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Abstract

Crucial for the performance of Peer-to-Peer networks
based on geometric topologies is the measurement complex-
ity and quality of the mapping function used to map a node
in the network to a point in the geometric target space. In
this paper we study how results from mathematics as well
as data mining can be applied to this mapping problem.
Using a metric space model for networks and results from
mathematics a relation between the number of nodes to be
mapped, the worst case error of the mapping and the dimen-
sion of the geometric target space is formulated. As a main
result Geometric Cluster Placement (GCP) is presented, an
improved and resilient placement algorithm based on GNP.
An evaluation of GCP presented is based on measurement
data from the RIPE NCC Test Traffic Measurement (TTM)
Project.

1. Introduction

Similarity searching in databases for protein sequences
or multimedia data tends to be a computationally expen-
sive task. Due to the complexity of the data objects every
comparison performed during the search process requires a
not negligible amount of computing time[10].Multidimen-
sional scaling[7] and related approaches targeting in dras-
tically lowering the time requirements of such a search pro-
cess by defining the similarity or dissimilarity of two data
objects in terms of adistance function. With the help of this
distance function, a so calledembeddingof the data objects

into ak-dimensional geometrical space is constructed with
the property that thedistortionof the inter object distances
caused by this embedding is minimal. Using this property
of ”distance-preserving” with a bounded error, a similarity
query can now be answered by performing arange queryin
thek-dimensional space that is comparatively cheap.

Peer-to-Peer (P2P) networks used as a platform for file
sharing are very similar to distributed multimedia databases.
Therefore it is not uncommon to consider methods related
to multidimensional scalingandmultidimensional indexing
to be used in models for next generation Peer-to-Peer net-
works as well. Geometry offers a rich repository to choose
an organisation principle for a P2P network (i.e. a geomet-
ric topology) from. In fact, several geometric principles to
organise the nodes in Overlay Networks have already been
studied ([13], [9], [8]). Viewing computer networks as geo-
metric objects offers a new perspective on a number of prob-
lems. The pre-requisite of such an approach is the dispose
of a function or an algorithm for mapping nodes in a net-
work into a geometric space of a fixed dimension. As we
will see later in an example, it is not possible to map ev-
ery network into a geometric space of arbitrary dimension
while expecting that thedistortion of distances caused by
the mapping can be kept small. Crucial for the performance
of a P2P network based on a geometric topology (GP2P net-
work) is to which extent the used mapping function pre-
serves the network distances between any two hosts in the
geometric representation of the network. In the case of us-
ing a geometric topology without taking the assignment of
valid coordinates to the nodes into consideration, it is pos-
sible that two nodes are neighbours in the Geometric repre-



sentation of the P2P network while their distance in the un-
derlying network is high. Such a situation has to be avoided
since leading to high communication costs.

In the area of computer networks the Global Network
Positioning System (GNP) [11] is a popular approach to-
wards a usable and general propose mapping function. Stan-
dard GNP has a low measurement complexity by requiring
k + 1 measurements per node, wherek denotes the dimen-
sion of the geometric target space. As a drawback, the er-
ror caused by GNP in the sense of distance preserving can
be comparatively high as we will see later.

In the area of database applications (e.g. data mining)
as well as mathematics several mapping functions and al-
gorithms have been developed with the aim to have con-
crete bounds for the amount of distancedistortion caused
[4], [6], [10]. In this paper we study how parts of this results
can be applied to the mapping of nodes in a network into a
k-dimensional geometric target space. As the main contri-
bution a Geometric Cluster Placement Scheme (GCP) is
presented. Based on the GNP idea, GCP is using a two
phase dynamic landmark selection principle in combina-
tion with a cluster based measurement approach, which is a
novel principle to the best of the authors knowledge. A com-
parison of GNP and GCP is provided in the form of simula-
tion results.

The remainder of the paper is organised as follows: In
chapter two we provide a theoretical background for the
mapping problem by collecting results from mathematics
and data mining. It is further motivated under what assump-
tions it is possible to formulate a relation between the num-
ber of nodes in a GP2P network, the distortion of inter-node
distances caused by the mapping function, as well as the di-
mension of the geometric target space. Chapter three is dis-
cussing basic aspects of landmark selection. In chapter four
the principle of the Geometric Cluster Placement scheme
is motivated and evaluated by experiments using measure-
ment data from the RIPE NCC Test Traffic Measurement
(TTM) Project. Standard GNP is used as the reference map-
ping function in the experiments. A conclusion is provided
in chapter five followed by acknowledgements.

2. Theoretical background

During this paper the model for a computer network is a
weighted undirected graphG = G(V,E) with positive edge
weights, whereV denotes the set of vertices inG andE the
set of edges between the vertices. The distance between two
verticesa, b ∈ V is measured using theshortest-pathmet-
ric ds(a, b) := ”length of the shortest path betweena and
b”.

The two simplifications made by this model, namely that
G is undirectedand thatds is defined as theshortest-path

metric allows us to identify the resulting pair(G, ds) with a
Metric Space[10] that is defined as:

Definition 1 (Metric Space) LetX be a nonempty set, the
pair (X, d), whered is a mappingd : X × X 7→ R+

0 is
called a Metric Space if and only if:

d(x, y) = 0 ⇔ x = y (1)
d(x, y) = d(y, x) ∀ x, y ∈ X (2)

d(x, y) ≤ d(x, z) + d(z, y) ∀ x, y, z ∈ X. (3)

To be able to use themetric spacemodel for a computer
network, one has to accept two requirements. First, asym-
metric routing is not taken into account to accomplish re-
quirement (2). Secondly, it has to be assumed that exclu-
sively shortest-path routing is used in the network to exploit
the fact that shortest-path routing in a network establishes
the triangle inequality which is (3).

In the remainder of this document, unless otherwise
stated,(G, ds) will denote a computer network represented
by a finitemetric spaceequipped with a shortest-path met-
ric ds. The functionF : G 7→ Rk represents the mapping
function (e.g. GNP), that maps a nodex in the network to
an elementF (x) ∈ (Rk, d

′
) in the geometric target space.

The notation(Rk, d
′
) is used to specify thatd

′
is the geo-

metric distance measure of the target spaceRk. To achieve
a maximum of freedom regarding this geometric distance
function (i.e.metric), it is introduced in a general form as
lp, defined as:

lp(x, y) :=

(
k∑

i=1

|xi − yi|p
)1/p

, 1 ≤ p < ∞

l∞(x, y) = max
i=1,...,k

|xi − yi|

In the euclidean case we haved
′
= l2.

2.1. Mapping functions and the curse of dimen-
sionality

A special group of mapping functions studied in the area
of mathematics are the so calledisometries. An isometry
is characterised by the fact that it preserves distances. This
means that if a mapping from(G, ds) to (Rk, d

′
) in the form

of anisometry is found, one has

ds(x, y) = d
′
(F (x), F (y)),∀x, y ∈ (G, ds).

Unfortunately it is usually not possible to find such a map-
ping if one poses constrains to the measurement complex-
ity, the dimensionk as well as the metric of the target space.
For example there is no distance preserving mapping of
the three dimensional simplex in figure 1 to(R2, l1). More
flexibility regarding the metric and dimension of the target
space is gained by accepting a degree of distortion [10] of
the inter-object distances caused by the mapping.
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Definition 2 (Distortion) Let c1, c2 ≥ 0 be two real num-
bers. The distortion of a mappingF : (G, ds) 7→ (Rk, d

′
)

is defined as the productc1 · c2 of the lowest valuesc1, c2

for which the inequality

1
c1
· ds(x, y) ≤ d

′
(F (x), F (y)) ≤ c2 · ds(x, y)

holds for all verticesx, y in G.

The constantsc1 andc2 denote thecontractionrespec-
tively the extensioncaused by the mapping regarding the
original distances between the nodes in the network and the
distances after the mapping process in the geometric target
space.

There are two fundamental results from mathematics that
provide theoretical bounds for the distortion of a mapping.
The Theorem ofBourgain [2] provides a relation between
the number of elements of a metric space, the distortion of
the mapping and the dimension of the target space. We cite
the version of this Theorem provided in [10].

Theorem 1 (Bourgain) Everyn-point metric space(X, d)
can be embedded in anO(log n)-dimensional Euclidean
space with anO(log n) distortion.

The statement of Theorem 1 provides an answer to a gen-
eral problem in the area of landmark based distance esti-
mation schemes, that is for example formulated in [12] as:
”Could we assume that a vector space with 5 to 7 dimen-
sions can model any network performance metric ?”. Ac-
cepting the simplifications necessary for the identification
of a computer network with a metric space, the Theorem
states that there is a functional relation between the dimen-
sion of the geometric target space, the worst case error of
the mapping function and the number of nodes to be placed.
While being a quantitative result, in the case of a network
with n nodes to be mapped, the resulting dimension of the
target space has to be selected in an order oflog(n) ex-
pecting a worst case distortion of the inter-node distances

caused by the mapping also in the orderlog(n). For exam-
ple a Graph with 100.000 vertices can be embedded into
Rc1·11 with a distortion ofc2 · 11 wherec1, c2 > 0 are con-
stants.

Using a geometric topology for a Peer-2-Peer network,
a high dimensional geometric space can have an impact to
the number of neighbours each member of the GP2P net-
work has to serve. Therefore low dimensional geometric tar-
get spaces can be considered as a benefit. In this context the
question to which extent a further dimension reduction of
the target space has an impact to the distortion of the map-
ping function is of interest. For the purpose of such a di-
mension reduction (i.e. a mapping from a high dimensional
geometric space to a lower dimensional geometric space)
the following Theorem, fromJohnson-Lindenstrauss1, pro-
vides an answer. We cite the version of the Theorem pro-
vided in [3].

Theorem 2 (Johnson-Lindenstrauss) For any
(0 < ε < 1) and any integern, let k be a posi-
tive integer that

k ≥ 4(ε2/2− ε3/3)−1 log n.

Then for any setV of points inRd, there is a mapping
F : Rd 7→ Rk such that∀u, v ∈ V ,

(1− ε)‖u− v‖2 ≤ ‖F (u)− F (v)‖2 ≤ (1 + ε)‖u− v‖2.

Further this map can be found in randomized polynomial
time.

In the caseε → 1 we get from Theorem 2 as a lower
bound for the dimension of the target space,k ≥ 24 · log n.
A further result presented in [3] states that any weighted
graph can be embedded into ak ≤ C log n dimensional ge-
ometric space with a distortion ofO(n2/k(log n)3/2/

√
k).

2.2. Evaluation Framework

Based on the theoretical results collected in the pre-
vious section one can expect to realise a GP2P network
for n nodes in a space of dimensionk ≤ O(log n) with
an distortion of the inter-node distances in the order of
O(n2/k(log n)3/2/

√
k) [3]. Targeting in GP2P networks

with a high number of nodes (e.g. planet scale P2P net-
works), this offers two main approaches:

1. Using a high dimensional target space for the GP2P
network: For a geometric topology, a high dimen-
sional target space has in general an impact to the
connectivity of the GP2P network (i.e. the size of the
neighbour table each node has to maintain). A high

1 The Theorem is also known as theJohnson-Lindenstrauss Lemma



number of node neighbours can result in a high com-
plexity in the form of management as well as control
traffic required to maintain the GP2P structure in a dis-
tributed manner. Examples for such management and
control requirements are alive-messages to neighbours
and communication as well as computations required
to set up the GP2P structure (e.g. in the case of triangu-
lation based schemes [9] ). For example in the case of
a Content Addressable Network (CAN) [13] contain-
ing n nodes owning different zones of the same size,
a k-dimensional space is leading to an average num-
ber of 2k individual node neighbours and an average
routing path length ofk/4 · (n 1

k ).

2. Optimise the mapping for a low dimensional tar-
get space:As stated before, keeping the dimension of
the target space low is leading in general to a compu-
tationally less expensive construction of the geomet-
ric GP2P topology. As a drawback we can expect to
find no high quality mapping function in the case of a
high number of nodes in the GP2P network, as moti-
vated before.

For the purpose of reducing measurement traffic as well as
overhead for setup and maintainment of a GP2P network,
the optimisation of the mapping function for a geometric
space of dimension two is central for us in this paper.

As a prerequisite for being able to optimise a mapping
function regarding their quality, a suitable quality measure
is needed. Based on general considerations and [5] we are
using the following quality measures:

1. Scalability
Measurement complexity belowO(n2) (wheren is the
number of nodes in the GP2P network) as well as a tar-
get spaceRk with a lowk.

2. Stress [5]

Definition 3 (Stress) Thestresscaused by a mapping
F is defined as∑

x,y

(
d

′
(F (x), F (y))− d(x, y)

)2

∑
x,y d(x, y)2

Stress is a measure for the overall deviation in dis-
tances caused by a mapping.

3. Average error
If G(V,E) is a graph, we define for two nodes
x, y ∈ V the relative error caused by the map-

ping F as |(ds(x,y)−d
′
(F (x),F (y))|

ds(x,y) . The average er-
ror is defined as the average of the relative errors for
all nodesx, y ∈ V being members of the GP2P net-
work.

Stress is used since it is a common quality measure e.g.
in the context ofMultidimensional Scaling. Common vari-
ants of theMultidimensional Scalingapproach are seeking
to minimise stress as defined in definition 3. A further fre-
quently used quality measure is average error [12]. The av-
erage error values are also provided to illustrate the values
of stress.

3. Landmark selection

For the realisation of a mapping function, GNP uses a
landmark based measurement principle. If the dimension of
the geometric target space isk, GNP requires a minimum of
k + 1 landmark computers (i.e. measurement points). First
the coordinates of the landmarksL = {l1, l2, ..., l(k+1)}
are calculated by measuring the inter landmark distances.
If pathological cases are avoided (e.g. the coordinates of
all landmarks lie on a line) the mapping of the landmarks
into the geometric target space is possible without an er-
ror. If now the coordinates of a nodex in the network have
to be calculated, the network distance of this node to the
k + 1 landmarks is measured by using for example round
trip time measurement. This measurement results are now
used to calculate the node coordinates by minimising an er-
ror function utilising for example thesimplex-downhillal-
gorithm. In our experiments we used the error function de-
fined in [11]:

fe(x, F (x), L, k) :=
k+1∑
i=1

(d
′
(F (x), F (li))− ds(x, li))2

While in [11] the landmarks are chosen static, we performed
experiments using a dynamic landmark principle, with the
aim to realise a more flexible as well as resilient placement
scheme.

In general the way to select the landmarks used for the
measurements has an impact to the quality of the resulting
mapping. One of the most critical situations in this context
is described in figure 2. If for two nodesX, Y the distances
to the landmarks out of the setL = {l1, l2, l3} are equal
(i.e. ds(X, li) = ds(Y, li) = wi, i = 1, 2, 3), both points
will get the same coordinate in the target space, while hav-
ing a network distance unequal to zero.

One possibility to avoid such a situation is illustrated in
figure 3 and one of the main arguments in the proof of The-
orem 1. If the distanceDs(x, L) of a pointx to the land-
mark setL is defined asminl∈L ds(x, l), the situation of
figure 3 is the following: SinceDs(x, L) < r1 < r2 and
Ds(y, L) > r2, it is to be expected that the GNP mapping
function will calculate coordinatesF (x) andF (y) with

l2(F (x), F (y)) > r
′

2 − r
′

1 > 0.
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We are using this argument heuristically, by assuming
r

′

2 > r
′

1 > 0, depending on thedistortion introduced by
GNP.

4. Experiments

For the experiments performed in this paper, we have
used delay data provided by RIPE NCC TTM [1] (Test Traf-
ficMeasurement) project. The TTM project has a number of
goals including Internet end-to-end one-way delay analy-
sis. The TTM infrastructure consists of approximately 60
measurement boxes scattered over Europe (and a few in the
US and Asia). Between each pair of measurement boxes, IP
packets of a fixed length (100 bytes), called probe-packets,
are continuously transmitted with interarrival times of about
40 seconds, resulting in a total of about 2160 probe-packets
per day. Due to the synchronizations with GPS in all test-
boxes, RIPE TTM achieves a delay accuracy within 10
µs. The end-to-end delay (D) of the IP packet is deter-
mined as the difference between the timestamps of depar-

ture at the source and arrival at the destination. We have
analyzed the data collected by TTM on May 15, 2003, at
which time there were 58 active boxes, where 48 hosts are
located in Europe, 7 in the US, and 1 in Japan, Australia
and New Zealand. In order to know the congestion-free de-
lay, for each sender-destination pair we computed the mini-
mum end-to-end delay over 24 hours (that is approximately
2160 probe-packets). In this paper we ignore asymmetry,
by always considering the symmetrised network distance,
defined as the sum of the network distances in both direc-
tions. The result of the delay can be considered as a round-
trip time. We omitted pairs for which the delay in one of
the directions is missing, leaving in total 1503 pairs and
1024 within Europe. These measurements provide us with
the network distance matrix used as the basis for the exper-
iments.

4.1. Impact of the selection of landmarks to Stress
and Average Error

Using a simulation environment, we compared different
approaches for selecting the GNP landmarks out of a set
of nodes with the standard GNP approach. In the simula-
tion the first three nodes joining a GP2P network are used
for defining the two dimensional target spaceR2 in the fol-
lowing way:

The first nodel1 is mapped to the origin(0, 0) of Rk.
The second nodel2 is mapped to the point(ds(l1, l2), 0).
To calculate the coordinate~l3 of the third nodel3, we mea-
sureds(l1, l3), ds(l2, l3) and define~l3 as the result of min-
imising the error functionfe(l3, (0, 0), {l1, l2}, 2) (c.f. Sec-
tion 3) using thesimplex-downhillalgorithm. After the tar-
get space is established, the following join procedure for a
new node was simulated:

A node willing to join, has to contact an arbitrary mem-
ber of the GP2P network (i.e. a bootstrap node). This boot-
strap node initiates a search query for the landmark nodes
about to be used for the measurement process. For this
search function the following schemes are evaluated:

1. Furthest Node Placement in Network (FNP)
The GP2P members with the highest network distance
to the node that is about to be placed are used as land-
marks.

2. Closest Nodes Placement in Network (CNP)
The GP2P members with the lowest network distance
to the node to be placed are used as landmarks.

3. Random Node Placement (RNP)
Random GP2P members are used for the measure-
ments.

4. Random Cluster Placement (RCP)
A static setL of landmarks as in standard GNP is used.
If the landmarks receive a measurement request, every



landmarkli starts to collect randomly a setAi of assist
nodes from the current GP2P network members. The
setAi containing alsoli, is referred to as the measure-
ment cluster of landmarkli or just the measurement
clusterAi. The nodex willing to join is now measured
by calculating

d(x, Ai) := min
a∈Ai

d(x, a)

for every measurement clusterAi. During the simula-
tion, we used a static cluster size of five nodes per clus-
ter.

For every landmark selection scheme, 50 measurements are
performed selecting randomly 50 nodes out of the test net-
work for being mapped toR2. The test network was mod-
elled by a fully meshed graphG = G(V,E), generated us-
ing the distance matrix based on the RIPE NCC TTM data.
SinceG is fully meshed, the routing used in the simula-
tion is reflecting the internet routing by selecting always the
path of topological length one (and not the shortest path),
from any source to any destination. The verticesv ∈ V of
the graph are the RIPE NCC TTM measurement boxes.

4.2. Evaluation

As the result of the simulation we compare the stress and
average error of the used schemes with standard GNP in two
dimensions. In table 1 the average values ofaverage error
in percent andstressare shown. Table 2 shows the vari-
ance of theaverage errorandstressfor the 50 simulation
runs. To enhance the legibility of the resultsbezier curves
are used for a visualisation of the characteristics of the com-
pared landmark selection schemes in figure 4.

Average error Stress
CNP 307.40503 0.54648435
RCP 358.80453 0.6869309
GNP 642.54254 1.1906508
RNP 895.65173 1.3859375
FNP 2251.3467 5.356254

Table 1. Average values

Confirming the observations of section 3, the CNP ap-
proach provides the best results regarding average error
and stress, followed by the cluster based placement scheme
RCP. In general GCP can be considered as not practical for
large scale GP2P networks, because of the required initialn
measurements for a node joining a GP2P network contain-
ingn nodes. In contrast, the RCP scheme requiresc∗(k+1)

Average error Stress
CNP 28382.758 0.037409663
RCP 26124.48 0.45122776
GNP 122362.1 0.11339183
RNP 195577.45 0.05818931
FNP 2011521.7 20.806479

Table 2. Variance

measurements, only depending on the dimension of the tar-
get space and the cluster size. The computational complex-
ity of RCP regarding the minimisation of the error function
fe is equal to that of GNP, because just thek + 1 minimal
measurement results are used in the error minimisation pro-
cess.

4.3. The Geometric Cluster Placement (GCP)
framework

Utilising the results above, the aim of GCP is to find
landmarks with a low network distance to a joining node
x while having a constant measurement complexity. To ac-
complish this task GCP performs a two step mapping, tar-
geting in the usage of geometric distance information al-
ready available in the GP2P network.

In the first step, the coordinates of the nodex about to
join the GP2P network are calculated using RNP (i.e.k + 1
random nodes from the GP2P network as landmarks). With
the help of this first coordinate, the node joins the GP2P net-
work. After the join procedure, the node calculates the set
of its k + 1 geometric closest neighbours, that are usually
direct neighbours or reachable via these direct neighbours.
Eachli of this new landmark nodes calculates now a clus-
ter Gi out of itsc (i.e. c denotes the cluster size) geometric
closest neighbours with the property that

∩k+1
i=1 Gi = ∅. (4)

The node is now measured again and replaced with the help
of thek + 1 measurement results

ds(x, Gi) := min
g∈Gi

ds(x, g).

The cluster based measurement principle in the second
mapping step is used, since a placement selecting random
landmarks produces a relative high error compared to stan-
dard GNP (c.f. figure 4). By using the minimum result of
the cluster measurements an enhancement of the accuracy
of the second mapping step is expected.

For a comparison of GNP and GCP the same simula-
tion environment was used. For the realisation of require-
ment 4 a simple first come first served principle was simu-
lated (i.e. the first landmark that requests a node to be inGi



Figure 4. Average error and stress comparison

gets that node). An analysis of different message and time
efficient clustering algorithms for GCP is beyond the scope
of this paper. In a real world implementation for example
an expanding ring search can be used to build the measure-
ment clusters. The maximum Time To Live (TTL) value for
the ring search has to be selected in a way that the time com-
plexity of GCP meets the application requirements. As the
result of the simulation, we compare the stress and aver-
age error of GCP using a cluster size of five with standard
GNP in two dimensions. In table 3 the average values ofav-
erage errorin percent andstressare shown. Table 4 shows
the variance of theaverage errorandstressfor the 50 simu-
lation runs. The values of thex-axis in figure 5 represent the
number of the simulation run, while they-axis is used for
displaying the stress respectively average error measured in
the corresponding simulation run. Table 4 and figure 5 show
that the variance in the average error and the stress using
GCP is definitely lower then using standard GNP. Regard-
ing the average values for stress and average error, table 3
shows that the values of GCP in two dimensions are sig-

Figure 5. GNP, GCP average error and stress
comparison

Average error Stress
GCP 356.48734 0.7253786
GNP 642.54254 1.1906508

Table 3. Average Values

nificant better then the values of standard GNP in two di-
mensions. A further benefit of GCP is that if it is used in
the context of GP2P networks, GCP does not rely on static
landmarks. As a possible drawback, there is a cooperation
of the nodes in the GP2P network required for performing
the cluster measurements.

GCP requires(k+1)∗(c+1) measurements using a clus-
ter size ofc after the firstc ∗ (k + 1) nodes have joined the
GP2P network. While the selection of target dimension two
for the evaluation makes management and evaluation intu-
itive, the stress and error values of GCP are comparatively



Average error Stress
GCP 39079.03 0.044214338
GNP 122362.1 0.11339183

Table 4. Variance

high. In the case of a file sharing application, without strict
realtime requirements a GP2P network in a two dimensional
geometric space build up using GCP can be considered as
an option. If the target application of the GP2P network has
more strict realtime requirements (e.g. in the case of multi-
media streaming) a higher dimensional target space is rec-
ommended. For example in the case of a three dimensional
target space using the same simulation parameters, the aver-
age error of GCP reduces to 144,5% with a stress value of
0.15160233. As motivated in section 2.2, in general a low
dimensional target space results in lower measurement and
management complexity with the drawback of higher place-
ment errors, while a high dimensional target space results in
lower placement errors but demands a higher measurement
and management complexity.

5. Conclusions

In this paper we studied how results from mathematics as
well as data mining can be applied to the problem of map-
ping nodes in a computer network into a low dimensional
geometric space. A theoretical background for the mapping
problem as well as the key points of an evaluation frame-
work for the quality of a mapping function are provided.
Accepting the heuristics required to identify a computer net-
work with a metric space it is possible to provide a rela-
tion between the dimension of the geometric target space,
the number of nodes to be mapped and the worst case error
to be expected. This relation, provided by theTheorem of
Bourgain[2], answers the question of ”the curse of dimen-
sionality” in the context of mapping functions for example
posed in [12]. Different landmark selection schemes for be-
ing used with GNP are evaluated. The best results regard-
ing stress and average error are obtained by using the Clos-
est Nodes Placement (CNP) principle. As a practical map-
ping function a novel Geometric Cluster Placement (GCP)
scheme is presented and compared to GNP. As a result it
is stated, that the variation in the stress as well as the aver-
age error using GCP is lower then using the standard GNP
approach. In GCP the requirement of a static landmark sys-
tem is relaxed by using a more resilient landmark selection
algorithm that relies on distance information already avail-
able in a Peer-to-Peer network based on a geometric topol-
ogy.
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