
Semantic-laden Peer-to-Peer Service Directory

Tim Hsin-ting Hu, Sebastien Ardon, Aruna Sereviratne
University of New South Wales, Sydney, Australia

timhu@mobqos.ee.unsw.edu.au, ardon@unsw.edu.au, a.sereviratne@unsw.edu.au

Abstract

The most intuitive way to build a service directory

application that allows for service entities to register
or search for services on top of a structured peer-to-
peer network is to build reverse indices at appropriate
nodes on the network. However, this implies trust on
the reliability and integrity of other nodes on the
network, which may be too risky an assumption for
businesses. This paper proposes a service directory
that groups service entities of the same category
together; this is achieved by dedicating part of the
node identifiers to correspond to their service category
semantic. Using Chord as the peer-to-peer substrate,
this scheme logically divides the Chord circle into
equidistant arcs; each arc is called an island. This
scheme will result in the formation of islands of
varying population, and thus changing the uniformly
spread topology of the original Chord. Simulations are
used to investigate the path length and message load of
the changed topology. An additional routing scheme is
also proposed and simulated to exploit the new
topology to gain better path length.

1. Introduction

Peer-to-peer systems have proliferated in recent
years, beginning with the original centralized system
Napster [11], the subsequent rise of unstructured
systems such as Gnutella [4], and the ever so popular
structured variants such as Chord [6], CAN [16], Pastry
[3] favored in academia.

Underlying all the different types of peer-to-peer
systems is the notions of co-operation amongst the
peers and harnessing the collective resources of all
participants. Many applications have thus been
developed over the years, including file sharing [4],
distributed file storage [8], content distribution [9],
email delivery [2], indirection services [5], and many
more.

The scope of this paper will be centered on the
context of a service directory application which allows
Service Producers to list its Service Offerings and
facilitate Consumers in finding the desired service.
Service directories are usually centralized, ranging
from the very traditional (and original) paper-based
Yellow Pages, to modern Internet directories the likes
of Yahoo and DMOZ [12]. The current emerging Web
Services technology also employs a centralized system
called Universal Description, Discovery and
Integration (UDDI), which is a registry (with optional
replication) containing information about businesses
and the web services that they offer. However, like any
other centralized model, UDDI suffers from the usual
problems of limited scalability and single point of
failure. It also implies that someone needs to operate
and maintain this infrastructure.

Our paper takes the position that this infrastructure
need not be centrally provisioned and maintained; the
responsibility and cost, whether monetary or otherwise,
should be shouldered by all participants who benefit
from this infrastructure. This distribution of
responsibilities will also mean better robustness for the
system on the whole. The maturity of the current peer-
to-peer technology actually makes this possible, and
Chord is the chosen peer-to-peer substrate for our
project because of its elegance and simplicity.

The rest of this paper is organized as follows:
Section 2 contains a brief scope of the related work. In
Section 3 the two service directory schemes are
contrasted, and Section 4 outlines the ramifications of
the semantic scheme. Section 5 presents the results of
the simulations and Section 6 concludes this paper and
presents some possible future work.

2. Related Work

The problem of finding service listings generalizes
to a searching problem. It is clear from literature that
unstructured systems such as Gnutella [2] implement
searches by flooding queries to a subset of the peers.

Structured systems do not support search directly, but
allows inverted indices to be reached via the native
distributed hash table scheme. Thus searches in
structured systems are very targeted and deterministic,
and this is no exception with our scheme.

Schemes that operate in similar fashion include
peer-to-peer DNS systems [10], keyword search for
document storage and retrieval [11], and email services
[12]. In terms of motivation and concept, [13] is the
closest to our own; it organizes participating nodes into
a hypercube structure and builds ontological links
between the nodes. The main differences to the
approach of this paper is the underlying peer-to-peer
substrate, and the approach to search – node identifiers
in hypercup correspond to a combination of ontology
semantics, whilst our work at the moment only assumes
single correspondence to a specific service category.

3. Building a peer-to-peer service directory

3.1. Traditional Approach

The traditional approach of building a service
directory on top of peer-to-peer networks usually treats
the peer-to-peer layer as a massive storage composed
of all the participating nodes. Reverse indices are built
at each node in the network by having Service
Producers register their Service Descriptions at known
location. These known locations correspond to nodes
with unique identifiers; they are also termed keys in
peer-to-peer terminology. As a simple example, a
music encoder service may register its Service
Description using the peer-to-peer primitive put() in
the following fashion:

put(key , value)

key = hashm(“music.encoder”)
value=“<description>wavtomp3</description>”
m = number of bits in the identifier space

Other music encoder Service Producers may also

register in the same known location by hashing
“music.encoder” to produce the key, and register with
their own Service Descriptions. The node responsible
for this key will store a list of all the registered Service
Descriptions, and return this list when other nodes
query for this key looking for all the music encoders
services available. The query is performed using the
generic peer-to-peer primitive lookup(), and a list of
Service Descriptions are returned from the node
responsible for this key. Please see Figure 1 for
detailed workings of this scheme.

{value1, value2 … valueN} = lookup(key)

Figure 1. Traditional approach of building a peer-to-peer
service directory

This approach is the most intuitive way of using a

distributed hash table to store the data, analogous to the
real life example of Yellow Pages. In real life, service
entities submit their details to Yellow Pages (equivalent
to the distributed storage) and then the details are
“returned” when consumers look under a particular
service category

However, the issue of trust severely limits this
model when transferred to the peer-to-peer platform.
Two issues at the forefront include firstly, the
reliability of the node storing the Service Descriptions
is unpredictable; a multinational company's Service
Description could be hosted by a node run by a little
shop in Siberia! Secondly, although possible, it is
difficult to ensure that nodes hosting Service
Descriptions will be resistant to bribes and collusions
to favor one Service Producer over another.

3.2. Semantic Approach

To address the issue described above, we propose

the scheme where the service semantic is inbuilt in the
node identifiers. Instead of the key implicitly
representing the semantic information, the node
identifiers reflect the type of service that the Service
Producer offers. So instead of Service Producers
registering their Service Descriptions at another node,
each Service Producer serves its own Service
Descriptions, but “registers” by choosing an
appropriate node identifier to participate in the

network. Using the previous example, whereby the key
represents the service entitie's category as
“music.encoder”, now this information actually forms
part of the node's identifier. This is achieved by
allocating certain bits in the identifier for semantic
information and using a hash that produces a result of
the required number of bits. For example:

Id=[hashx(“music.encoder”)][hashy(“10.1.1.1”)]

x+y = number of bits in the identifier space

Diagrammatically this scheme will divide the Chord

circle into equi-distant arcs, and the number of arcs will
depend on the number of bits allocated to the semantic
information. Each arc will contain nodes that belong to
the same service category, collectively called an
“island”. Logically the node identifier is split into two
domains: the first part identifies the island that the node
belongs to, and the second part identifies its position
within the island. Conceptually this may be even more
analogous to the real life example of the Yellow Pages:
the placement of services in the same service category
is listed together on the same pages, and the user finds
the right pages to view the numerous offerings under
the particular service category. The only difference is
that Yellow Pages offers a list of all the offerings,
whilst this scheme would require “scrolling” through
the island for the full list. However, this difference can
be easily addressed as an implementation issue.

Figure 2. Semantic approach of building a peer-to-peer
service directory

In terms of the functionality of a service directory,

the aim is obviously to provide as much of a global

view as possible for all the services under a particular
category. This will provide users with maximal choice,
thus been able to find the optimal Service Producer to
satisfy the need. However, the reality of the situation is
that looking for a service does not always mean
optimization of all the possible parameters – in real life
it is perhaps one or two parameters, such as locality
and price of the service. The computation requirement
to assess each and every service description for
optimization would also be staggering expensive. Thus
the more reasonable assumption to start with would be
similar to the idea of anycast [15], where any Service
Producers belonging to the same category can satisfy
the need. Of course, Service Consumers may employ
targeted anycast (e.g. choosing any service from a few
known equivalent brands), which is more selective
compared to pure anycast and more moderate than
broadcast.

4. Ramifications

4.1. Topology

As previously mentioned, nodes offering the same
type of service will sit on one continuous arc of the ring
topology. The length of the arc in the identifier space
will be dependent on the number of bits allocated to
represent this information. From the overall network
point of view, the topology will be very different to the
normal Chord ring where consistent hashing guarantees
the even spread of nodes across the whole ring. Now
that semantic information is part of the node identifiers,
there will exist a spectrum of island population, ranging
from very dense to zero. However, assuming consistent
hashing still applies, node distribution within an island
will still be spread fairly evenly. The key to counter the
imbalance is to fix the number of bits representing the
semantic information at an appropriate level (within
orders of magnitude) corresponding to the number of
service categories.

4.2. Service Entities

The way that service entities operate on the network
will also be slightly different to the traditional
approach. Service Producers now serve their own
Service Descriptions, giving them the full control of the
robustness of their nodes on the network. It also allows
the deployment of physical fail-safe measures such as
clusters and shadow servers. Replication then becomes
redundant (but still possible) at the peer-to-peer layer,
because each node is only responsible for its own
service description. In the event of an unexpected node

failure, it only brings down its own presence instead of
potentially many other services. Having no need for
replication at the peer-to-peer layer will also mean less
traffic for participating nodes. However, replication
can still be useful as required by higher-layers, for
example, negotiate with downstream nodes to co-host
the service description as a failsafe measure or for load
balancing.

Under the traditional approach of the service
directory, Service Producers can indiscriminantly
register their Service Description under every category,
much like spamming the service directory. By having
Service Producers operate their own physical nodes,
the scheme dissuades irresponsible spam because each
registration means more participation in the network,
which is at an extra cost.

5. Experiments

The change in topology due to the assignment of
semantic information in the node identifiers will result
in differences to the properties at the peer-to-peer layer.
Compared to the original Chord, the distribution of
nodes can no longer be assumed to be uniform over the
whole circumference of the ring; however, uniform
distribution of nodes within islands can still be
assumed. This will impact the routing and load
balancing on the Chord ring.

It is well known from literature that Chord routing
path length is O(logN), N being the number of nodes in
the network, due to the exponential distance between
each finger entry. To understand the difference
between the semantic scheme and the original Chord's
routing performance, simulations were performed with
the same parameters for both schemes – the number of
nodes (N), the number of finger entries each node
maintained (m=24), and the number of messages routed
in the network (50N query messages).

There was no modification done to the Chord
simulator itself, but the topology generator had to be
modified to generate the semantic scheme. It had to
randomly produce island identifiers and then randomly
assign the nodes to have identifiers that sit within these
islands. For both semantic and original schemes, the
simulations were setup so that each node hosted only
one key that matched its own identifier. The
simulations were then run as per normal of the original,
with random nodes querying for random (existing)
keys.

5.1. Topology Characteristics

The first set of simulations compared the routing
performance of the original and semantic schemes. The
number of populated islands is varied to see the impact
of higher spreading of nodes across the ring. Note that
“zero island” denotes the original Chord scheme. It can
be seen from the Figure 3 that lower spreading (i.e.
lower number of islands) meant a lower hop count.
However, this decrease in hop count is negligible when
the number of island is at roughly 10% of the total
number of nodes (shown in Figure 4).

4
5

6
7
8

9
10
11

12
13
14

15
16

0 200 400 600 800 1000
number of islands

1000 nodes
2000 nodes
4000 nodes

Figure 3. Average number of hops with varying amount of
islands

0

5

10

15

20

25

30

35

40

-2 0 2 4 6 8 10 12 14 16 18 20 22
% island

1000 nodes
2000 nodes
4000 nodes

Figure 4. Percentage reduction of average hops vs. number of
islands as percentage of node population

Note that for the remainder of this section, only the
results for 2000 nodes will be presented due to space
limitations; however, they are indicative of the trend
that is observed for all node populations.

The total number of islands is determined by the
number of bits allocated to represent the semantic
information in the identifier. By changing the amount
of bits allocated whilst keeping the number of
populated islands constant, the effects of manipulating
the ratio between populated and vacant islands can be
seen. The default number of bits allocated for semantic
information for all other experiments is set at 10 out of
24 bits. More bits allocated to semantic information
means populated islands are further apart; therefore it

is expected that the routing performance improves, as
confirmed in the results for the second set of
simulations shown in Figure 5.

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

0 2 4 6 8 10 12 14 16 18 20
bits allocated for island

2000 nodes 200 islands

Figure 5. Average number of hops with varying amount of bits
allocated for semantic information

Part of how nodes participate in the network is to

forward transit packets for other nodes. The co-
operative nature of peer-to-peer networks means that
each node would be reciprocated when the node itself
needs to send a message or a message is destined to it.
We term all the messages that a node sees as the
message load.

At the basic use of a service directory, each node
will only host one key as each peer only serve its own
service description. As each node is mapped to one
key only, this scenario serves as a good indication to
the base level of message load for the semantic
topology. The number of nodes that experience a
certain message load is presented as a probability,
plotted against the number of messages per node in
Figure 6. The percentile information is also given as an
indication to the majority of message load.

0

0.02

0.04

0.06

0.08

0.1

0 5000 10000 15000 20000 25000
number ofmessages per node

2000 nodes no island
1st percent ile
99th percentile

Figure 6. PDF of message load per node for original Chord
topology

As one can see from the succession of spreading
from Figure 6 to Figure 8, the most uniformly-spread
case (i.e. no island) has the distribution that is closest
to a normal distribution Figure 6. As the number of
islands decreases (i.e. spreading reduces also), the
distributions shows worsening skew, as depicted in

Figure 7 and 8. Denser clustering produces more
imbalances in the message load, meaning that a few
nodes are receiving and transmitting a lot more transit
messages than other nodes.

0

0.02

0.04

0.06

0.08

0.1

0 50000 100000 150000 200000 250000 300000 350000
number ofmessages per node

2000 nodes 200 islands
1st percent ile
99th percentile

Figure 7. PDF of message load per node for 200 islands

0

0.02

0.04

0.06

0.08

0.1

0 50000 100000 150000 200000 250000 300000 350000
number ofmessages per node

2000 nodes 20 islands
1st percent ile
99th percent ile

Figure 8. PDF of message load per node for 20 islands

Despite the fact that this network is used for service
directory purposes, there is no reason why other types
of data cannot co-exist on the network. One such
example that happens to be complementary to the
function of the service directory is the storage of the
service tree. The service tree outlines the relationships
between the service categories, much like the index of
Yellow Pages which points the user to the relevant
classifications. Again, unlike the centralized Yellow
Pages, the service tree can be stored and accessed
distributedly on the peer-to-peer network [15].

It is reasonable to assume that the storage of other
types of data will be more uniform across the network,
much like the spread of the keys produced by the
hashing scheme of the original Chord. Thus, load
balancing in terms of data storage on each node is also
an important measure of the impact of the semantic
scheme. In order to observe the effects of the changed
topology, insertion of the same amount of random keys
is performed on both original and semantic networks.
The probability density function of the number of keys
per node is contrasted in Figure 9 and 10, and it can be
seen that the imbalance of key placement is again a lot
worse in the semantic network.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 20 40 60 80 100 120
number of documents per node

2000 nodes 0 island

Figure 9. PDF of number of keys per node for original Chord
topology

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600
number of documents per node

2000 nodes 20 islands

Figure 10. PDF of number of keys per node for 20 islands

5.2. Island Routing

Judging by the previous experiments, it can be seen
that grouping of nodes into islands on the circular
identifier space reduces the average number of hops.
This phenomenon is best explained by the fact that
nodes now congregate together more closely on the
identifier space, within each island. Thus, messages
need lesser hops to reach the destination because of the
way that finger tables are constructed. The finger table
of each node contains entries that are 2x units away in
the identifier space, and thus there are more finger
entries pointing to closer nodes than finger entries
pointing further away.

Caching is a well known strategy to boost network
performance, may it be reducing bandwidth or
improving latency. However, caching is at a cost of
storage space, and may not make any positive impact
on the goals of the system if used inappropriately. It is
found that broadcasting for cached information in an
unstructured peer-to-peer system improves latency, but
is counter productive to the goal of reducing bandwidth
[17]. Structured peer-to-peer networks are designed to
support up to millions of nodes (Internet size), and thus
effective caching is difficult due to such large
population and the inherent flat hierarchy. However,
the advantage of forming islands in the Chord network

means that caching can be more targeted due to the
extra layer of organization.

These observations allow us to exploit a simple
caching scheme which will improve the average
number of hops. Basically, nodes within a close range
on the identifier space would be already well-covered
by the normal finger tables; but to reach nodes at a
further distance would be inaccurate due to the fact that
there are lesser fingers dedicated to far away nodes.
Now that the semantic topology produces the property
of discrete and dense islands, another routing table that
caches nodes in specific islands is deemed appropriate.
This is termed the island table. Nodes will use the
island tables to obtain better hop counts for longer
distances, yet continue to use the finger tables for
closer distances.

Figure 11. Island routing

For this set of experiments, the simulator was

modified so that each node would have the additional
caching provided by the island tables. A node would
use an island table entry when it can route further
distance on the identifier space than the appropriate
finger. The number of nodes cached per island is
varied, and the figures shown below have the amount
set at five nodes per island. For Figure 12, the number
of nodes is increased but maintaining the same amount
of islands at 10. It is clear that reduction in average
hops exists only for smaller node population. However,
if caching resource is increased proportionally to the
increase in node population (i.e. maintain the amount
of islands as a percentage of node population), then the
average hop remains fairly constant and present a
significant reduction at higher node populations (Figure
13).

0

2

4

6

8

10

12

500 1000 1500 2000 2500 3000 3500 4000 4500
number of nodes

normal routing
island rout ing

Figure 12. Average number of hops of island routing with 10
islands

0

2

4

6

8

10

12

500 1000 1500 2000 2500 3000 3500 4000 4500
number of nodes

normal routing
island rout ing

Figure 13. Average number of hops of island routing with
number of islands at 10% of the node population

6. Conclusion

The placement of nodes on the identifier space
grouped by their semantic information has several
advantages, one of which is lower routing path lengths
as evident from the experimental results. This
intentional deviation from the usual random topology
with uniform distribution of nodes also allows caching
strategy to be more targeted and thus effective. From
the standpoint of a service directory, this scheme also
discourages nodes from mass registering (spamming)
their service descriptions, because now each
registration requires an instance of the node on the
network, which is an extra cost for participation.

However, there are also immediate disadvantages to
this scheme, and most notable from the experimental
results is the imbalance of message transfer. It can be
seen that the distribution of messages is severely
skewed compared to normal Chord. The amount of
data each node is responsible is also skewed, as all the
keys belonging to empty islands will be placed at the
first node of the first preceding non-empty island. This
scenario does not occur when the scheme is used for
the service directory, for each node serves only its own
service descriptions; but for any other type of random
data that is not hosted by the source node itself will run
into this problem. It is obvious that this imbalance of

message transfer and key distribution need to be
addressed in the future. As a first step to address this,
an incentive based solution have already been sought to
reimburse nodes for forwarding traffic.

Of particular interest as future work to the goal of
building a service directory include methods of
incorporating locality information which facilitates
efficient usage of the underlying hierarchical Internet.
Locality will generally produce better latencies for
services, as well as advantages of localized services,
whether for reasons of better network performance (e.g.
real-time transcoding) or other higher layer service
requirements (e.g. only use services provided in the
same country or finding a plumber in the vicinity of
your house).

More general problems that also warrant further
investigation include methods of dynamically
increasing or decreasing the number of islands on the
network, and further division of islands into sub-islands
independently of a global control and policy.

7. Acknowledgement

This work has been done in collaboration with the
CeNTIE project, which is supported by the Australian
Commonwealth through the Building on IT Strengths
(BITS) Advanced Network Program of the Department
of Communications Information Technology and the
Arts (DCITA).

8. References

[1] “Host Anycasting Service”, RFC 1546.
[2] A. Mislove, A. Post, et al., “POST: A secure, resilient,

cooperative messaging system”, In HotOS lX, May
2003.

[3] A. Rowstron, and P. Druschel “Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems,” IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), 2001.

[4] Gnutella Protocol Development. http://rfc-
gnutella.sourceforge.net/

[5] I. Stoica, D. Adkins, S. Zhuang, S. Shenker et S.
Surana, “Internet indirection infrastructure”, ACM
SIGCOMM'02, August 2002.

[6] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H.
Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for Internet applications,” ACM SIGCOMM,
2001.

[7] J. Kangasharju, K. Ross, D. Turner, “Secure and
Resilient Peer-to-Peer E-Mail: Design and
Implementation”, IEEE International Conference on
Peer-to-Peer Computing, 2002.

[8] J. Kubiatowicz et al., “Oceanstore: An architecture for
global-scale persistent storage”, International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2000.

[9] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A.
Rowstron, and A. Singh, “Splitstream: High-bandwidth
content distribution in a cooperative environment”,
IPTPS 2003.

[10] M. Schlosser, M. Sintek, S. Decker, W. Nejdl, “A
Scalable and Ontology-Based P2P Infrastructure for
Semantic Web Services”, IEEE International
Conference on Peer-to-Peer Computing, 2002.

[11] Napster.
[12] Open Directory Project, http://dmoz.org
[13] P. Reynolds, A. Vahdat, “Efficient Peer-to-Peer

Keyword Searching”, ACM/IFIP/USENIX International
Middleware Conference, 2003.

[14] R. Cox, A. Muthitacharoen, R. Morris, “Serving DNS
using a Peer-to-Peer Lookup Service”, IPTPS 2002.

[15] S. Ardon, “OPENDIR: An Open Distributed Service
Directory”, unpublished.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S.
Schenker, “A scalable content addressable network,”
ACM SIGCOMM, 2001.

[17] T. Hu, A. Sereviratne, “General Clusters in Peer-to-Peer
Networks”, IEEE International Conference on
Networks, 2003.

