
 
Distributed Search in P2P Networks through Secure-Authenticated Content 

Management Systems (CMSs) 
 
 

Dimitrios Tsesmetzis, Manolis Solidakis, Vassilios Stathopoulos, Nikolaos Mitrou 
 

Telecommunications Laboratory 
National Technical University of Athens 

Heroon Polytechniou 9, 15773 Athens, Greece 
Email: {dtsesme, esolid, vstath} @telecom.ntua.gr   

mitrou@softlab.ntua.gr 
 

 
Abstract 

 
   Peer to Peer (P2P) networks become more and more 
popular nowadays. They offer the capability of 
locating and obtaining a file from all over the world 
very fast. As a result, P2P networks constitute the main 
cause for the network traffic. Besides their many 
advantages, these networks suffer from a very strong 
drawback: authentication-security. Content 
Management Systems (CMSs) on the other hand offer 
this capability, among others. A combination of these 
two architectures could be obviously very interesting. 
 
1. Introduction 
 

 Today there is a rapidly emerging interest in P2P 
networks, as they provide an efficient way for locating 
and obtaining a file (data, audio etc.) from all over the 
world very fast. Though there are some limitations as 
we will see later. These networks can be categorized 
through the “keyword-searching” capability they offer.  

There are implementations like Gnutella  [1] , Kazaa 
[2] etc. that give the user the ability to search a P2P 
network without knowing the exact name of the file, or 
even knowing only some metadata about the file. This 
freedom of course causes a strong limitation: they 
cannot guarantee a certain possibility of successfully 
locating the file. This limitation is caused because the 
searching mechanism they use is based on – more or 
less - flooding and they are unstructured.  
On the other hand, there exist architectures like Pastry 
[3], Tapestry [4] etc. that provide excellent results: they 
locate the requested file extremely fast (4-5 hops in a 
network with 10.000 nodes [3]) with a certain 
possibility. They are highly structured and the 
searching mechanism they use is based on consistent-
hashing [5]. Nevertheless, these architectures have a 

very big disadvantage: they do not support keyword – 
searching. This means that a user should know the 
exact name of the file in order to get it, something that 
makes them of course difficult in use.  

Besides their differences, the above implementations 
suffer from the same drawback: they do not support 
authentication-security. Every user can have full access 
in such networks completely anonymously. There is no 
way to control and manage a user’s identity, which 
makes these architectures quite unreliable. Likewise, 
this anonymity does not enable enterprises to benefit 
from P2P networks in accounting matters. However, 
Content Management Systems (CMSs) can remedy all 
these problems. Although CMSs have been evolved in 
order to face the need of managing millions of files in 
the network, they can cooperate very efficiently with 
P2P architectures as well. In order for a system to be a 
content management one, it should fulfill some 
requirements, like [6]: 

• Combine content components 
• Separate content from design 
• Manage workflow of content creation 
• Make authentication of users 

It is clear that if we could combine the benefits of 
CMSs –especially authentication- with P2P 
architectures in an efficient way, we could develop a 
very reliable P2P application.  
 
2. Implementation 
 

We have implemented an application for searching 
in a P2P network, where each servent (servent: client 
plus server) is a CMS. The CMS that we used is 
OpenCms version 5.01 [7] and is open source. It is 
worth mentioning, that although the application relies 
on this CMS, it is not tied with it. Likewise, although 
OpenCms offers the ability of searching locally for a 
resource, we preferred to build our own local search 



mechanism, in order to support keyword – searching 
and searching with the metadata of the resource, 
something that is not supported from the current 
version of OpenCms. We will approach our 
implementation in five steps using the following 
diagram: 

 
 

 
 
 
  Step one: A user that has logged in to OpenCms, 
wants to search for a resource in the P2P-OpenCms 
network. In order to accomplish this, he should know 
his neighbors. Therefore, in the first step, the user 
registers his OpenCms-servent to the JNDI (Java 
naming and directory interface) node, which is 
responsible for the registration and the network 
shaping. Of course, after a successful registration, no 
other user of this servent will repeat this process. 
Additionally the communication between the servents 
and the JNDI node is achieved with the technology of 
EJBs (Enterprise Java Beans) and this system is 
completely fault-tolerant, as the JNDI node keeps 
permanently the status of the network structure in a 
distinct database. Thus, our proposal constitutes a 
robust solution in the sense that the system is 
considered as self recovered. Furthermore, the 
exclusive use of EJBs for the communication between 
the servents and the secure mechanisms they support 
(such as SSL protocol, access control etc.), make the 
system secure, robust and reliable.    
Step two: The JNDI node, after a successful 
registration of the remote servent, replies with the list 
of neighbors, with which this servent will 
communicate. 
Step three: The user sends his requests - queries to his 
neighbours. The search algorithm we used is based on 
flooding, as the expected number of the CMSs is 
considered to be not very large. This is true, as 
hundreds of users may register in every CMS. We 
should also mention that the search mechanism 

supports various ways for querying a resource, based 
on the resource name, title, description etc. and all of 
them support keyword-searching. These requests 
contain the identity of the user to the local CMS, which 
will be used in order to validate and authenticate the 
user to the remote CMS. This identity is correlated 
with the group that a user belongs to. In case this group 
is not supported at the remote CMSs, then user is 
classified as a member of the default one. In that way, 
the user will be able to query only for those resources 
that he is authorized to access. 
Step four: The remote servents authenticate the remote 
user, search their local database and return any 
matching results, while concurrently forward the 
requests to their neighbours. 
Step five: The user has found the resource that he was 
looking for and decides to transfer it to his local 
servent. 
 
3. Conclusion-Future work 
 

The extensive use of peer-to peer applications 
requires that there be specific mechanisms of 
certification and security in the system. In this paper, 
we present a way to accomplish these, using a CMS. 
We intend to create a more sophisticated authentication 
mechanism, in order to ensure the full identity of each 
user and servent. Furthermore, we plan to build a more 
efficient search algorithm, taking advantage of the 
network topology. To conclude, a testbed is under 
construction for the performance analysis of our 
application according to the standard benchmark. 
 
4. References 
 
[1] Gnutella. http://gnutella.wego.com
[2] Kazaa. http://www.kazaa.com
[3] A. Rowstron and P. Drushel. Pastry: Scalable, distributed, 
object location and routing for large-scale peer-to-peer 
systems, in Proceedings of the 18th IFIP/ACM International 
Conference on Distributed Systems Platforms (Middleware 
2001) (Nov 2001), pp. 329-350. 
[4] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An 
infrastructure for fault-tolerant wide-area location and 
routing. Tech. Rep. UCB/CSD-01-1141, Computer Science 
Division, U. C. Berkeley, Apr. 2001.  
[5] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, 
R. Panigrahy. Consistent Hashing and random trees: 
Distributed caching protocols for relieving hot spots in the 
World Wide Web, in Proceedings of the 29th Annual ACM 
Symposium on Theory of Computing (El Paso, TX, May 
1997), pp. 654-663. 
[6] GartnerConsulting: The Emergence of Distributed 
Content Management and Peer-to-Peer Content Networks, 
White Paper, January 2001. 
[7] OpenCms. http://www.opencms.org

http://gnutella.wego.com/
http://www.kazaa.com/
http://www.opencms.org/

