
Building Adaptive Peer-To-Peer Systems

Evangelia Kalyvianaki and Ian Pratt
University of Cambridge Computer Laboratory

11 JJ Thomson Avenue, Cambridge, UK�
firstname.lastname � @cl.cam.ac.uk

Abstract

Most peer-to-peer systems are built upon the assump-
tion that their running environment is homogeneous. How-
ever, for Internet-scale applications this assumption could
lead to performance limitations. We propose a framework
for building peer-to-peer systems which use performance
monitoring techniques to adapt to changes in their environ-
ment.

1. Introduction

During the last few years, peer-to-peer (P2P) computing
has gained new significant attention, through a variety of ap-
plications. P2P systems are running on thousands of nodes
across the planet with different characteristics such as net-
work capacity, processing power and disk storage and la-
tency. However, early P2P systems both unstructured such
as Gnutella and structured do not account any of the dynam-
ics and the heterogeneity of their running environment.

Recent unstructured systems in particular KaZaA and
GIA [2], do take heterogeneity into account. In KaZaA
peers are divided into two categories: preassigned nodes
with high bandwidth network access, known as supernodes
and regular peers. Queries are forwarded only to supern-
odes, which maintain a list with the file names on their
connected regular peers and therefore avoiding overload-
ing all peers of the system. Saroiu et al. [5] report that both
Gnutella and Napster hosts vary in terms of bandwidth, la-
tency, lifetime and shared data. These observations led to
the design of GIA, a Gnutella-like system which aims to re-
spond to high aggregate query rates. For this purpose, each
peer calculates the maximum number of queries it can han-
dle per second and thus the maximum number of possible
neighbours. Through this mechanism and other optimisa-
tions GIA achieves a three to five order of magnitude im-
provement in overall system capacity. In the above systems,
the metric that shows the heterogeneity of the nodes is cal-
culated based either on instant measurements or user pro-

vided information and maintained unchanged throughout
the life of the application. However, peers’ capacity as per-
ceived by the application (e.g. availiable processing power)
and available network bandwidth depend not only on their
hardware characteristics, but also on their usage load. Since
peers’ capacity is dynamic a P2P system must be periodi-
cally updated on peer and network performance.

Existing structured P2P systems are not designed to take
into account the heterogeneity of the peers [3]. We argue
that these systems can be extended towards this direction
without severe modifications. Several structured P2P sys-
tems incorporate topology awareness into their design. One
example is Pastry’s [4] proximity metric. A lookup for a par-
ticular nodeID may match several nodes in the routing table.
Each match is tagged with a proximity metric which shows
the distance, in terms of IP hops, of the current node from
the given IP address. Such metrics can be extended to in-
corporate more information about the matched node such
as processing capacity, disk latency and expected load.

In this paper we propose a framework for building adap-
tive P2P systems. Adaptation is based upon observations of
the system’s behaviour resulting from monitoring the nodes
of the system.

2. Architecture

The framework is based on tracing kernel level and net-
work traffic events on the nodes of the P2P network during
the life of the application. Events are analysed in two dif-
ferent levels. Firstly, events are processed locally on nodes
in order to produce statistics of the nodes’ behaviour. Sec-
ondly, events across different nodes that participate in the
same P2P operation, e.g. join, are combined into a single
path. These paths are later used for analysing the behaviour
of the P2P operation across the system. The framework con-
sists of three stages: gathering information, information
analysis and an adaptation stage described below.

1. Gathering Information
The nodes of the P2P system generate traces during
the execution of the application. The kernel-level op-



erations performed during the execution along with
the network traffic associated with the application are
stored in trace files. The tracing mechanism is the
Linux Trace Toolkit (LTT) [6], a dynamic recording
tool which logs events in the Linux kernel. A few of the
more important event types are: system calls, socket
communications, scheduling changes and file system
operations. We have added a new event to capture net-
work traffic in kernel-level.

2. Information Analysis
This stage focuses on analysing performance across
the P2P system by processing events generated from
the previous stage and is divided into local and com-
bined analysis. The local analysis aims to find node’s
capacity as perceived by the P2P application (e.g. pro-
cessing load and available disk bandwidth) through
processing raw events such as frequency of sched-
ule changes, number of running processes and dura-
tion of file system operations. The combined analysis
aims to study the performance of an application op-
eration across different nodes. Different operations are
identified from network packets across traces. The out-
come of this analysis is the performance characterisa-
tion of an operation in terms of performance of indi-
vidual nodes across the path of the execution of the
operation as defined previously and network availabil-
ity between successive nodes.

3. Adaptation
Periodically, information of the current state of the P2P
network resulting from the previous stage is published
to the P2P applications running on different nodes.
This information can be used in different ways by the
application for adaptation purposes as paths or nodes
with better overall performance can be preferred over
others. An example is given in the next section.

3. Discussion

We are currently developing a prototype framework of
the proposed architecture. As an example application we
study the Scribe [1] multicast infrastructure, which is built
upon the Pastry routing substrate. Scribe creates a tree in or-
der to send messages to members of the same group. Mem-
bers occupy the leaves of the tree, while messages are sent
by the root. We use our prototype to study the performance
of the paths from the root of the tree to the leaves when a
message is sent. We aim to discover whether a path suffers
from poor performance, when for example one or more par-
ticipant nodes are highly loaded or the available network
bandwidth across some parts of the path is limited. This in-
formation can be later used when a new member joins the

tree. These experiments will be conducted with the proto-
type developed on the PlanetLab1 testbed.

The framework is designed in a way that it does not sig-
nificantly perturb the resources (e.g. nodes’ CPU and net-
work bandwidth) of the P2P network. Initial experiments
suggest that worst case performance impact of running the
modified LTT is not severe. Enabling tracing on a highly
loaded web server reduced its performance2 by 6%, while
3% of the events were lost. During the experiments all pos-
sible events produced by all processes are stored. Since in
the proposed framework only the events related to the P2P
application are captured, the measured impact can be fur-
ther improved.

4. Conclusions

Internet scale applications such as P2P systems are run-
ning in a heterogeneous and constantly evolving environ-
ment. Such systems can attain better overall performance if
they can adopt to these environmental factors. For this rea-
son we propose a framework that monitors the P2P system
and provides information regarding the nodes and network
performance for adaptation purposes.

5. Acknowledgements

We are grateful to Intel Research at Cambridge for fund-
ing the work of Evangelia Kalyvianaki. We also thank the
anonymous reviewers for their helpful comments.

References

[1] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas in
communications (JSAC), 2002.

[2] Y. Chawathe, S. Ratnasamy, L. Breslay, N. Lanham, and
S. Shenker. Making gnutella-like p2p systems scalable. In
ACM SIGCOMM, Germany, Aug. 2003.

[3] S. Ratnasamy, S. Shenker, and I. Stoica. Routing algorithms
for DHTs: Some open questions. In IPTPS, 2002.

[4] A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-
ized Object Location, and Routing for Large-Scale Peer-to-
Peer Systems. In IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), 2001.

[5] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement
Study of Peer-to-Peer File Sharing Systems. In Multimedia
Computing and Networking 2002 (MMCN ’02), 2002.

[6] K. Yaghmour and M. R. Dagenais. Measuring and Charac-
terizing System Behavior Using Kernel-Level Event Logging.
In 2000 Usenix Annual Technical Conference, San Diego, CA,
June 2000.

1 http://www.planet-lab.org
2 SpecWeb99 was used for these experiments


