup Z;

end while

return X^+;

end
```


Warmup (cont'd)

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
 FD1: A → BC
 FD2: C → AD
 - FD3: $DE \rightarrow F$
- Compute the **attribute closure** of $X = \{A, E\}$ w.r.t. $F = \{FD1, FD2, FD3\}$ to show that we have: $AE \rightarrow ABCDEF$
 - Initially: X⁺ = { A,E }
 - By using FD1: X⁺ = { A,E,B,C }
 - By using FD2: X⁺ = { A,E,B,C,D }
 - By using FD3: X⁺ = { A,E,B,C,D,F }

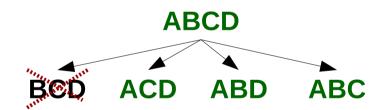
Your Turn

- Consider the relation R(A,B,C,D) with the following set F of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- Compute the following attribute closures w.r.t. F = {FD1, FD2, FD3}
 - { B,C,D }⁺ = ?
 - $\{A,C,D\}^+ = ?$
 - { A,B,D }⁺ = ?
 - $\{A,B,C\}^+ = ?$

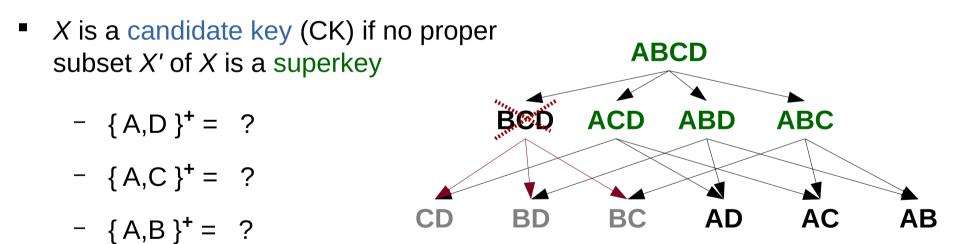
Your Turn

- Consider the relation R(A,B,C,D) with the following set *F* of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- Compute the following attribute closures w.r.t. F = {FD1, FD2, FD3}
 - { B,C,D }* = { B,C,D }
 - $\{A,C,D\}^+ = \{A,C,D,B\}$
 - ${A,B,D}^+ = {A,B,D,C}$
 - $\{A,B,C\}^+ = \{A,B,C,D\}$

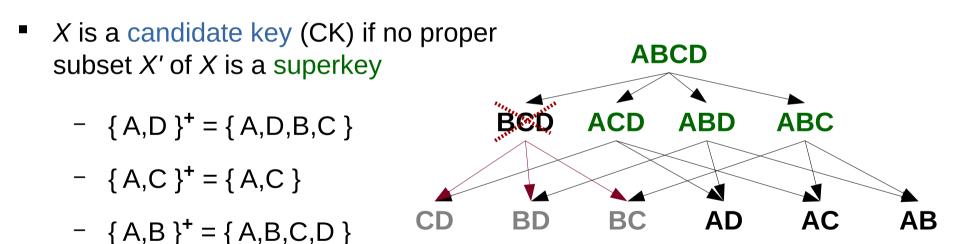
- Consider the relation R(A,B,C,D) with the following set *F* of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R
 - $\{B,C,D\}^+ = \{B,C,D\}$
 - $\{A,C,D\}^+ = \{A,C,D,B\}$
 - ${A,B,D}^+ = {A,B,D,C}$
 - $\{A,B,C\}^{+} = \{A,B,C,D\}$



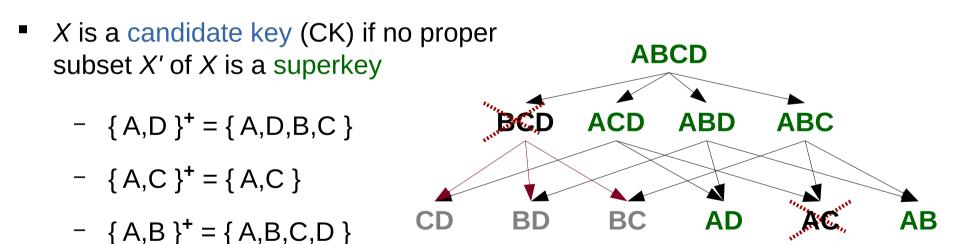
- Consider the relation R(A,B,C,D) with the following set *F* of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R



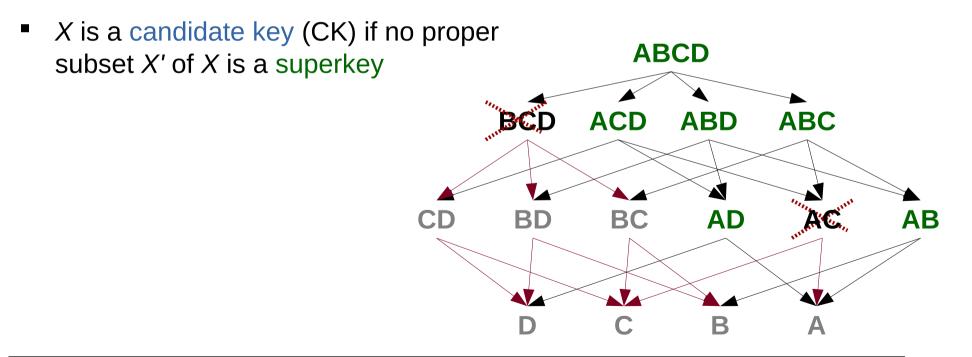
- Consider the relation R(A,B,C,D) with the following set *F* of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R



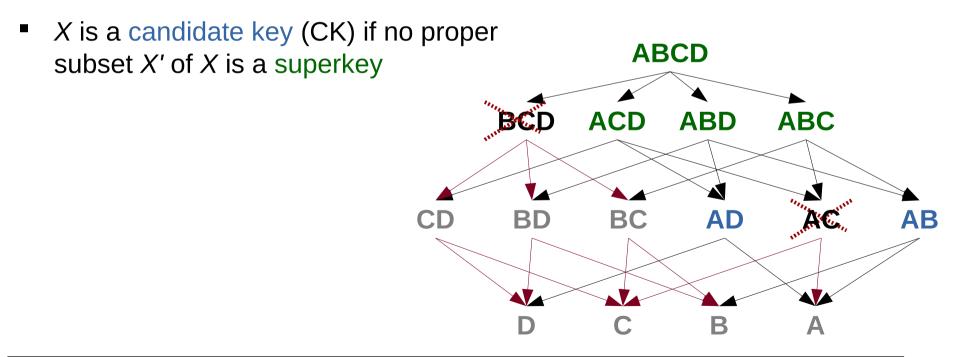
- Consider the relation R(A,B,C,D) with the following set *F* of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R



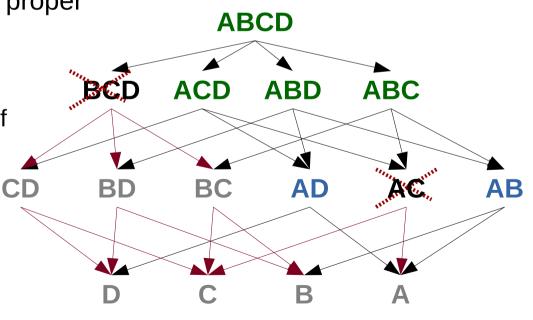
- Consider the relation R(A,B,C,D) with the following set F of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R



- Consider the relation R(A,B,C,D) with the following set F of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R



- Consider the relation R(A,B,C,D) with the following set *F* of FDs: FD1: AB → C
 FD2: BC → D
 FD3: D → B
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R
- X is a candidate key (CK) if no proper subset X' of X is a superkey
- Some steps may be skipped
 - If an attribute is in the RHS of FDs but nowhere in the LHS, it cannot be part of any CK
 - If an attribute is nowhere in the RHS, it must be part of any candidate key (such as A in the example)



- Consider the relation R(A,B,C,D) with the following set *F* of FDs:
 FD1: AB → C
 FD2: BC → D
- A set X of attributes of R is a superkey if X^+ contains all the attributes of R
- X is a candidate key (CK) if no proper subset X' of X is a superkey
- Some steps may be skipped
 - If an attribute is in the RHS of FDs but nowhere in the LHS, it cannot be part of any CK
 - If an attribute is nowhere in the RHS, it must be part of every candidate key (such as A in the example)

- For instance, if we had only FD1 and FD2 (i.e., not FD3), we could immediately say that:
 - A and B must be in every CK
 - and, since {A,B}⁺ = {A,B,C,D},
 {A,B} is a superkey and thus the only CK

Your Turn

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
 - FD1: $A \rightarrow BC$ FD2: $C \rightarrow AD$ FD3: $DE \rightarrow F$
- What are the candidate keys?

Your Turn

- Consider the relation R(A,B,C,D,E,F) with the following FDs:
 - FD1: $A \rightarrow BC$ FD2: $C \rightarrow AD$ FD3: $DE \rightarrow F$
- What are the candidate keys?
 - $\{A,E\}$ and $\{C,E\}$

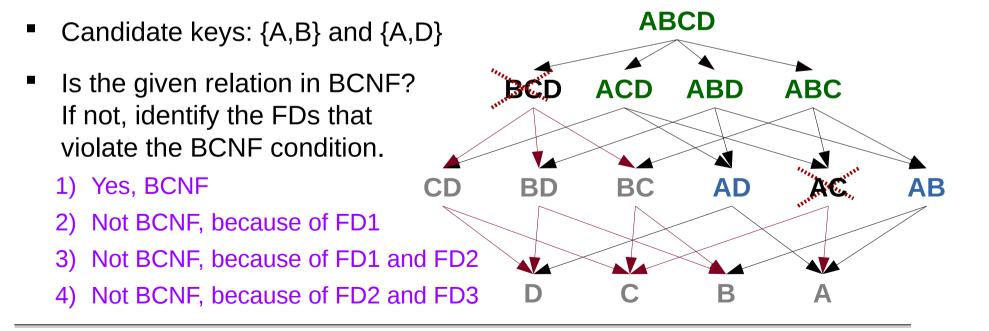
BCNF

- Relation schema R with a set F of functional dependencies is in BCNF if for every non-trivial FD X → Y in F⁺ we have that X is a superkey
- Consider the relation R(A,B,C,D,E,F) with the following FDs:
 - FD1: $A \rightarrow BC$ FD2: $C \rightarrow AD$ FD3: $DE \rightarrow F$
- What are the candidate keys?
 - {A,E} and {C,E}
- Is the given relation in BCNF?
 - If not, identify the FDs that violate the BCNF condition.

Your Turn

- Relation schema R with a set F of functional dependencies is in BCNF if for every non-trivial FD X → Y in F⁺ we have that X is a superkey
- Consider the relation **R(A,B,C,D)** with the following set *F* of FDs:

FD1: $AB \rightarrow C$ FD2: $BC \rightarrow D$ FD3: $D \rightarrow B$



- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - R2 with all attributes from R except those that are in Y and not in X
- Consider the relation **R(A,B,C,D)** with the following set *F* of FDs:
 - FD1: $AB \rightarrow C$
 - FD2: **BC** \rightarrow **D**
 - FD3: $D \rightarrow B$
- Let's decompose based on FD2

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - R2 with all attributes from R except those that are in Y and not in X
- Consider the relation **R(A,B,C,D)** with the following set *F* of FDs:
 - FD1: $AB \rightarrow C$
 - FD2: **BC** \rightarrow **D**
 - FD3: $\mathbf{D} \rightarrow \mathbf{B}$
- Let's decompose based on FD2

- R1(B,C,D)
- R2(A,B,C)

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - R2 with all attributes from R except those that are in Y and not in X
- Consider the relation **R(A,B,C,D)** with the following set *F* of FDs:
 - FD1: $AB \rightarrow C$
 - FD2: **BC** \rightarrow **D**
 - FD3: $\mathbf{D} \rightarrow \mathbf{B}$
- Let's decompose based on FD2 and don't forget to determine the FDs of the resulting relation schemas
 - R1(B,C,D)
 - R2(A,B,C)

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - *R2* with all attributes from *R* except those that are in *Y* and not in *X*
- Consider the relation R(A,B,C,D) with the following set F of FDs:
 - FD1: $AB \rightarrow C$
 - FD2: **BC** \rightarrow **D**
 - FD3: $\mathbf{D} \rightarrow \mathbf{B}$
- Let's decompose based on FD2 and don't forget to determine the FDs of the resulting relation schemas
 - R1(B,C,D) with FDs: FD2 and FD3
 - R2(A,B,C) with FDs: FD1

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - *R2* with all attributes from *R* except those that are in *Y* and not in *X*
- Consider the relation R(A,B,C,D) with the following set F of FDs:
 - FD1: $AB \rightarrow C$
 - FD2: **BC** \rightarrow **D**
 - FD3: $\mathbf{D} \rightarrow \mathbf{B}$
- Let's decompose based on FD2 and don't forget to determine the FDs of the resulting relation schemas, and the CKs
 - R1(B,C,D) with FDs: FD2 and FD3
 - R2(A,B,C) with FDs: FD1

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - *R2* with all attributes from *R* except those that are in *Y* and not in *X*
- Consider the relation R(A,B,C,D) with the following set F of FDs:
 - FD1: $AB \rightarrow C$
 - FD2: **BC** \rightarrow **D**
 - FD3: $\mathbf{D} \rightarrow \mathbf{B}$
- Let's decompose based on FD2 and don't forget to determine the FDs of the resulting relation schemas, and the CKs
 - R1(B,C,D) with FDs: FD2 and FD3, CKs: {B,C}, {C,D}
 - R2(A,B,C) with FDs: FD1, CK: {A,B}

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - *R2* with all attributes from *R* except those that are in *Y* and not in *X*
- Consider the relation R(A,B,C,D) with the following set F of FDs:
 - FD1: $AB \rightarrow C$
 - FD2: **BC** \rightarrow **D**
 - FD3: $\mathbf{D} \rightarrow \mathbf{B}$
- Let's decompose based on FD2 and don't forget to determine the FDs of the resulting relation schemas, and the CKs
 - R1(B,C,D) with FDs: FD2 and FD3, CKs: {B,C}, {C,D}
 - R2(A,B,C) with FDs: FD1, CK: {A,B}
 - Are they in BCNF?

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - *R2* with all attributes from *R* except those that are in *Y* and not in *X*
- Consider the relation R(A,B,C,D) with the following set F of FDs:
 FD1: AB → C
 FD2: BC → D
 FD3: D → B
- Let's decompose based on FD2 and don't forget to determine the FDs of the resulting relation schemas, and the CKs
 - R1(B,C,D) with FDs: FD2 and FD3, CKs: {B,C}, {C,D}
 - R2(A,B,C) with FDs: FD1, CK: {A,B}
 - Your turn: decompose R1 based on FD3 (and don't forget ...)

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - *R2* with all attributes from *R* except those that are in *Y* and not in *X*
- Consider the relation **R(A,B,C,D)** with the following set *F* of FDs:
 - FD1: $AB \rightarrow C$
 - FD2: **BC** \rightarrow **D**
 - FD3: $\mathbf{D} \rightarrow \mathbf{B}$
- Let's decompose based on FD2 and don't forget to determine the FDs of the resulting relation schemas, and the CKs
 - .R1(.B,G,D.)-with FD9: FD2 and FD3, CKs. {B,C}, {C,D}
 - R2(A,B,C) with FDs: FD1, CK: {A,B}
 - R3(D,B) with FD3, CK {D} R4(C,D) only trivial FDs, CK: {C,D}

Your Turn

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - R2 with all attributes from R except those that are in Y and not in X
- Consider the relation R(A,B,C,D) with the following set F of FDs:
 - FD1: $AB \rightarrow C$
 - FD2: **BC** \rightarrow **D**
 - FD3: $\mathbf{D} \rightarrow \mathbf{B}$
- Let's decompose based on FD3 and don't forget to determine the FDs of the resulting relation schemas, and the CKs

Your Turn

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - *R2* with all attributes from *R* except those that are in *Y* and not in *X*
- Consider the relation R(A,B,C,D) with the following set F of FDs:
 - FD1: $AB \rightarrow C$
 - FD2: **BC** \rightarrow **D**
 - FD3: $\mathbf{D} \rightarrow \mathbf{B}$
- Let's decompose based on FD3 and don't forget to determine the FDs of the resulting relation schemas, and the CKs
 - R1(B,D) with FD3, CK: {D}
 - R2(A,C,D) with FD4: AD \rightarrow C, CK: {A,D}

R1 and R2 are in BCNF

can be derived from FD3 and FD1 using the augmentation rule and the transitivity rule

Database Technology Teaching Session 1: Functional Dependencies and Normalization

Different Example

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - R2 with all attributes from R except those that are in Y and not in X
- Consider the relation schema R(A,B,C,D,E,F) with the following FDs:
 FD1: AB → CDEF
 FD2: E → F
- Your turn:
 - Determine candidate key(s)
 - Is R in BCNF?
 - If not, normalize into a set of BCNF relation schemas (and don't forget to determine FDs and CKs along the way)

Different Example

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - *R2* with all attributes from *R* except those that are in *Y* and not in *X*
- Consider the relation schema R(A,B,C,D,E,F) with the following FDs:
 FD1: AB → CDEF
 FD2: E → F
- Your turn:
 - Determine candidate key(s) {A,B}
 - Is R in BCNF? No, FD2 violates the BCNF condition.
 - If not, normalize into a set of BCNF relation schemas We decompose R based on FD2:
 - R1(E,F) with FD2; candidate key is {E}
 - R2(A,B,C,D,E) with a new FD: $AB \rightarrow CDE$; candidate key is {A,B} R1 and R2 are in BCNF

can be derived from FD1

Database Technology Teaching Session 1: Functional Dependencies and Norma

One More

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - R2 with all attributes from R except those that are in Y and not in X
- Consider the relation schema R(A,B,C,D,E,F) with the following FDs:
 FD1: AB → CDEF
 - FD2: $\mathbf{E} \rightarrow \mathbf{F}$
 - FD3: $\mathbf{A} \rightarrow \mathbf{D}$
- Your turn:
 - Determine candidate key(s)
 - Is R in BCNF?
 - If not, normalize into a set of BCNF relation schemas (and don't forget to determine FDs and CKs along the way)

One More

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - R2 with all attributes from R except those that are in Y and not in X
- Consider the relation schema R(A,B,C,D,E,F) with the following FDs: FD1: $AB \rightarrow CDEF$
 - FD2: **E** → **F**
 - FD3: $\mathbf{A} \rightarrow \mathbf{D}$
- Solution: CK is {A,B}; R is not in BCNF because of FD2 and FD3.
 We decompose R based on FD2:
 - R1(E,F) with FD2; candidate key is {E}
 - R2(A,B,C,D,E) with FD3 and a new FD: $AB \rightarrow CDE$; candidate key is $\{A,B\}$
 - R1 is in BCNF, but R2 is not because of FD3. So, we have to decompose R2 using FD3:
 - R3(A,D) with FD3; candidate key is {A}
 - R4(A,B,C,E) with new FD: $AB \rightarrow CE$; candidate key is {AB}
 - R3 and R4 are in BCNF. Hence, the result of normalizing R consists of R1, R3, and R4.

Back to the Earlier Running Example

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - *R2* with all attributes from *R* except those that are in *Y* and not in *X*
- Consider the relation schema R(A,B,C,D,E,F) with the following FDs:
 FD1: A → BC FD2: C → AD FD3: DE → F
- Recall: CKs are {A,E}, {C,E}; all three FDs violate the BCNF condition
- Your turn: Normalize into a set of BCNF relation schemas (and don't forget to determine FDs and CKs along the way)

Back to the Earlier Running Example

- By using an FD $X \rightarrow Y$ that violates BCNF, decompose R into
 - *R1* with all the attributes in *X* and in *Y*, and
 - R2 with all attributes from R except those that are in Y and not in X
- Consider the relation schema R(A,B,C,D,E,F) with the following FDs:
 FD1: A → BC FD2: C → AD FD3: DE → F
- Recall: CKs are {A,E}, {C,E}; all three FDs violate the BCNF condition

A possible solution: We decompose R based on FD1:
 R1(A,B,C) with FD1 and a new FD: C → A; candidate keys are {A} and {C}
 R2(A,D,E,F) with FD3 and a new FD: A → D; candidate key is {A,E}
 R1 is in BCNF, but R2 is not because of FD3 and A → D. Let's decompose R2 based on FD3:

- R3(D,E,F) with FD3; candidate key is {D,E}

- R4(A,D,E) with $A \rightarrow D$; candidate key is $\{A,E\}$

R3 is in BCNF, but R4 is not because of $A \rightarrow D$. Let's decompose R4 based on $A \rightarrow D$

- R5(A,D) with $A \rightarrow D$; candidate key is {A}

- R6(A,E) with only trivial FDs; candidate key is {A,E}

R5 and R6 are in BCNF. Hence, the result of the normalization consists of R1, R3, R5, R6.

www.liu.se

