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Abstract

We introduce a scalable searching protocol for locating
and retrieving content in random networks with Power-Law
(PL) and heavy-tailed degree distributions. The proposed
algorithm is capable of findingany contentin the network
with probability onein time O(log N), with a total traffic
that provably scales sub-linearly with the network size,N .
Moreover, the protocol finds all contents reliably, even if ev-
ery node in the network starts with a unique content. The
scaling behavior of the size of the giant connected com-
ponent of a random graph with heavy tailed degree dis-
tributions under bond percolation is at the heart of our
results. The percolation search algorithm can be directly
applied to make unstructured Peer-to-Peer (P2P) networks,
such as Gnutella, Limewire and other file-sharing systems
(which naturally display heavy-tailed degree distributions
and scale-free network structures), scalable. For example,
simulations of the protocol on the limewire crawl number
5 network[12], consisting of over 65,000 links and 10,000
nodes, show that even for such snapshot networks, the traf-
fic can be reduced by a factor of at least 100, while achiev-
ing hit-rates greater than 90%.

1 Introduction and Motivation

Peer-to-peer (P2P) networking systems consist of a large
number of nodes or computers that operate in a decentral-
ized manner to provide reliable global services, such as
query resolutions (i.e., database searches), ad hoc point-to-
point communications, and cluster or P2P computing. The
existing P2P schemes can be broadly categorized into two
types: (1)Unstructured P2P Networks:Such networks in-
clude the popular music and video download services, such
as Gnutella[8], Limewire[13], Kazaa[1], Morpheus[2], and
Imesh [3]. They together account for millions of users
dynamically connected in an ad hoc fashion, and creat-

ing a giant federated data base. The salient feature of
such networks is thatthe data objects do not have global
unique ids, and queries are done via a set of key words.
(2) Structured P2P Networks: These include systems un-
der development, including Tapestry [21], Chord[20], PAST
[14, 7], and Viceroy[10], and arecharacterized by the fact
that each content/item has a unique identification tag or
key; e.g., anm-bit hash of the content is a common choice,
leading to the popular characterization of such networks as
DHT (Distributed Hash Table) P2P systems.

As opposed to the unstructured networks, which are al-
ready being used by millions of users, most of the structured
systems are in various stages of development, and it is not
clear at all which system is best suited to provide a reli-
able, load-balanced, and fault-tolerant network. Moreover,
unstructured searches using key-words constitute a dom-
inant mechanism for locating content and resources, and
for merging/mining already existing heterogeneous sets of
data-bases. Thus, unstructured P2P networking will con-
tinue to remain an important application domain.

In spite of the great popularity of the unstructured P2P
networks, systematic designs of provably robust and scal-
able networks have not been proposed, and most of the net-
works currently being used are still ad hoc (even though
ingenious) in their designs. The three major problems in
designing unstructured P2P systems are: (i)Lack of sys-
tematic protocols for generating global networks with pre-
dictable topological properties: A number of recent studies
[15, 12] have shown that thestructures of the existing net-
works have complex network characteristics, including ap-
proximate power law degree distributions1, small diameter,
tolerance to node deletionsetc. However, client-based pro-
tocols that guarantee the global emergence of scale-free net-
works with tunable properties have not been implemented.
It is only recently that in our work [18, 19] we have ad-
dressed this open problem, and have provided client-level

1A distribution is said to be a power law (PL) distribution, ifP (k) ∼
k−γ , whereγ > 0 is called the exponent of the distribution.



protocols that guarantee the emergence of PL networks with
tunable exponents. (ii)Scalability: In a straightforward ap-
proach to query resolution, in order to find an object, all
the nodes in the network need to be addressed, leading to
O(N) total queries in the network for every single query.
This results in significant scaling problems and Ripeanu
et.al.[12] estimated that in December of 2000 Gnutella traf-
fic accounted for1.7% of Internet backbone traffic. As re-
viewed later in Section 2, a number of ad hoc measures,
ranging from forcing an ultra-peer structure on the network
to random walk protocols for searching content, have been
proposed. But none of these measures provides a true solu-
tion to the underlying scalability problem. (iii)Vulnerability
to targeted Attacks:It is well known that one can crawl such
networks and identify the high-degree nodes quite quickly,
and thus can potentially disrupt the network, by attacking
these high degree nodes. Protocols for identifying or com-
pensating for such attacks, or even recovering efficiently af-
ter such an attack has disrupted the network are yet to be
designed.

In this paperwe provide a systematic solution to the scal-
ability problem for unstructured P2P networks. We first
show how to perform scalable parallel search in random
Power-law networks with exponents between 2 and 3 (and
other heavy-tailed degree distribution networks, where the
variance is much larger than the average degree),when each
node starts with a unique content, and queries are made
randomly for any of these contents from any of the nodes
(Section 3). The key steps in our search algorithm are, (i)
Content Caching:An initial one-time-only replication of a
node’s content list or directory in the nodes visited via a
short random walk, (ii)Query Implantation: When a node
wants to make a query, it first executes a short random walk
and implants its query request on the nodes visited. and
(iii) Bond Percolation: A probabilistic broadcast scheme
for propagating queries, which in graph theoretic terms is
an implementation of bond percolation on the underlying
networks. For example, for a PL network with exponent,
τ = 2, and maximum degreekmax, we show that any con-
tent in the network can be found with probability one in time
O(log N), while generating onlyO(N × 2 log kmax

kmax
) traffic

per query. Thus ifkmax = cN (as is the case for a random
PL network) then the overall traffic scales asO(log2 N) per
query, and ifkmax =

√
N (as is the case for most grown

graphs) then the overall traffic scales asO(
√

N log2 N) per
query.

While the design of the protocol is based on fairly in-
volved theoretical concepts,the final protocol itself is
straightforward and is very easy to implement. We pro-
vide both simulation and analytical studies of the improve-
ments to be accrued from the percolation search algorithms
when implemented on Gnutella crawl networks (Section
IV).

2 The Traffic Scaling Problem and Prior
Work

The scaling problem associated with key-word based
searches in P2P networks can be described in terms of
Gnutella, which is a real-world network that employs a
broadcast search mechanism to allow searching for com-
puter files. Various additions have been made[8] to the orig-
inal protocol; however, the model is essentially the follow-
ing: each query has a unique identifier and a time-to-live
(TTL). As a node receives a query it checks the identifier
to verify that it has not already processed this query. If the
node has not previously processed the query, it checks its
local files and responds to the query if it finds a match. Fi-
nally, if the TTL is greater than 0, it decrements the TTL and
passes the query to all nodes it is connected to (except the
node from which it received the query). The unique iden-
tifier prevents loops in query routing. If the TTL is greater
than the diameter of the network, each query passes each
link exactly once, and all nodes receive the query. This
means that on average, each node would send or receive
each query a number of times equal to the average degree
of the network,〈k〉, which means that total communica-
tion cost per query is〈k〉N . Thus, every node2 must pro-
cess all queries. This problem manifests itself in two im-
portant ways. First, low capacity nodes are very quickly
overloaded and fragment the network3. Second, total traffic
per node increases at least linearly with the size of the net-
work. To give an idea of the magnitude of communication
required, Ripeanu et.al.[12] estimated that in December of
2000 Gnutella traffic accounted for1.7% of Internet back-
bone traffic.

Following is an account of a few important attempts at
mitigating the traffic scaling problem:
1. Ultra-peer Structures and Cluster-Based Designs:A
non-uniform architecture with an explicit hierarchy seems
to be the quickest fix. This was motivated by the fact
that the nodes in the network are not homogeneous; a very
large fraction of the nodes have small capacity (e.g. dial-up
modems) and a small fraction with virtually infinite capac-
ity. The idea is to assign a large number of low capacity
nodes to one or more Ultra-peers. The Ultra-peer knows
the contents of its leaf nodes and sends them the relevant
queries only. Among the Ultra-peers they perform the usual
broadcast search.

The Ultra-peer solution helps shield low bandwidth
users; however, the design is non-uniform, and an explicit
hierarchy is imposed on nodes. In fact, the two-level hierar-
chy is not scalable in the strict sense. After more growth of

2This has been mitigated somewhat with the introduction of Ultra-peers
as we discuss later in the section.

3this is believed to have happened to the original Gnutella in August
2000.



the network, the same problem will start to appear among
the Ultra-peers, and the protocol should be augmented to
accommodate a third level in the hierarchy, and so on. In
a more strict theoretical sense, the traffic still scales lin-
early, but is always a constant factor (determined by the av-
erage number of nodes per ultra-peer) less than the original
Gnutella system.

The results of this paper might be considered as an al-
ternative to artificially imposing a hierarchical structure: in
our percolation search algorithm, each search automatically
distills an Ultra-peer-like subnetwork, and no external hier-
archy needs to be imposed.
2. Random Walk Searches with Content Replication:Lv
et.al.[9] analyze random walk searches with file replication.
The random walk search idea is simple: for each query, a
random walker starts from the initiator and asks the nodes
on the way for the file until it finds a match. If there are
enough replicas of every file on the network, each query
would be successfully answered after a few steps. In [9]
it is assumed that a fractionλi of all nodes have the filei.
They consider the case whereλi might depend on the prob-
ability (qi) of requesting contenti. They show that under
their assumptions, performance is optimal whenλi ∝ √

qi.
This scheme has several disadvantages. Since high con-

nectivity nodes have more incoming edges, random walks
gravitate towards high connectivity nodes.A rare item on
a low connectivity node will almost never be found. To
mitigate these problems, [9] suggests avoiding high degree
nodes in the topology. Moreover, this scheme is not scal-
able in a strict sense either: even with the uniform caching
assumption satisfied, the design requiresO(N) replications
per content, and thus, assuming that each node has a unique
content, it will require a total ofO(N2) replications and an
averageO(N) cache size. The above scaling differs only
by a constant factor from the straightforward scheme of all
nodes caching all files.
3. Random Walk on Power-Law Graphs: In contrast to
the above approach, Adamic et. al.[4] proposed an algo-
rithm that takes advantage of the existence of high degree
nodes: A random walker starts from a node to resolve a
query. At each step of the walk, it scans the neighbors (or
even the second neighbors) of the node it visits for hits. For
a power-law graph, the random walk quickly converges to-
wards high-degree nodes. These nodes are expected to have
many neighbors; hence, they can answer many queries.This
work is among the few that attempt to derive scaling behav-
ior of the search time with the size of the networkN ana-
lytically. Their scheme, however, suffers from a number of
drawbacks (see [17] for details): (i) The actual performance
of the algorithmis far worse than the theoretically predicted
scaling laws. For example, forτ = 2.1 and if only the first-
neighbors are scanned, the predicted scaling isN0.14, but
the actual scaling observed is more than a power of5 worse

(i.e., N0.79). (ii) The random-walk search is serialin op-
eration, and even assuming that the predicted scalings are
accurate, the search time for finding any node or its content
in the network is polynomially long inN . As an example,
for τ = 2.3, a value observed in early Gnutella networks,
the predicted search time scalingN0.66. (iii) Shortest search
times are obtained at the expense of large cache size require-
ments per node.

As noted in the introduction, in this paper we show that
as long as the network topology is random and has an ap-
propriately heavy-tailed degree distribution(e.g., PL net-
works with exponent between 2 and 3), then one can de-
sign a search protocol with the following characteristics:
(i) Each node can start with a unique contentand no as-
sumption on the relative abundance of any content is nec-
essary for the search algorithm to succeed. (ii) A parallel
probabilistic broadcast search can be performed (unlike the
sequential random-walk based search protocols discussed
above) thatfinds any content, whether residing in a low de-
gree or a high-degree node, with probability one in time that
is logarithmic in the size of the network. (iii) The algorithm
is truly decentralized and is carried out only via local deci-
sions, and (iv) No explicit hierarchy or central control needs
to be imposed during the operation of the network.

3 The Percolation Search Algorithm and Its
Scaling Properties

The percolation search algorithm can be described as fol-
lows:
(i) Content List Implantation:Each node in a network of
size N duplicates its content list (or directory) through a
random walk of sizeL(N, τ) starting from itself. The ex-
act form ofL(N, τ) depends on the topology of the network
(i.e.,τ for PL networks), and is in general a sub-linear func-
tion of N . Thus the total amount of directory storage space
required in the network isNL(N, τ), and the average cache
size isL(N, τ). Note that, borrowing a terminology from
the Gnutella protocol,the length of these implantation ran-
dom walks will be also referred to as the TTL (Time To Live).
(ii) Query Implantation:To start a query, a query request is
implantedthrough a random walk of sizeL(N, τ) starting
from the requester.
(iii) Bond Percolation:When the search begins, each node
with a query implantation starts aprobabilistic broadcast
search, where it sends a query to each of its neighbors with
probability q, with q = qc/γ whereqc is the percolation
threshold [16].

We next derive scaling and performance measures of the
above algorithm. Our derivations will follow the following
steps:

• First we define high degree nodes and compute the



number of high degree nodes in a given network.

• Second, we show that after the probabilistic broadcast
step (i.e., after performing a bond percolation in the
query routing step), a query is received by all members
of connected component to which an implant of that
query belongs. We also show that the diameter of all
connected components isO(log N), and thus the query
propagates through it quickly.

• Third, we show thata random walk of lengthL(N, τ)
starting from any node willpass through a highly con-
nected node, with probability approaching one. This
will ensure that (i) a pointer to any content is owned
by at least one highly connected node, and (ii) at least
one implant of any query is at one of the high degree
nodes.

• Finally, we examine the scaling of the maximum de-
gree of the networkkmax and give the scaling of query
costs and cache sizes in terms of the size of the entire
networkN . We show that both cache size and query
cost scale sublinearly for all2 ≤ τ < 3, and indeed
can be made to scaleO(log2 N) with the proper choice
of τ andkmax.

3.1 High Degree Nodes

In this section we define the notion of a high degree node.
For any node with degreek, we say it is a high degree node
if k ≥ kmax/2. We assume that we deal with random
power-law graphs which have a degree distribution:

pk = Ak−τ ,

whereA−1 =
kmax∑

k=2

k−τ ≈ ζ(τ)− 1,

and ζ(·) is the Riemann zeta function.A approaches the
approximate value quickly askmax gets large, and thus can
be considered constant. Thus the number of high degree
nodes,H is given by:

H = N


A

kmax∑

k=kmax/2

k−τ


 .

Since for all decreasing, positive,f(k) we have∑b
k=a f(k) >

∫ b+1

a
f(k)dk >

∫ b

a
f(k)dk and∑b

k=a f(k) <
∫ b

a−1
f(k)dk, we can boundH from

above and below:

H >
A

τ − 1

(
1

( 1
2 )τ−1

− 1
)

N

kτ−1
max

, and

H <
A

τ − 1

(
1

( 1
2 )τ−1(1− 1

kmax/2 )
− 1

)
N

kτ−1
max

.

Forkmax →∞ we have that 1
kmax/2 → 0 thus:

H ≈ A

τ − 1
(
2τ−1 − 1

) N

kτ−1
max

.

We have shown thatH = O( N
kτ−1

max
). As we discuss in sec-

tion 3.5, there are two choices for scaling ofkmax. If we put
no prior limit onkmax it will scale like O(N1/(τ−1)). As
we will discuss, we may also considerkmax = O(N1/τ ).
We should note that the first scaling law givesH = O(1),
or a constant number of high degree nodes as the system
scales. The second givesH = O(N1/τ ). For allτ ≥ 2, we
haveH scaling sublinearly inN .

In the next sections we will show that without explic-
itly identifying or arranging the high degree nodes in the
network, we can still access them and make use of their re-
sources to make the network efficiently searchable.

3.2 High Degree Nodes are in the Giant Compo-
nent

In conventional percolation studies, one is guaranteed
that as long asq − qc = ε > 0, whereε is a constant in-
dependent of the size of the network, then there will be a
giant connected component in the percolated graph. How-
ever, in our case, i.e., PL networks with2 ≤ τ ≤ 3,
limN→∞ qc = 0 (for example,qc = log(kmax)

kmax
for a PL net-

work with exponentτ = 2 [6]), and since the traffic (i.e., the
number of edges traversed) scales asO(〈k〉Nq), we cannot
afford to have a constantε > 0 such thatq = ε + qc: the
traffic will then scale linearly.

Hence, we will percolate not at a constant above the
threshold, but at a multiple above the threshold:q = qc/γ.
We consider this problem in detail in a separate work[16].
The result is that if wefollow a random edge in the graph,
the probability it reaches an infinite component isδ =
z/kmax for a constantz which depends only onτ and γ,
but notkmax.

Thus, since each high degree node has at leastkmax/2
degree, the average number of edges of a high degree node
that connect to the infinite component (kinf ) is at least:

kinf ≥ δ
kmax

2
=

z

kmax
kmax/2 =

z

2
. (1)

The probability that a high degree node has at least one link
to the infinite component is at least:

P ≥ 1− (1− δ)kmax/2

= 1− (1− z

kmax
)kmax/2

≥ 1− e−z/2.

Thus both the average number of degrees that a high degree
node has to the giant component, and the probability that a



high degree node has at least one edge to the giant compo-
nent are independent ofkmax. So as we scale upkmax, we
can expect that the high degree nodes stay connected to the
giant component. We can makez larger by decreasingγ,
particularly, if1/γ > 2/(3− τ) we havez > 1 [16].

It remains to be shown that the diameter of the connected
component is on the order ofO(log N). To see this, we use
the approximate formulal ≈ log M

log d [11] of the diameter of a
random graph with sizeM and average degreed. We know
that the size of the percolated graph isNz

kmax
〈k〉 and that the

average degree is approximately 2[16]. Thus the diameter
of the giant component is:

l =
log( Nz

kmax
〈k〉)

log(2)

=
log N

kmax
+ log z + log〈k〉
log(2)

= O(log N).

At this point we have presented the main result. If we
can cache content on high degree nodes, and query by per-
colationstarting froma high degree node, we will always
find the content we are looking for. We have not yet ad-
dressed how each node can find a high degree node. In the
next section we show that by taking a short random walk
through the network we will reach a high degree node with
high probability, and this gives us the final piece we need to
make the network searchable by all nodes.

3.3 Random Walks Reach High Degree Nodes

Consider a random PL network of sizeN and with max-
imum node degreekmax. We want to compute the proba-
bility that following a randomly chosen link one arrives at
a high degree node. To find this probability, consider the
generating functionG1(x)[16] of the degree of the nodes
arrived at by following a random link:

G1(x) =
∑kmax

k=2 k−τ+1xk−1

C
, (2)

whereC =
∑kmax

k=2 k−τ+1. This results in the probability
of arriving at a node with degree greater thankmax

2 to be:

Pτ =

∑kmax

k=kmax/2 k−τ+1

C
. (3)

Since the degrees of the nodes in the network are indepen-
dent, each step of the random walk is an independent sample
of the same trial. The probability of reaching a high degree
node within α

Pτ
steps is:

1− (1− Pτ )α/Pτ ≥ 1− e−α.

Therefore, afterO(1/Pτ ) steps, a high degree node will
be encountered in the random walk path with high (con-
stant) probability. Now we need to computePτ for τ = 2
and2 < τ < 3. Since for all decreasing, positive,f(k)
we have

∑b
k=a f(k) >

∫ b+1

a
f(k)dk >

∫ b

a
f(k)dk and∑b

k=a f(k) <
∫ b

a−1
f(k)dk, we can bound the following

sums.
If τ = 2, we have the probability of arriving at a node

with degree greater thankmax

2 is:

P2 =

∑kmax

k=kmax/2 k−1

C

>
log(kmax)− log(kmax/2)

C
=
− log 2

C
,

andC =
∑kmax

k=2 k−1 < log(kmax) . We finally get:

P2 >
− log 2

log(kmax)
. (4)

For τ = 2, then inO(1/P2) = O(log kmax) steps we have
reached a high degree node.

If 2 < τ < 3, we have the probability of arriving at a
node with degree greater thankmax

2 is:

Pτ =

∑kmax

k=kmax/2 k−τ+1

C

>
1

τ − 2
(2τ−2 − 1)

1
Ckτ−2

max

,

andC =
∑kmax

k=2 k−τ+1 < 1
τ−2 (1− 1

kτ−2 ). We finally get:

Pτ >
2τ−2 − 1
kτ−2

max − 1
. (5)

For2 < τ < 3, then inO(1/Pτ ) = O(kτ−2
max) steps we have

reached a high degree node, which is polynomially large
in kmax rather than logarithmically large, as in the case of
τ = 2.

A sequential random walk requiresO(kτ−2
max) time steps

to traverseO(kτ−2
max) edges, and hence, the query implanta-

tion time will dominate the search time, making the whole
search time scale faster thanO(log N). Recall that the per-
colation search step will only requireO(log N) time, irre-
spective of the value ofτ . In [17] anO(log N)-time par-
allel query implementation scheme is described so that the
search time becomes independent ofτ .

3.4 Communication Cost or Traffic Scaling

Each time we want to cache a content, we send it on
a random walk acrossL(N, τ) = O(1/Pτ ) edges. When
we make a query, if we reach the giant component, each



edge passes it with probabilityq (if we don’t reach a gi-
ant component only a constant number of edges pass the
query). Thus, the total communications traffic scales as
qE = qc〈k〉N/γ. Sinceqc = 〈k〉/〈k2〉 we haveCτ =
O( 〈k〉

2N
〈k2〉 ). For all2 ≤ τ < 3, 〈k2〉 = O(k3−τ

max). Forτ = 2,
〈k〉 = log kmax which gives

C2 = O

(
log2 kmaxN

kmax

)
(6)

For2 < τ < 3, 〈k〉 is constant which gives

Cτ = O
(
kτ−3

maxN
)

(7)

In section 3.1, we showed that the number of high degree
nodesH = O(N/kτ−1

max). We also know thatL(N, τ) =
α/Pτ andP2 = O(1/ log kmax) andPτ = O(1/kτ−2

max).
Thus we can rewrite the communication scaling in terms of
the high degree nodes,Cτ = O(L(N, τ)2H). So we see
that communication costs scales linearly inH, but as the
square of the length of the walk to the high degree nodes.
This meets with our intuition since the high degree nodes
are the nodes that store the cache and answer the queries.

In the next section we discuss explicit scaling ofkmax to
get communication cost scaling as a function ofN . Table 1
shows the scaling of the cache and communication cost in
N . We see that for allτ < 3, we have sublinear communi-
cation cost scaling inN .

3.5 On Maximum Degreekmax

There are two ways to generate a random PL network:
(i) Fix a kmax and normalize the distribution, i.e.,

pk = Ak−τ , 0 < k ≤ kmax , (8)

whereA−1 =
kmax∑

k=1

k−τ . (9)

To construct the random PL graphs,N samples are then
drawn from this distribution. For several reasons, the choice
kmax = O(N1/τ ) is recommended in the literature [5], and
in our scaling calculations (e.g., Table 1) we follow this up-
per bound.
(ii) No a priori bound on the maximum is placed, andN
samples are drawn from the distributionpk = Ak−τ , where
A−1 =

∑∞
k=1 k−τ . It is quite straightforward to show that

almost surely,kmax = O(N
1

τ−1 ). Thus, whenτ = 2,
kmax = cN (1 > c > 0) in this method of generating a
random PL graphs.

A potential problem with using the larger values of
kmax, as given by method (ii), is that the assumption that
the links are chosen independently might be violated. Ran-
dom graph assumptions can be shown to still hold when the

maximum degree of a power-law random graph iskmax =
O(N1/τ ) [5]. This however does not necessarily mean, that
the scaling calculations presented in the previous section do
not hold forkmax = O(N

1
τ−1 ). In fact, extensive large-

scale simulations (see Section 4) suggest that one can in-
deed get close to poly-logarithmic scaling of traffic (i.e.,
O(log2 N)), as predicted by the scaling calculations in this
section.

There are several practical reasons for boundingkmax,
as well. First, in most grown random graphs,kmax scales
as N1/τ . While grown random graphs display inherent
correlations, we would like to compare our scaling predic-
tions with performance of the search algorithm when im-
plemented on grown graphs. Hence, the scaling laws that
would be relevant for such P2P systems correspond to the
case of boundedkmax. Second, since the high degree nodes
end up handling the bulk of the query traffic, it might be
preferable to keep the maximum degree low. For example,
for τ = 2, the traffic generated is of the same order as the
maximum degree, whenkmax = c

√
N , thus providing a

balance between the overall traffic and the traffic handled
by the high degree nodes individually.

Case 1 Cache Size Query Cost
τ = 2 O( log N ) O( log2 N )

2 < τ < 3 O(N
τ−2
τ−1 ) O(N

2τ−4
τ−1 )

Case 2 Cache Size Query Cost
τ = 2 O( log N ) O( log2(N)N1/2)

2 < τ < 3 O(N1−2/τ ) O(N2−3/τ )

Table 1. The scaling properties of the pro-
posed algorithm when kmax = O(N

1
τ−1 ) (top,

case 1) and kmax = O(N1/τ) (bottom, case 2).

4 Simulations on Random PL Networks and
Gnutella Crawl Networks

Figs. 1–3 provide simulation results verifying the per-
formance and scaling predictions made by the analysis pre-
sented in the previous section. Note that in the simulations,
TTL refers to the length of the random walks performed for
content-list replication and query implantation.

5 Concluding Remarks

We have presented a novel scalable search algorithm that
uses random-walks and bond percolation on random graphs
with heavy-tailed degree distributions to provide access to
any content on any node with probability one.While the
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Figure 1. Throughout the paper, we considered a unique
replica of any content to exist in the network. The perfor-
mance of the search algorithm improves considerably be-
yond the predicted values in the more realistic case where
more than one copy of contents exist in the network. As an
example, the case where only 10 replicas of any content is
randomly spread in the network is considered in the above
figure for a PL network withτ = 2, N = 30K and the av-
erage degree6. Around 90% of all contents are found with
only 0.02% of the original traffic.

concepts involved in the design of our search algorithm
have deep theoretical underpinnings, any implementation
of it is straightforward, and can be easily incorporated into
any software system and protocol.Our extensive simulation
results using both random PL networks and Gnutella crawl
networks show that unstructured P2P networks can indeed
be made scalable.

Our ongoing and future work [18, 17] involves the de-
sign of systematic protocols that guarantee the emergence
of scale-free network topologies, even when the participat-
ing nodes have different bandwidth capacities. For exam-
ple, in [17] we present local protocols that allow differ-
ent categories of nodes to have different degree distribu-
tions. The dominant categories of nodesin existing P2P
networks are, modems, DSL subscribers, and those con-
nected via high-speed T-1 connections. Modem users can
be expected to have only a constant maximum degree in the
network; thus the desired degree distribution for this cat-
egory is an exponential distribution. The other two cate-
gories can have heavy-tailed degree distributions with dif-
ferent cut-offs. Our protocols for such heterogeneous sets of
nodes have the following characteristics: (i) The network-
ing protocol at the client level is the same for all the nodes,
and a node seeking to make a new connection does not need
to know the category of the other nodes in the network, (ii)
The different categories of nodes tune their degree respec-
tive distributions by their own local decisions, e.g., refus-
ing to accept connections, or by logging off at a faster rate.
This has the added advantage of nodes not having to declare
themselves as belonging to a particular category; depending
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Figure 2. Performance of the Percolation Search Algo-
rithm on A Gnutella Crawl Graph: The hit-rate as a function
of the fraction of links used in search, for limewire crawl
number 5. The crawl covers around around 65,000 links
and 10,000 nodes. The hit-rate for different number of tri-
als are depicted separately. The TTL used for both query
and content implant has length 30. It shows thateven for
this snapshot network, the traffic is reduced by a factor of
at least 100for a hit-rate greater than 90% in four attempts.

on their available resources they can dynamically be part of
a category of their choice. (iii) As long as there are enough
number of nodes willing to have high connectivity, the de-
gree distribution of the emergent network is guaranteed to
be a mixture of heavy and light tailed distributions.

Moreover, in our recent work [17] we have shown that
even in such networks with different categories of nodes,
the percolation search algorithm exhibits the favorable scal-
ing features discussed in this paper. It naturally shields the
nodes with light-tailed degree distributions from the query-
generated traffic. Thus, the percolation search algorithm,
combined with the new-generation of P2P networking pro-
tocols, have the potential to lead to systematic and truly de-
centralized designs of scalable and robust unstructured P2P
networks.
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Figure 3. Scaling behavior of the fraction of links tra-
versed (i.e., traffic) for a fixed hit-rate of95% as a function
of the network size for a network withτ = 2. For the
top figure, the maximum degree is scaled asN1/2 while it
is scaled asN3/4 in the bottom figure. Note that the pre-
dicted scaling forkmax = N1/2 is (log2 N)N−0.5; how-
ever, the actual scaling iseven better. The same is true for
kmax = N3/4.


