
"P2P Scrabble. Can P2P games commence?"

Adam Wierzbicki*
adamw@pjwstk.edu.pl

Tomasz Kucharski*

*Polish-Japanese Institute of Information Technology
ul. Koszykowa 86, 02-008 Warsaw, Poland

Abstract

The article considers the design of P2P games
without trusted, centralized resources. The main
difficulty is how to prevent the possibility of cheating.
The article considers Scrabble as a case study and
attempts to solve issues such as maintenance of public,
private, and concealed public state, as well as secret
drawing from a finite set of objects. The issues of state
replication are considered to allow node leaves. The
article presents a fair protocol for secret drawing from a
finite state that is resistant to node leaves.
Keywords
peer-to-peer, trust management, distributed hash tables,
commitment protocols, secret sharing

1. Introduction
When considering the question of whether it is

worthwhile to design P2P games, the same answers come
to mind as for any other application: using the P2P
model allows to avoid bottlenecks and single points of
failure that occur in client-server applications.
Additionally, P2P games would make better use of
computational resources at the edge of the network. P2P
games could also be designed to have smaller reaction
times than client-server games.

However, the development of P2P games faces a
significant obstacle: the issue of trust. In a client-server
architecture, centralized management of the game state
allows simple enforcement of the game rules. In a game
without trusted, centralized resources, how can
competing parties ensure fairness on their own?

This question may not be sufficiently specific to be
considered directly. For that reason, we have tried to
answer the question of avoiding cheating in a specific
P2P game. For a case study, Scrabble – the favorite game
of one of the authors – seemed a natural choice. This
article describes our design of P2P Scrabble, and
concludes by discussing the relevance of our results to
the original question of general P2P game design.

2. Reputation-based mechanisms in P2P
applications
The problem of trust management in a multi-agent

system has been considered in many theoretical works
and practical applications. One of the most common
forms of trust management is the use of agent
reputations. Among many applications of this approach,
the most prominent are on-line auctions (Allegro, E-
Bay). However, P2P file sharing networks such as
Kazaa, Mojo Nation, Freenet | Freedom Network [6,7,8]
also use reputation. Reputation systems have been
widely researched in the context of multi-agent
programming. However, most of this research relied on a
central point or reputation management that was assumed
to be reliable and trustworthy. This assumption cannot be
made in P2P systems, and therefore new research
considers the use of reputation in P2P applications
[2,3,4,16, 17].

Reputation-based mechanisms could be used in
games like P2P Scrabble. A player would receive a
reputation based on a history of previous games, and this
reputation could be used to exclude cheating players
from a game. However, any reputation system has
certain systematic drawbacks that have been a reason
why it may be worth avoiding relying on these systems
in P2P games. Among these, the most important is the
problem of first-time cheating. Clearly, no reputation
system can prevent any agent to build up a high
reputation and then exploit it in order to cheat. (This is
unfortunately understood by dishonest participants in
some on-line auctions.) Another significant problem is
the vulnerability of many reputation systems to coalitions
of cheaters.

We believe that in many cases, cheating can be
prevented in P2P applications without resorting to
reputation-based systems. Reputations are necessary
mostly if some functions of the system are influenced by
circumstances that are not controlled by the system (such
as the case of on-line auctions). Then, reputation-based
mechanisms may be the only way to prevent cheating. In
a P2P game such as P2P Scrabble, there may be no
method to keep users from maliciously modifying
information that is part of distributed storage. Since we



have no physical control over the computers of players,
the best we can do is detect such behavior as quickly and
efficiently as possible [18], and then exclude such users
from the game or decrease their rating in a reputation-
based system. This means that to some extent, we may
use reputation systems in P2P games, but in this paper
we shall attempt to discover better ways to prevent
cheating.

3. Design of P2P Scrabble

Scrabble rules
All users of P2P Scrabble shall be called players. We

shall refer to a Scrabble player who makes a move in the
game as the drawing player. All other players that at this
time point play the same game as the player shall be
referred to as the competitors. All players that play a
game together shall be referred to as the game group or
the game players.

Scrabble is a game with turns, played usually by 3 or
4 players. Each player has a secret pool of letters that he
tries to use to create words on the board. The players are
awarded points for the words they put on the board,
depending on their location on the board and the type of
letters used. The letters are drawn from a letter sack.
After each turn, every player must have a fixed number
of letters (7). The correctness of words on the board is
verified using dictionaries.
We shall not go into further detail of Scrabble rules,
referring the reader to the game documentation.

However, some additional features of Scrabble will be
explained further in the text.

Can we trust disinterested players?
The set of all players in P2P Scrabble is the set of all

players currently playing all games. From the point of
view of a game group, all other players are called
disinterested players. Many problems with the design of
P2P Scrabble could be solved if the game players could
trust disinterested players.

However, this may not be as simple as it seems.
There are two reasons why disinterested players cannot
be wholly trusted: first, the players of a game could be in
coalition with some disinterested players (in other words,
these players may not be disinterested at all). Second, the
disinterested players could be malicious: for the sake of
spoiling the game for others (and improving their own
ranking), a disinterested player could reveal or falsify
information related to the players of a game.
For this reason, the sharing of information with
disinterested players must be limited to a minimum.

The state of the game
The state of a P2P Scrabble can be divided into

several kinds. The simplest is the public state: state
available for everyone to read, and to modify (under
certain conditions). More difficult to manage is private
state: state available only for one player to read and
modify. Other players must have some form of control
over the private state – this will be the subject of next
sections. The last type of state is concealed public state:

BOB ARBITER

 partial draws of
fellows: {rx,1, …, rx,i}

         commitment
        of the letter X:
        { F(ax, rx,b) }

letter ID letter symbol ax rx,b

BOB

letter ID F(ax, rx,b) z

ARBITER

 A) draw my secret
part of letter X: {rx,b}

B) draw blinding
number:{ax}

1

NOTE:
letter symbol is equal to:
(rx,1 + … + rx,i + rx,b) mod p

NOTE:  z is equal to:
(rx,1 + … + rx,i) mod p

GAME FELLOWS3

2

Figure 1 Random draws using commitment protocols and blinding



any game player can modify this state, but the game
players cannot read it. This type of state will be
discussed in the section “Management of the letter set”.
In this section, we shall discuss the simplest form of state
in P2P Scrabble: public state.

The public state of P2P Scrabble consists of the board
and the letters on the board, and of information about the
player that has the turn. Additional information that is
required to manage the two other types of state may also
become a part of the public state.

In our implementation of P2P Scrabble, we have used
Distributed Hash Tables (DHT) [9,10,11] for the
management of public state (specifically, Pastry [10]).
This mechanism must be supplemented by a light-
weight, distributed transaction protocol that assures that
operations on public state are fair. In order for this
protocol to work, the game players must have a strong
form of identity, obtained from a PKI certificate or using
the Web-of-trust model. This identity may be concealed
from other player using anonimizing techniques;
nevertheless, it is required to avoid cheating using clones
of the cheating player. Due to lack of space, the protocol
for public state management shall not be discussed here.
In this article, we focus on problems of providing
fairness for random draws in a P2P game.
The public state must be replicated. Replication in
mechanisms that use DHT has been discussed in the
literature [9,10,11].

Random draws in P2P Scrabble
In order to prevent the possibility of cheating by the

player, it must be possible to prove to the competitors
that the player has legitimately drawn a letter that he
wishes to put on the board. A straightforward solution to
this problem would be to make all draws public.
However, such an approach would make it possible for
the competitors to cheat by using the information about
the letters that have been drawn by the player. Such
information could be exploited by the competitors to
prevent the player from using his letters. Other
approaches, that would rely on making the information
about letters drawn by the player available only to
selected players, would have a similar drawback since
any other player could maliciously share this information
with all competitors.

Therefore, the player must be able to prove to the
competitors that he/she has legitimately drawn a letter
without revealing what letter has been drawn. At a first
glance, this seems impossible, until we discover the
concept of commitment protocols.

Commitment protocols
Commitment protocols can be used in any game that

involves making choices, for instance, consider simple
“paper, rock, scissors”. In this game, the knowledge of
the choice of one participant would aid another. Also,
when a player makes a choice, he must not be able to
change his mind. Commitment protocols are used to bind
players to their choices and keep them concealed till the

fair /
not fair

      puts letter: {X}

Did Bob have letter X ?
A) X = (rx,b + z) mod p ?
B) F(ax , rx,b) = F’(ax , rx,b) ?

fair ?

GAME FELLOWS

ARBITER

BOB

letter ID letter symbol ax rx,b

BOB

letter ID F(ax, rx,b) z

ARBITER

1

2

3          reveals secret:
        {rx,b, ax}

Figure 2 Verification of the draw using commitment



moment when all players are ready to verify their
choices. How can this be done?

A commitment protocol must meet the following
requirements in order to work:
� be able to produce a proof of the choice
� the proof on its own is not enough to reconstruct the

choice (concealing the choice)
� the user is unlikely to be able to find two choices

that produce the same proof (binding to choice)
The idea behind commitment protocols is to bind the

choice using a strong mathematical function that a user
cannot break in reasonable time (computational binding)
or cannot break at all (information theoretical binding).

Among examples of such problems are: the reversal of a
cryptographic hash function, or the discrete logarithm
problem (DLP). Such a function can be used to produce a
proof of the choice that can be made public without
actually revealing information about the choice itself
[9,13,14,15].

A function F(x) that can produce a proof of a choice
that would meet all the mentioned commitment protocol
requirements must be close to monotonic and
irreversible. A cryptographic hashing function has these
properties, however, some additional modifications are
needed to prevent a “replay attack”. Details of how to
construct this function are omitted for lack of space; see
[12]).

Figure 3 Letter division and distribution of  parts

nd “DISTRIBUTION
PLAYERS”

n GAME
 PLAYERS

nmk “REPLICATION
PLAYERS”

PUBLIC KNOWLEDGE OF PLAYERS
initial content of sack of
letters

F: ID � letter mapping of letters (parts)
(parts) to identifiers

H({p1,1, ..., hash values of all parts
          pi,n+k})

L(ID, {1..k}) information about location
of spare parts

p1  pn     pn+ k

1  REQUEST to distribute: {letters}

2  “secret sharing”
division

for every i-th letter

letter parts

3  distribute parts
among
players

5 distribute
spare parts

6 “secret
sharing” to
m parts

k

..

4 fix the ID of
current letter

7  store
location

8 calculate hash
value of every
part

I stage II stage III stage
division distribution drawings



Introducing commitment schemes to P2P
Scrabble

The presented commitment protocol allows a player
to make choices on his own and later commit them.
However, P2P Scrabble requires a more complex
commitment protocol that would allow to commit the
result of drawing which is not known by a player in
advance (otherwise, a player would simply continue
drawing letters until he found a letter that he likes). This
sounds impossible – a player willing to commit the result
of the drawing he still does not known and could not
know before the commitment.

However, a simple trick, depicted in figure 2, might
solve this problem. Bob wants to draw a new letter X and
provide other users with the proof that he really has
drawn this letter. The trick is to distribute the drawing
process among many players. Each player draws a part,
and later the combination of all parts produces a letter.

Bob has to draw his part first and keep it secret. This
will be the only part missing to reconstruct the letter
publicly. Bob commits his secret part using the
presented commitment protocol, by sending it to an
arbiter that can be any player. After that the competitors
may draw their parts. Neither Bob nor the competitors
can predict the final letter before their draws.
Additionally, Bob is the only one that knows all the parts
and may construct the final letter, while the competitors
can not do so until the secret part is revealed. The
commitment protocol should keep Bob from the

temptation of cheating by changing his secret part to
change the final letter.

When Bob wishes to put one of his letters on the
board, he must undergo a verification phase (see figure
3). Bob sends the letter and his committed, secret part to
the arbiter and his game competitors. As all parts of the
letter become public at that point, the game players can
verify that the letter used by Bob really has been drawn
by him. (step A in Figure 3). Additionally, the arbiter
needs to verify that Bob’s secret part has not been
falsified (step B in Figure 3). Figure 3 presents an
approach that additionally uses a blinding number in case
the letter should be drawn again.

Management of the letter set
The presented drawing scheme has, however, serious

limitations and without modifications, does not suffice
for P2P Scrabble or a general P2P game. The algorithm
was based on the assumption that the set of objects that
can be drawn has an infinite number of elements of each
type (or each element is returned to the set after the
drawing). Referring back to P2P Scrabble – Bob could
draw any letter no matter how many times it was drawn
in the past. A draw of one player had no impact on
following draws of other players. However, in P2P
Scrabble there should be a finite set of letters – and Bob
should only be able to draw a letter that still left in the
set. This raises serious difficulties, as players should be
able to draw objects from the set without revealing them

Figure 4 Drawing from a finite set

I stage II stage III stage
division distribution drawing

GAME FELLOWS
 AND ARBITERDRAWING PLAYER

  SECRET KNOWLEDGE:

ID1 p1,k
… …
IDi pi,k 1. pick ID’

2. reveal ID’
and request parts
of competitors

3. parts:
{pID’,j : j <> k}

4. verify hashes of
received parts
5. reconstruct letter
back



and at the same time other players should know that the
object can no longer be drawn.

To understand the more complex drawing algorithm,
one should first get acquainted with new problems that
arise in drawing from a finite set. Later on the article will
present one of the possible approaches to solve these
problems. The main difference between infinite-set
draws (i.e. presented in the previous section) and finite-
set draws is that the latter ones imply the need to
remember the state of the set of objects that can still be
drawn. The following difficulties have to be faced in P2P
Scrabble with finite-set drawing:
1) conceal content of the letter set
The knowledge of the content would allow players to
easily figure out what the result of the secret drawing
was. Players should be able to draw letters from the
letter set without knowing which letters are still left
within it.
2) replicate the letter set
P2P games have unpredictable nature. Nodes (players)
may leave the game at any time, which requires
algorithms that can still operate in such conditions.
3) prevent malicious modifications of the letter set

Players taking part in the game are distrustful,
therefore none should ever rely on the other or group of
others. Every player may attempt malicious action to
modify the content of the  letter set. In such a case, the
player should be either prevented from such a possibility
or it should become obvious to the competitors that the
player is cheating.

Any solution to above difficulties must obviously
distribute the letter set among many players, so that all of
them have just partial knowledge of its content.
Furthermore, the partial knowledge must be replicated by
disinterested players in case any of the game players
would leave the game. Finally, there must be some
public one-way knowledge (consider hash functions) that
would allow to verify that none of the game players
modified its part of the letter set. The  following list
briefly summarize these requirements:
� no single game player should know the content of

the letter set (distribution of knowledge)
� all game players are needed to draw a letter from the

letter set (fairness)
� the drawing player is bound to the drawn letter and

the letter is concealed from other players (binding &
concealing)

� the content of the letter set is replicated among
disinterested players

� public hash values are used to prevent malicious
modifications

The suggested solution is based on the “secret
sharing” model. Figures 4 and 5 present the algorithm

that satisfies all of the listed points. The actors taking
part in the protocol are: n game players and (n(mk) + nd)
disinterested players (nd distribution players, n(mk)
replication players). Distribution players are involved in
an initial distribution of the letter set among the game
players (they shuffle the letters). Replication players are
responsible for storing replicated parts of letters. The
number of replication players - n(mk) – depends on the
level of replication. The relation will be explained later
in this section.

The algorithm is composed of three stages: division
of letters, distribution of letter parts and drawing. The
first two stages of the algorithm take place at the start of
the game. (These stages might be used again whenever
any player leaves the game, and his letter parts are
restored from the spare parts.) To initiate the division
and distribution process, a request with a set of letters
should be passed to the  distribution players. In the
beginning of P2P Scrabble game, the set of letters is
simply the initial content of the sack.

In the first stage, distribution players execute a secret
sharing algorithm on each letter in the letter set. Each
letter is divided into (n+k) parts: {pi,1, …, pi,n+k}, where
just n are enough to reconstruct the letter back. The
remaining k parts could be considered as spare,
replicated parts not needed as long as all the players are
in the game. Secret sharing algorithms have been widely
presented in the literature, therefore we shall not discuss
details here (see: [12]).

Later on, in the second stage, the letter parts are
distributed among players: n of them among n game
players and k – among n(mk) replication players. The letter
parts are sent by the distribution players to the game
players in groups (letter by letter). The game players
determine a unique ID for each received group of letter
parts. The ID is used to identify n parts of a letter when it
has to be reconstructed. Please note that a single player
knows only his part pi,j of a letter and its ID. There is no
way that the player might guess what the letter is
knowing just its ID. In this way, game players may use
IDs to refer to letters that are actually concealed from
them. The only ones that know the whole letter, not just
parts of it, are the distribution players. Therefore the
mapping between letters and IDs must be kept secret
from them. In the presented algorithm, encryption is a
suggested solution to deliver the parts secretly to players.
To prevent any malicious modifications of the letter
parts, distribution players calculate hash values of every
single letter part and make those public.

The replication of letter parts is more complex than it
may seem at first. It is not enough to distribute k spare
parts among k replication players. In such an approach,
any player could easily find out the result of any drawing
in a coalition with just one of the k replication players.
(In the drawing stage all parts of the drawn letter become
public except for the part of the drawing player. This



single unknown part could be simply filled with one of
spare parts.) To minimize the risk of such coalitions,
each of the k spare parts could be divided into further m
parts using again a secret sharing algorithm. Then, a
player would have to establish a coalition with m random
disinterested players, which is very unlikely. Whenever
any nl players leave the game, nl parts of any letter are
lost, though spare parts can be used to reconstruct the
remaining letters back. The recovered letters should be
passed to distribution players to be divided once again,
this time into (n–nl+k) parts, where just (n– nl) are
enough to reconstruct a letter. These divided parts should
be distributed among game players the same way as
described in the second stage. Please note that k should
be as large as the greatest number of players allowed to
leave the game at once.

Let’s move on to the third stage – the drawing. Please
note again that every letter has its unique ID and its n
parts are distributed among n game players. The drawing
player picks one of the remaining IDs. To inform other
players the letter is no longer in the letter set, the picked
ID has to be revealed. The drawing player also asks his
competitors for their parts, determined by the revealed
ID. These n–1 parts become publicly known, the
remaining one – kept by the drawing player – is a secret
till the moment when the letter is used on the board. This
single concealed part is enough to hide the drawn letter
from other players. Note that the drawing player does not
have to commit his secret part of the letter, since the hash
values published by the distribution player prevent
tampering with the secret part during reconstruction of
the letter. The drawing player should also verify that
those n-1 parts of the competitors were not modified in
any way, by comparing hash values to the ones provided
by distribution players.

To prove that the letter put on the board is the one a
player has drawn, the player must reveal the ID and his
secret part of the letter. At this moment, all of the letter
parts are public. The competitors may reconstruct the
letter to find out whether it is the one put on the board.
The only thing left to verify is that none of the parts were
actually modified at any point (hash values).

A rule of Scrabble that has not been so far considered
is the possibility of returning all letters to the sack and
drawing new ones at the cost of losing a turn. This can be
implemented in a following manner. First, the drawing
player broadcasts the IDs of the returned letters to the
game group: these IDs become available for drawing.
Second, all letters that are available for drawing are
reconstructed and sent to the distribution players with a
request to divide and distribute the letters once again
among the game group. The reason for this step is that
the drawing player now has some additional knowledge
about the IDs of letters that he has returned. The new
distribution reshuffles all remaining letters. Finally, the
drawing player draws new letters.

4. Opportunities for cheating

Coalitions
The presented algorithm has one serious

shortcoming. Coalitions between distribution players and
game players are possible. The first ones know the
letters, the latter ones know the IDs. The combination of
this knowledge would obviously make all draws unfair.
One could possibly get away with that using anonymous
proxy communication between distribution players and
game players. That way the coalition would have to
include two random disinterested players – proxy and
distribution player to make it worthwhile.

Another approach would be to assume that the game
contains trusted supernodes that function as distribution
players. Note that the role of the supernodes is limited to
the beginning of the game and to dealing with node
leaves (redistribution of letters).

Security of DHT
The public state of P2P Scrabble, and the replication

of the letter set, require the use of resources of
disinterested players. In our design of P2P Scrabble, we
have used DHT as a mechanism of organizing a network
of all players. However, we are aware of  the potential
security problems of DHT, that do not have satisfactory
solutions in the available implementations of this
mechanism [19]. Among possible approaches to improve
DHT security for public state, we could mention [18].

To improve security of our implementation of P2P
Scrabble we could: store the public state of a single game
only at the nodes of the game players; limit the
communications of a single game only to game players,
replication players and distribution players; and use
trusted supernodes as distribution players as suggested in
the previous subsection. However, such an approach
would require using a different mechanism that DHT for
the organization of the game. Specifically, we would
require a P2P platform that implements multicast, such
as Rhubarb [5]. This is an issue for further work.

Safety of commitment protocols and secret
sharing

The possibility of cryptoanalytical attacks on the
mechanisms described in this paper cannot be neglected.
The security of the commitment protocols relies on the
mathematical properties of the function F; strong
commitment protocols have been proposed in the
literature that rely on computational or information-
theoretical infeasibility of attacks. Secret sharing
schemes exist that allow to discover cheating players
(who reveal their share of the secret to other players).
However, such subjects are beyond the scope of this
paper.



Dictionary attacks
The limited vocabulary of letters and availability of

hashes of letter parts makes dictionary attacks on the
secret part feasible. Therefore, blinding techniques are
required. One approach might involve blinding all letter
parts of competitors before they are made public and
then revealing the blinding numbers in the verifying
stage.

5. Summary
The presented design of P2P Scrabble has been

developed as a case study of a more general question:
how to design P2P games without central coordination so
that no player can cheat?

When considering this question in the  light of our
experience with P2P Scrabble, it is relevant to ask once
again: why do we have to use a P2P model that strictly
excludes central coordination? An addition of a central
resource that is trusted by all players could simplify our
design of P2P Scrabble.

The answer to this could be that now, when we have
tried to design a game that does not use centralized
resources and disallows cheating, we have learned how a
small amount of centralized resources could be applied
best to improve the design. For instance, replacing the
distribution players with a single trusted supernode
would certainly improve the design. Other such
improvements are probably possible and could be the
issue of future work.

Returning once again to the original question, we
have to consider what other issues might arise in other
P2P games that have not been considered in our case
study. In other words, how can other games differ from
Scrabble?

Several other games could use the design presented
here for P2P Scrabble (consider, for instance, bridge or
poker). However, all of these games are games of turns.
In our design, we have not considered the issue of
concurrency of drawing, assuming that the drawing
player is the player who has the turn. Considering multi-
user games without turns is an issue of future work.

Other questions that have not been considered in our
design is how a player could modify the game state that
influences the drawings of other users differently than in
Scrabble. In Scrabble, the user only removes letters from
the letter set: however, what if a user could add letters or
replace letters in the set? We believe that our design
could accommodate these changes, however, we decided
to leave this issue for future work.

References

1. C.Farkas, G.Ziegler, A.Meretei, A.Lorincz (2002),
Anonymity and Accountability in Self-Organizing

Electronic Communities, Proc. ACM workshop Privacy in
the Electronic Society, 81-90

2. K.Aberer, Z.Despotovic (2001), Managing Trust in a Peer-
To-Peer Information System, Proc. tenth int. conf.
Information and knowledge management, 310-317

3. M.Gupta, P.Judge, M.Ammar (2003), A Reputation
System for Peer-to-Peer Networks, Proc. 13th int.
workshop Network and op. sys. support for digital audio
and video (ACM Press), 144-152

4. B.Yu, M.Singh (2002), An Evidential Model of
Distributed Reputation Management, Proc. first int. joint
conf. Autonomous agents and multiagent sys., part 1, 294-
301

5. Wierzbicki, R. Strzelecki, D. Świerczewski, M. Znojek
(2002), Rhubarb: a Tool for Developing Scalable and
Secure Peer-to-Peer Applications, Second IEEE Int. Conf.
Peer-to-Peer Computing, P2P2002,

6. Gnutella/ng, World Wide Web page,
http://mangocats.com/annesark/gnutellang/wego_pages.ht
ml, 2000

7. Freenet, World Wide Web page,
http://freenetproject.org/cgi-
bin/twiki/view/Main/WebHome, 2002

8. Mojo Nation, World Wide Web page,
http://www.mojonation.net/, 2000

9. Stoica, R. Morris, D. Krager, M. F. Kaashoek, H.
Balakrishnan, "Chord: a scalable peer-to-peer lookup
service for internet applications", Proceedings of ACM
SIGCOMM'01 Conference, 2001

10. P. Druschel, A. Rowstron, "Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems", Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware'01), 2001

11. Zhao, J. Kubiatowicz, A. Joseph, "Tapestry: An
infrastructure for fault-resilient wide-area location and
routing", Technical Report CSD-01-1141, U.C.Berkeley,
2001

12. J. Menezes, P. C. van Oorschot, S. A. Vanstone,
"Handbook of applied cryptography", CRC Press, ISBN:
0-8493-8523-7, October 1996

13. C.P. Schnorr, “Method for identifying subscribers and for
generating and verifying electronic signatures in a data
exchange system”,U.S. Patent # 4,995,082, 19 Feb 1991

14. M. Tompa, H. Woll, “Random self-reducibility and zero-
knowledge interactive proofs of possession of
information”, Proc. IEEE 28th Annual Symposium on
Foundations of Computer Science, 472482, 1987

15. J. Quisquater et al, "How to explain zero-knowledge
protocols to your children", in G. Brassard, editor,
Advances in Cryptology - CRYPTO '89, Lecture Notes in
Computer Science, vol.435, pp.628-631, 1990

16. Singh, Ling Liu, "TrustMe: Anonymous Management of
Trust Relationships in Decentralized P2P Systems", Proc.
IEEE Peer-To-Peer Conference, 2003

17. Y. Wang, J. Vassileva, "Trust and Reputation Model in
Peer-To-Peer Networks", Proc. IEEE Peer-To-Peer
Conference, 2003

18. G. Caronni, M. Waldvogel, "Establishing Trust in
Distributed Storage Providers", Proc. IEEE Peer-To-Peer
Conference, 2003

19. E. Sit, R. Morris, "Security considerations for peer-to-peer
distributed hash tables", Proc. IPTPS02 Workshop, 2002


