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Abstract 

 
The most intuitive way to build a service directory 

application that allows for service entities to register 
or search for services on top of a structured peer-to-
peer network is to build reverse indices at appropriate 
nodes on the network. However, this implies trust on 
the reliability and integrity of other nodes on the 
network, which may be too risky an assumption for 
businesses. This paper proposes a service directory 
that groups service entities of the same category 
together; this is achieved by dedicating part of the 
node identifiers to correspond to their service category 
semantic. Using Chord as the peer-to-peer substrate, 
this scheme logically divides the Chord circle into 
equidistant arcs; each arc is called an island. This 
scheme will result in the formation of islands of 
varying population, and thus changing the uniformly 
spread topology of the original Chord. Simulations are 
used to investigate the path length and message load of 
the changed topology. An additional routing scheme is 
also proposed and simulated to exploit the new 
topology to gain better path length.  
 
1. Introduction 
 

Peer-to-peer systems have proliferated in recent 
years, beginning with the original centralized system 
Napster [11], the subsequent rise of unstructured 
systems such as Gnutella [4], and the ever so popular 
structured variants such as Chord [6], CAN [16], Pastry 
[3] favored in academia. 

Underlying all the different types of peer-to-peer 
systems is the notions of co-operation amongst the 
peers and harnessing the collective resources of all 
participants. Many applications have thus been 
developed over the years, including file sharing [4], 
distributed file storage [8], content distribution [9], 
email delivery [2], indirection services [5], and many 
more. 

The scope of this paper will be centered on the 
context of a service directory application which allows 
Service Producers to list its Service Offerings and 
facilitate Consumers in finding the desired service. 
Service directories are usually centralized, ranging 
from the very traditional (and original) paper-based 
Yellow Pages, to modern Internet directories the likes 
of Yahoo and DMOZ [12]. The current emerging Web 
Services technology also employs a centralized system 
called Universal Description, Discovery and 
Integration (UDDI), which is a registry (with optional 
replication) containing information about businesses 
and the web services that they offer. However, like any 
other centralized model, UDDI suffers from the usual 
problems of limited scalability and single point of 
failure. It also implies that someone needs to operate 
and maintain this infrastructure.  

Our paper takes the position that this infrastructure 
need not be centrally provisioned and maintained; the 
responsibility and cost, whether monetary or otherwise, 
should be shouldered by all participants who benefit 
from this infrastructure. This distribution of 
responsibilities will also mean better robustness for the 
system on the whole. The maturity of the current peer-
to-peer technology actually makes this possible, and 
Chord is the chosen peer-to-peer substrate for our 
project because of its elegance and simplicity. 

The rest of this paper is organized as follows: 
Section 2 contains a brief scope of the related work. In 
Section 3 the two service directory schemes are 
contrasted, and Section 4 outlines the ramifications of 
the semantic scheme. Section 5 presents the results of 
the simulations and Section 6 concludes this paper and 
presents some possible future work. 
 
2. Related Work 
 

The problem of finding service listings generalizes 
to a searching problem. It is clear from literature that 
unstructured systems such as Gnutella [2] implement 
searches by flooding queries to a subset of the peers. 



Structured systems do not support search directly, but 
allows inverted indices to be reached via the native 
distributed hash table scheme. Thus searches in 
structured systems are very targeted and deterministic, 
and this is no exception with our scheme.  

Schemes that operate in similar fashion include 
peer-to-peer DNS systems [10], keyword search for 
document storage and retrieval [11], and email services 
[12]. In terms of motivation and concept, [13] is the 
closest to our own; it organizes participating nodes into 
a hypercube structure and builds ontological links 
between the nodes. The main differences to the 
approach of this paper is the underlying peer-to-peer 
substrate, and the approach to search – node identifiers 
in hypercup correspond to a combination of ontology 
semantics, whilst our work at the moment only assumes 
single correspondence to a specific service category. 

 
3. Building a peer-to-peer service directory 
 
3.1. Traditional Approach 
 

The traditional approach of building a service 
directory on top of peer-to-peer networks usually treats 
the peer-to-peer layer as a massive storage composed 
of all the participating nodes. Reverse indices are built 
at each node in the network by having Service 
Producers register their Service Descriptions at known 
location. These known locations correspond to nodes 
with unique identifiers; they are also termed keys in 
peer-to-peer terminology. As a simple example, a 
music encoder service may register its Service 
Description using the peer-to-peer primitive put( ) in 
the following fashion: 

put( key , value )

key = hashm( “music.encoder” )
value=“<description>wavtomp3</description>”
m = number of bits in the identifier space 
 
Other music encoder Service Producers may also 

register in the same known location by hashing 
“music.encoder” to produce the key, and register with 
their own Service Descriptions. The node responsible 
for this key will store a list of all the registered Service 
Descriptions, and return this list when other nodes 
query for this key looking for all the music encoders 
services available. The query is performed using the 
generic peer-to-peer primitive lookup( ), and a list of 
Service Descriptions are returned from the node 
responsible for this key. Please see Figure 1 for 
detailed workings of this scheme. 

 
{value1, value2 … valueN} = lookup( key )

 
Figure 1. Traditional approach of building a peer-to-peer 
service directory 

 
This approach is the most intuitive way of using a 

distributed hash table to store the data, analogous to the 
real life example of Yellow Pages. In real life, service 
entities submit their details to Yellow Pages (equivalent 
to the distributed storage) and then the details are 
“returned” when consumers look under a particular 
service category  

However, the issue of trust severely limits this 
model when transferred to the peer-to-peer platform. 
Two issues at the forefront include firstly, the 
reliability of the node storing the Service Descriptions 
is unpredictable; a multinational company's Service 
Description could be hosted by a node run by a little 
shop in Siberia! Secondly, although possible, it is 
difficult to ensure that nodes hosting Service 
Descriptions will be resistant to bribes and collusions 
to favor one Service Producer over another. 
 
3.2. Semantic Approach 

 
To address the issue described above, we propose 

the scheme where the service semantic is inbuilt in the 
node identifiers. Instead of the key implicitly 
representing the semantic information, the node 
identifiers reflect the type of service that the Service 
Producer offers. So instead of Service Producers 
registering their Service Descriptions at another node, 
each Service Producer serves its own Service 
Descriptions, but “registers” by choosing an 
appropriate node identifier to participate in the 



network. Using the previous example, whereby the key 
represents the service entitie's category as 
“music.encoder”, now this information actually forms 
part of the node's identifier. This is achieved by 
allocating certain bits in the identifier for semantic 
information and using a hash that produces a result of 
the required number of bits. For example: 

Id=[hashx(“music.encoder”)][hashy(“10.1.1.1”)]

x+y = number of bits in the identifier space 
 
Diagrammatically this scheme will divide the Chord 

circle into equi-distant arcs, and the number of arcs will 
depend on the number of bits allocated to the semantic 
information. Each arc will contain nodes that belong to 
the same service category, collectively called an 
“island”. Logically the node identifier is split into two 
domains: the first part identifies the island that the node 
belongs to, and the second part identifies its position 
within the island. Conceptually this may be even more 
analogous to the real life example of the Yellow Pages: 
the placement of services in the same service category 
is listed together on the same pages, and the user finds 
the right pages to view the numerous offerings under 
the particular service category. The only difference is 
that Yellow Pages offers a list of all the offerings, 
whilst this scheme would require “scrolling” through 
the island for the full list. However, this difference can 
be easily addressed as an implementation issue. 
 

 
Figure 2. Semantic approach of building a peer-to-peer 
service directory 

 
In terms of the functionality of a service directory, 

the aim is obviously to provide as much of a global 

view as possible for all the services under a particular 
category. This will provide users with maximal choice, 
thus been able to find the optimal Service Producer to 
satisfy the need. However, the reality of the situation is 
that looking for a service does not always mean 
optimization of all the possible parameters – in real life 
it is perhaps one or two parameters, such as locality 
and price of the service. The computation requirement 
to assess each and every service description for 
optimization would also be staggering expensive. Thus 
the more reasonable assumption to start with would be 
similar to the idea of anycast [15], where any Service 
Producers belonging to the same category can satisfy 
the need. Of course, Service Consumers may employ 
targeted anycast (e.g. choosing any service from a few 
known equivalent brands), which is more selective 
compared to pure anycast and more moderate than 
broadcast. 
 
4. Ramifications 
 
4.1. Topology 
 

As previously mentioned, nodes offering the same 
type of service will sit on one continuous arc of the ring 
topology. The length of the arc in the identifier space 
will be dependent on the number of bits allocated to 
represent this information. From the overall network 
point of view, the topology will be very different to the 
normal Chord ring where consistent hashing guarantees 
the even spread of nodes across the whole ring. Now 
that semantic information is part of the node identifiers, 
there will exist a spectrum of island population, ranging 
from very dense to zero. However, assuming consistent 
hashing still applies, node distribution within an island 
will still be spread fairly evenly. The key to counter the 
imbalance is to fix the number of bits representing the 
semantic information at an appropriate level (within 
orders of magnitude) corresponding to the number of 
service categories. 
 
4.2. Service Entities 
 

The way that service entities operate on the network 
will also be slightly different to the traditional 
approach. Service Producers now serve their own 
Service Descriptions, giving them the full control of the 
robustness of their nodes on the network. It also allows 
the deployment of physical fail-safe measures such as 
clusters and shadow servers. Replication then becomes 
redundant (but still possible) at the peer-to-peer layer, 
because each node is only responsible for its own 
service description. In the event of an unexpected node 



failure, it only brings down its own presence instead of 
potentially many other services. Having no need for 
replication at the peer-to-peer layer will also mean less 
traffic for participating nodes. However, replication 
can still be useful as required by higher-layers, for 
example, negotiate with downstream nodes to co-host 
the service description as a failsafe measure or for load 
balancing. 

Under the traditional approach of the service 
directory, Service Producers can indiscriminantly 
register their Service Description under every category, 
much like spamming the service directory. By having 
Service Producers operate their own physical nodes, 
the scheme dissuades irresponsible spam because each 
registration means more participation in the network, 
which is at an extra cost. 
 
5. Experiments 
 

The change in topology due to the assignment of 
semantic information in the node identifiers will result 
in differences to the properties at the peer-to-peer layer. 
Compared to the original Chord, the distribution of 
nodes can no longer be assumed to be uniform over the 
whole circumference of the ring; however, uniform 
distribution of nodes within islands can still be 
assumed. This will impact the routing and load 
balancing on the Chord ring. 

It is well known from literature that Chord routing 
path length is O(logN), N being the number of nodes in 
the network, due to the exponential distance between 
each finger entry. To understand the difference 
between the semantic scheme and the original Chord's 
routing performance, simulations were performed with 
the same parameters for both schemes – the number of 
nodes (N), the number of finger entries each node 
maintained (m=24), and the number of messages routed 
in the network (50N query messages). 

There was no modification done to the Chord 
simulator itself, but the topology generator had to be 
modified to generate the semantic scheme. It had to 
randomly produce island identifiers and then randomly 
assign the nodes to have identifiers that sit within these 
islands. For both semantic and original schemes, the 
simulations were setup so that each node hosted only 
one key that matched its own identifier. The 
simulations were then run as per normal of the original, 
with random nodes querying for random (existing) 
keys. 

 
 
 

5.1. Topology Characteristics 
 

The first set of simulations compared the routing 
performance of the original and semantic schemes. The 
number of populated islands is varied to see the impact 
of higher spreading of nodes across the ring. Note that 
“zero island” denotes the original Chord scheme. It can 
be seen from the Figure 3 that lower spreading (i.e. 
lower number of islands) meant a lower hop count. 
However, this decrease in hop count is negligible when 
the number of island is at roughly 10% of the total 
number of nodes (shown in Figure 4). 

4
5

6
7
8

9
10
11

12
13
14

15
16

0 200 400 600 800 1000
number of islands

1000 nodes
2000 nodes
4000 nodes

 
Figure 3. Average number of hops with varying amount of 
islands 
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Figure 4. Percentage reduction of average hops vs. number of 
islands as percentage of node population 
 

Note that for the remainder of this section, only the 
results for 2000 nodes will be presented due to space 
limitations; however, they are indicative of the trend 
that is observed for all node populations. 

The total number of islands is determined by the 
number of bits allocated to represent the semantic 
information in the identifier. By changing the amount 
of bits allocated whilst keeping the number of 
populated islands constant, the effects of manipulating 
the ratio between populated and vacant islands can be 
seen. The default number of bits allocated for semantic 
information for all other experiments is set at 10 out of 
24 bits. More bits allocated to semantic information 
means populated islands are further apart; therefore it 



is expected that the routing performance improves, as 
confirmed in the results for the second set of 
simulations shown in Figure 5. 
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Figure 5. Average number of hops with varying amount of bits 
allocated for semantic information 

 
Part of how nodes participate in the network is to 

forward transit packets for other nodes. The co-
operative nature of peer-to-peer networks means that 
each node would be reciprocated when the node itself 
needs to send a message or a message is destined to it. 
We term all the messages that a node sees as the 
message load. 

At the basic use of a service directory, each node 
will only host one key as each peer only serve its own 
service description.  As each node is mapped to one 
key only, this scenario serves as a good indication to 
the base level of message load for the semantic 
topology. The number of nodes that experience a 
certain message load is presented as a probability, 
plotted against the number of messages per node in 
Figure 6. The percentile information is also given as an 
indication to the majority of message load.  
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Figure 6. PDF of message load per node for original Chord 
topology 
 

As one can see from the succession of spreading 
from Figure 6 to Figure 8, the most uniformly-spread 
case (i.e. no island) has the distribution that is closest 
to a normal distribution Figure 6. As the number of 
islands decreases (i.e. spreading reduces also), the 
distributions shows worsening skew, as depicted in 

Figure 7 and 8. Denser clustering produces more 
imbalances in the message load, meaning that a few 
nodes are receiving and transmitting a lot more transit 
messages than other nodes. 
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Figure 7. PDF of message load per node for 200 islands 
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Figure 8. PDF of message load per node for 20 islands 
 

Despite the fact that this network is used for service 
directory purposes, there is no reason why other types 
of data cannot co-exist on the network. One such 
example that happens to be complementary to the 
function of the service directory is the storage of the 
service tree. The service tree outlines the relationships 
between the service categories, much like the index of 
Yellow Pages which points the user to the relevant 
classifications. Again, unlike the centralized Yellow 
Pages, the service tree can be stored and accessed 
distributedly on the peer-to-peer network [15]. 

It is reasonable to assume that the storage of other 
types of data will be more uniform across the network, 
much like the spread of the keys produced by the 
hashing scheme of the original Chord. Thus, load 
balancing in terms of data storage on each node is also 
an important measure of the impact of the semantic 
scheme. In order to observe the effects of the changed 
topology, insertion of the same amount of random keys 
is performed on both original and semantic networks. 
The probability density function of the number of keys 
per node is contrasted in Figure 9 and 10, and it can be 
seen that the imbalance of key placement is again a lot 
worse in the semantic network. 
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Figure 9. PDF of number of keys per node for original Chord 
topology 
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Figure 10. PDF of number of keys per node for 20 islands 

 
5.2. Island Routing 
 

Judging by the previous experiments, it can be seen 
that grouping of nodes into islands on the circular 
identifier space reduces the average number of hops. 
This phenomenon is best explained by the fact that 
nodes now congregate together more closely on the 
identifier space, within each island. Thus, messages 
need lesser hops to reach the destination because of the 
way that finger tables are constructed. The finger table 
of each node contains entries that are 2x units away in 
the identifier space, and thus there are more finger 
entries pointing to closer nodes than finger entries 
pointing further away.  

Caching is a well known strategy to boost network 
performance, may it be reducing bandwidth or 
improving latency. However, caching is at a cost of 
storage space, and may not make any positive impact 
on the goals of the system if used inappropriately. It is 
found that broadcasting for cached information in an 
unstructured peer-to-peer system improves latency, but 
is counter productive to the goal of reducing bandwidth 
[17]. Structured peer-to-peer networks are designed to 
support up to millions of nodes (Internet size), and thus 
effective caching is difficult due to such large 
population and the inherent flat hierarchy. However, 
the advantage of forming islands in the Chord network 

means that caching can be more targeted due to the 
extra layer of organization. 

These observations allow us to exploit a simple 
caching scheme which will improve the average 
number of hops. Basically, nodes within a close range 
on the identifier space would be already well-covered 
by the normal finger tables; but to reach nodes at a 
further distance would be inaccurate due to the fact that 
there are lesser fingers dedicated to far away nodes. 
Now that the semantic topology produces the property 
of discrete and dense islands, another routing table that 
caches nodes in specific islands is deemed appropriate. 
This is termed the island table. Nodes will use the 
island tables to obtain better hop counts for longer 
distances, yet continue to use the finger tables for 
closer distances. 
 

 
Figure 11. Island routing 

 
For this set of experiments, the simulator was 

modified so that each node would have the additional 
caching provided by the island tables. A node would 
use an island table entry when it can route further 
distance on the identifier space than the appropriate 
finger. The number of nodes cached per island is 
varied, and the figures shown below have the amount 
set at five nodes per island. For Figure 12, the number 
of nodes is increased but maintaining the same amount 
of islands at 10. It is clear that reduction in average 
hops exists only for smaller node population. However, 
if caching resource is increased proportionally to the 
increase in node population (i.e. maintain the amount 
of islands as a percentage of node population), then the 
average hop remains fairly constant and present a 
significant reduction at higher node populations (Figure 
13). 
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Figure 12. Average number of hops of island routing with 10 
islands 
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Figure 13. Average number of hops of island routing with 
number of islands at 10% of the node population 
 
6. Conclusion 
 

The placement of nodes on the identifier space 
grouped by their semantic information has several 
advantages, one of which is lower routing path lengths 
as evident from the experimental results. This 
intentional deviation from the usual random topology 
with uniform distribution of nodes also allows caching 
strategy to be more targeted and thus effective. From 
the standpoint of a service directory, this scheme also 
discourages nodes from mass registering (spamming) 
their service descriptions, because now each 
registration requires an instance of the node on the 
network, which is an extra cost for participation. 

However, there are also immediate disadvantages to 
this scheme, and most notable from the experimental 
results is the imbalance of message transfer. It can be 
seen that the distribution of messages is severely 
skewed compared to normal Chord. The amount of 
data each node is responsible is also skewed, as all the 
keys belonging to empty islands will be placed at the 
first node of the first preceding non-empty island. This 
scenario does not occur when the scheme is used for 
the service directory, for each node serves only its own 
service descriptions; but for any other type of random 
data that is not hosted by the source node itself will run 
into this problem. It is obvious that this imbalance of 

message transfer and key distribution need to be 
addressed in the future. As a first step to address this, 
an incentive based solution have already been sought to 
reimburse nodes for forwarding traffic. 

Of particular interest as future work to the goal of 
building a service directory include methods of 
incorporating locality information which facilitates 
efficient usage of the underlying hierarchical Internet. 
Locality will generally produce better latencies for 
services, as well as advantages of localized services, 
whether for reasons of better network performance (e.g. 
real-time transcoding) or other higher layer service 
requirements (e.g. only use services provided in the 
same country or finding a plumber in the vicinity of 
your house). 

More general problems that also warrant further 
investigation include methods of dynamically 
increasing or decreasing the number of islands on the 
network, and further division of islands into sub-islands 
independently of a global control and policy. 
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