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Abstract

Broose is a peer-to-peer protocol based on the De-Bruijn
topology allowing a distributed hashtable to be maintained
in a loose manner. Each association is stored on k nodes
to allow higher reliability with regard to node failures. Re-
dundancy is also used when storing contacts avoiding com-
plex topology maintenance for node departures and ar-
rivals. It uses a constant size routing table of O(k) con-
tacts for allowing lookups in O(log N) message exchange
(where N is the number of nodes participating). It can
also be parameterized for obtaining O(log N / log log N)
steps lookups with a routing table of size O(k log N). These
bounds hold with high probability. Moreover, the protocol
allows load balancing of hotspots of requests for a given
key as well as hotspots of key collisions. The goal is to
obtain a protocol as practical as Kademlia based on the
De-Bruijn topology.

keywords: peer-to-peer, ditributed hashtable, De Bruijn
topology.

1. Introduction

Broose is a peer-to-peer protocol based on the De Bruijn
topology allowing a distributed hashtable to be maintained
in a loose manner. More precisely, conversely to previ-
ous distributed hashtables based on the De Bruijn topol-
ogy [7, 5, 2] and similarly to Kadmelia [6], it stores an
association onk nodes instead of one, for getting high re-
liability with regard to node failures. Similarly to other De
Bruijn based hashtables it uses a constant sizeO(k) rout-
ing table instead ofO(k log N) (whereN is the number
of nodes) for Kademlia. Lookups are then performed by
contactingO(log N) nodes. Similarly as Kademlia, the
protocol can be tuned to obtainO(log N/ log log N) steps
lookups with a routing table of sizeO(k log N) instead of
O(k log2 N) for Kademlia (see Table 1 in Section 4 for a
more detailed comparison).
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Most protocols for distributed hashtables split the key
space among nodes according to their identifiers. This re-
sults in a very strict topology which is hard to make reliable
with regard to node failures. (This is the case for previ-
ous distributed hashtables based on the De Bruijn topol-
ogy [7, 5, 2, 1].) The major breakthrough of Kademlia [6]
is to select the nodes storing an association for a given
key in a loose manner: on thek closest nodes to the key
for some metric at the moment when the association is in-
serted. Contacts populating the routing table are also se-
lected in a similar loose manner. The parameterk is tuned
according to a probabilitypn of node failure within the next
hour. Some experiments [6] show that approximately 70
percents of nodes with uptime at least one hour stay con-
nected one more hour. This suggestpn < 0.3 if nodes
participate in storing associations only after the first hour
of uptime. The authors of Kademlia suggestk = 20. The
probability that all the nodes storing an association quit the
network is then less than10−10. An association is then
republished every hour. (As a node stores all the contacts
which are close to its identifier, republication is made lo-
cally.)

Kademlia uses a topology similar to the hypercube re-
sulting in a routing table ofO(log N) buckets for lookups
in O(log N) steps. (A bucket storesk contacts which can
equivalently participate in a given lookup.) However the
same lookup efficiency can be achieved using a constant
size routing table with the De Bruijn topology. The De-
Bruijn graph overN = 2n nodes is defined as follows.
Every nodeu with identifier u[1, n] has two successors
s = u[2, n]0 and s′ = u[2, n]1 obtained by shiftingu
to the left (u � 1) and adding a bit on the right (one of
these successors may beu itself), and thus two predeces-
sorsp = 0u[1, n − 1] andp = 1u[1, n − 1]. This simply
defined graph has the property of having constant in-degree
and out-degree 2 and logarithmic diametern. One can eas-
ily find a route fromu to any nodev = v1 · · · vn: u →
u[2, n]v1 → u[3, n]v1v2 → · · · → u[n, n]v1 · · · vn−1 →
v. Note that another route can be similarly found by fol-
lowing edges backward. This topology can be adapted for
a varying numberN of nodes for getting a very efficient
distributed hashtable [7, 5, 2, 1]. Lookups can be made



by shifting bits to the right from predecessor to predeces-
sor as in [7] or to the left from successor to successor as
in [2]. However, these solutions split the key space very
strictly among nodes, inducing complex topology mainte-
nance when nodes join and quit the network.

Broose generalizes both approaches (shifting left or right)
and offers a very simple routing table consisting of three
buckets. As in Kademlia, no topology maintenance is needed
with regard to node arrival and departure thanks to redun-
dancy in contacts. Reenforcement of buckets through re-
quests is also achieved by using both types of lookups.

The rest of the paper is organized as follows. Section 2
presents the Broose protocol in detail. Some simulations
are presented in Section 3. Finally, the protocol is analyzed
and its correctness is proved in Section 4.

2. Broose Protocol

2.1. The xor metric and identifiers

All node identifiers and hash table keys aren bits pos-
itive integers. Each node chooses its identifier randomly.
n should be sufficiently large for making collisions very
unlikely (n = 128 or n = 160 for example). A key, value
association will be stored on thek closestnodes, i.e. on the
k nodes with closest identifier to the key for the xor metric.

As in Kademlia, we use the xor metric because it mea-
sures whether identifiers have long common prefix: two
identifiers are at xor distance less than2n−l if and only if
they share at least the samel first bits. (Identifiers are read
as positive integers as well as the distanceu ⊕ v between
two identifiersu andv.) The xor distance verifies the trian-
gular inequality sinceu⊕ w = (u⊕ v)⊕ (v ⊕ w) for any
u, v, w andx⊕y ≤ x+y for anyx, y. An interesting prop-
erty of the xor metric is that there are exactlyx identifiers
at xor distance less thanx from any given identifier.

For alleviating notations, we will equally denote byu a
nodeu and its identifieru = u[1, n]. u[1] is the high order
bit of u. u[i, j] = u[i] · · ·u[j] will denote thej − i + 1
bits portion ofu beginning at positioni. If x andy are
two bit sequences,xy will denote the sequence obtained
by concatenating them. Ifx = x[1, i] is a bit sequence,
x = x[1] · · ·x[i] will denote the sequence where each bit
is negated (x ⊕ x = 1 · · · 1). x � d = x[d + 1, n]0 · · · 0
will denote the identifier obtained by shiftingx by d bits to
the left and padding with zeros.

2.2. Right shifting lookup

Each node maintains two bucketsR0, R1 storing con-
tacts with identifier close to the right shifted identifier of
the node. More precisely, for a node with identifieru:

• R0 stores thek′ closest nodes to0u[1, n− 1],

• R1 stores thek′ closest nodes to1u[1, n− 1].

k′ is a protocol parameter lying betweenk/2 andk. See
Section 4 for more details. The reader may first assume
k′ = k.

To make a lookup for a keyw, a nodeu first esti-
mates the distanced in number of hops to a node storing
w. The idea is to contact any nodevd−1 in Rwd

, and then
any nodevd−2 in the Rwd−1 bucket ofvd−1, and so on
until finding some nodev0. If d was chosen sufficiently
large,v0 should have an identifier sufficiently close tow
to store information associated tow. The intuition behind
this process is that eachvi will have an identifier close to
w[i + 1, d]u[1, n − d + i]. The bits ofw are inserted on
the left and shifted to the right until a node sharing a long
common prefix withw is reached. (A more detailed proof
of correctness is given in Section 4.1.)

As shown in Section 4.1,d can be estimated fromR0

or R1: if l is the length of the longest common prefix of the
identifiers contained inR0, thend = l + 1 is almost surely
sufficient. (Notice thatl is an estimation oflog2

N
k′ .)

More precisely, the right shifting lookup procedure for
key w by nodeu consists in the following process.u ini-
tializes a lookup bucketK with {u} and estimated distance
dK = d hops.u then repeats the following steps untildK

reaches zero:

• u contacts one toα nodes inK for a right lookup
on w at dK hops, each contacted node should reply
with its RwdK

bucket;

• if u receives a reply fordK hops,K is replaced by
the bucket contained in the message anddK is decre-
mented by one;

• if u receives a reply fordK + 1 hops, the contacts
contained in the message are added toK;

• if u receives a reply for more thandK + 1 hops, it
ignores the message.

α is a protocol parameter allowing speedup of lookups
with regard to node failure. If no answer is received,u
may contactα more nodes inK (each node inK should
be contacted only once). Notice that the parameterk′ is
chosen such that it is unlikely that no node inK answers.
(K always contains at leastk′ contacts except for the first
iteration whereu contacts itself.)

To find one of thek′ closest node to the keyw, the right
shifting lookup should be sufficient. This is often sufficient
for finding an existing association with keyw. However, if
no association has been stored or for storing an association,
all thek closest nodes tow must be found.



2.3. Brother lookup

Each node maintains abrother bucketB storing con-
tacts with identifiers close to the identifier of the node (called
brothers):

• B stores theδ closest nodes tou.

The sizeδ of B is chosen so that one of thek closest
nodes to some keyw will almost surely know all thek
closest nodes tow. We will see in Section 4.1 thatδ = 7k
is sufficient.

To make a brother lookup for keyw a nodeu must
know a set of nodesK with identifiers close tow. The
k closest nodes tow are queried. Each node should an-
swer with thek closest nodes tow in its B bucket. If some
node do not answer,u queries further nodes untilk nodes
answer.

To make a complete lookup, a node first makes a right
shifting lookup and terminates with a brother lookup. Any
query for a lookup at 0 hops should be considered as a
brother lookup. Alternatively, it can begin with a left shift-
ing lookup.

2.4. Left shifting lookup

To allow reenforcement of buckets through requests, a
left shifting lookup is provided. It is precisely the reverse
of a right shifting lookup.

Each node maintains aleft bucketL storing contacts
with identifier close to the left shifted identifier of the node.
More precisely, for a node with identifieru:

• L stores any nodev such thatu is among thek′ clos-
est nodes tou[1]v[1, n− 1].

Notice thatu can test whether it is among thek′ clos-
est nodes to some identifier by computing thek′ closest
nodes to the identifier inB ∪ {u}. If the bucket is lexico-
graphically sorted, thek′ closest nodes tov can be found
by scanning the bucket symmetrically around the insertion
position ofv.

The left shifting lookup procedure is very similar to the
right shifting lookup procedure except that each contacted
node for a left lookup onw at dK hops replies with the
k′ nodesv with v � dK closest tow. As we will see in
Section 3 and 4.1 a node should preferentially query the
k′′ < k′ closest nodes tow � dK . k′′ is a protocol param-
eter (typically,k′′ ≈ k/2). If thesek′′ nodes fail to answer,
the node may query theα closest nodes tow � d (resp.
v � −d) among the remainingk′− k′′ contacts at the risk
of lookup failure with higher probability.

A nodev is in theL bucket ofu whenu should be in
one of theR buckets ofv. This symmetry implies that right

shifting lookups allowL buckets to be refreshed while left
shifting lookups allowR buckets to be refreshed. Both
lookups procedures should be used equally.

2.5. Unified lookup queries

All types of lookups described above can be unified
with the same query format. Each node defines itsright
bucketR asR = R0 ∪ R1. Each node has thus mainly
three buckets:R, L andB. Each lookup query message
should contain a keyw and an estimated hop distanced
which is positive, negative or zero. Such a query is called
a lookup query forw atd hops. A node receiving a lookup
query message should reply with:

• thek′ closest contacts tow in B if d = 0,

• thek′ closest contacts tow � d in R if d > 0,

• the k′ nodesv in L with v � −d closest tow if
d < 0.

A right shifting lookup consists in a sequence of lookup
queries with decreasing hop distance and terminates with a
lookup query at 0 hops. A left shifting lookup consists in
a sequence of lookup queries with increasing hop distance
and terminates with a lookup query at 0 hops.

2.6. Accelerated lookups : shifting more than one
bit at a time

To minimize traffic and allow faster lookups, the pro-
tocol shifts more than one bit at a time.b, a parameter of
the protocol, denotes the number of bits shifted. TheR
bucket of nodeu thus contains2bk′ nodes: thek′ closest
nodes to each identifierup composed of any prefixp of b
bits followed byu[1, n − b] . The size of bucketB does
not depend onb. We defineu �b i = u � bi to sim-
plify notations. A nodev is in theL bucket ofu whenu is
among thek′ closest nodes tov �b 1. The average size of
L will thus be2bk′. We will see that it is very unlikely that
L contains more thanO(2bk′) contacts. More precisely for
k′ = 20 andb = 4 or b = 5 it is very unlikely that a node
will have more than4.3∗2bk′ contacts in itsL bucket. (See
Section 4.2 for more details.)

With b = log log N the routing table size thus becomes
O(k log N) and lookups are performed in less than1

b log2
N
k′+

1 = O(log N/ log log N) steps as detailed in Section 4.1.

2.7. Physical proximity

Notice that anyα nodes amongk′ (resp.k/2) for right
(resp. left) shifting lookups are queried in each lookup



step. Some heuristic for choosing physically close con-
tacts should be used (for example by selecting contacts
with longest common prefix of IP address). More sophisti-
cated strategies as in [8] could eventually be used. A sim-
ple heuristic may reside in storing the minimum response
time for each neighbor. As several nodes are queried at the
same time in each lookup step, we can expect that the clos-
est one answers first. Assuming that the physically closest
neighbors from a close node are close too, querying the
closest neighbors from the first answering node could be a
good heuristic.

2.8. Balancing hotspots

As Kademlia, Broose uses caching for solving hotspots
of requests for a given key. When a node performs a lookup
for key w and gets an answer when querying nodevi at i
hops, it should store the key, value association on the node
vi−1 that answered fori−1 hops. (If a brother lookup was
necessary, it stores the association on the nodev0 queried
for the brother lookup.) The association is cached during a
duration decreasing exponentially withi.

An advantage of the De Bruijn topology is that it also
offers a solution for balancing hotspots of key collisions. It
may happen that many associations have the same keyw.
Associations are supposed to be sorted according to some
total order of the associated values. Thek closest nodes to
w will store theA first associations.A is a protocol param-
eter (for exampleA = 1000). The2A next associations are
stored on thek′ closest nodes tow[n− b+1, n]w[1, n− b]
and thek′ closest nodes tow[n− b + 1, n]w[1, n − b] de-
pending on the first bit of the associated value. Notice that
all these nodes are in theR bucket of thek closest nodes
to w. (These associations will be replicatedk times at the
first republication.) The4k next associations are similarly
stored on4k′ contacts found in theR buckets of these2k′

nodes according to the two first bits of the associated value
and so on in a binary tree fashion. Notice that storing an as-
sociation consists in descending this tree according to the
first bits of the value. On the other hand, retrieving the
(2i − 1)A first associations requires to query all the tree
up to depthi. However, this only consists in pushing fur-
ther ahead a right shifting lookup. Porting this strategy on
another topology than De Bruijn would result in(2i − 1)
lookups, a cost which is prohibitive. If an importance of
associations can be estimated, a good choice for ordering
associations would be to place more important associations
first.

Both strategies may cohabit. When the retrieval begins
with a right shifting lookup, the binary tree is explored in
the following way. If theA first associations are found in
the cache of a node with an identifier sharing a long com-

mon prefix withw[bi + 1, n], the2A next associations are
searched on nodes with prefix close tow[n−b+1, n]w[bi+
1, n − b] andw[n− b + 1, n] w[bi + 1, n − b], and so on.
If an association block is not found, the tree is searched
with root prefix close tow[b(i− 1) + 1, n− b] and a copy
is stored on one of thek′ corresponding nodes of the tree
rooted atw[bi + 1, n]. If a block is still not found, the tree
rooted atw[b(i−2)+1, n−2b] is searched, and so on until
searching the original tree rooted atw. In any case, a copy
is cached in the previous tree. When no association exists
for some block (due to limited number of associations), an
empty block is cached. Notice that the necessary contacts
are always found in theR buckets of queried nodes.

A similar strategy can be used for exploring the bi-
nary tree when the retrieval first began with a left shift-
ing lookup. If theA first associations are found in the
cache of a node with identifier close tou[1, bi] w[1, n −
bi], the 2A next associations are searched onw[n − b +
1, n]u[1, bi]w[1, n−b(i+1)] andw[n− b + 1, n] u[1, bi]w[1, n−
b(i + 1)], and so on. A similar tree searching is then per-
formed as for right shifting lookups usingR buckets. L
buckets allow the selection of a tree closer to the original
tree rooted atw.

2.9. Node insertion and bucket creation

A new nodeu must know an entry point: nodev. R
is constructed by performing2b complete lookups starting
with a lookup bucketK = {v}, one for each identifierup

composed of any prefixp of b bits followed byu[1, n− b]
. B can then be constructed withL buckets of nodes inR
andL can be constructed withL buckets of nodes inB.

Alternatively, B can be initialized with thek closest
nodes to the own identifier ofu. Let u[1, l] be the longest
common prefix of thesek nodes.B is then further com-
pleted with thek closest nodes tou[1, l− 1]u[l]u[l + 1, n].
Retrieving theB buckets of these2k nodes should be suf-
ficient.

As soon as a node has itsB andR buckets initialized,
it can participate to the network and letL be constructed
online. However,L could be constructed from scratch by
exploring the prefix trie of identifiers rooted atu[b + 1, l].
The details of such construction cannot be included here
due to space limitation.

2.10. Refresh policy

Broose policy for refreshing buckets is similar to Kadem-
lia policy for thek closest nodes. Intuitively, Broose only
stores close contacts (allowing routing table size to be re-
duced) allowing few choice for contacts. On the other
hand, Kademlia has a different policy (keeping contacts



with long uptime) for long range contacts.
As soon as a new alive contact is discovered in one of

the bucket range during any message exchange, it should
be inserted in the corresponding bucket. This continuous
process allows new contacts to be discovered. However,
node departure is harder to detect. A possibility is to ping
contacts when they have not been refreshed during a cer-
tain period of time. To reduce the ping traffic, each lookup
query for a nodevi at hop distancei could contain the iden-
tifier of the nodevi+1 that has responded at the previous
step for hop distancei + 1.

Alternatively, a node may periodically repeat the pro-
cedure for constructing its buckets from scratch.

Similarly to Kademlia, an association is republished
every hour. This is done efficiently thanks to a brother
lookup. To avoid redundant re-publications a node repub-
lishes an association if no other node has republished the
association during the previous hour and it is still among
thek closest nodes to the key. To allow association expi-
ration, an association is republished at most 24 times, and
the source of an association must republish it every day.

3. Simulation

The size of bucketsR andL depends onb andk′. A
large b (b = 4 or b = 5) is necessary for speeding up
lookups. A smallk′ (k′ < k) allows the size of buckets to
be minimized. A large value fork′ makes the system more
robust. We propose some simulations for finding the best
compromise fork′. (We will useb = 4.) A critical situa-
tion occurs when a large fraction of nodes changes during
the refresh time period. We make simulations where nodes
leave the network at the same rate as new nodes enter it.
We start with a one million nodes network (N = 106) in a
stable situation (i.e. buckets are accurate). ThenrN nodes
are deleted andrN inserted.r denotes the node renewal
fraction . The arrival and departure process are continu-
ous.

We distinguish three different types of nodes: dead, old
and new. TherN first arrived nodes are dead, and therN
last arrived nodes are new.

• Old nodes are not aware of dead nodes departure.
An old nodeu have a new nodev in its buckets with
probabilitypv = rN−a

rN . a denotes the arrival posi-
tion of v. (An old node has more chances to learn
about new nodes with longer uptime.)

• A new nodeu considers a dead nodev still alive if v
leaves the system after the arrival ofu. u knows new
nodes inserted before itself in addition to old nodes.
u also knows a new nodev inserted after itself with
probabilitypv.

• A lookup fails if thek′ nodes returned during a lookup
step are dead nodes, or if none of thek′ final nodes
are among thek closest to the key. (No brother
lookup is performed at the end.)

This model grabs the effects of inconsistency between nodes:
each node has its own view of the network.
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Figure 1: Percentage of lookup failures as a function of
the node renewal fractionr for k′ = 6, 10, 12, 15 when the
furthest alive contact at hop distancei from the shifted key
w �b i is selected at each lookup step.

Figure 1 shows the percent of right shifting lookup fail-
ures as a function ofr for different values ofk′. (1000
simulations of lookups are performed for each ratio and
for each curve.) Notice that a log-scale is used for percent-
ages. These simulations are further pessimistic since the
worst alive contact with respect to the bits of the key is se-
lected at each step among thek′ known contacts. For left
shifting lookups, the worst contact among thek′′ best con-
tacts is selected (if thesek′′ contacts are dead, the best one
among known alive contacts is selected). The parameters
have been tuned for a ratior < 0.3 (yielding a probabil-
ity pn = 0.3 of node failure). However, a larger ratio is
needed for being able to observe some failures. Note that
a failure was observed fork′ = 15 only for r = 0.6. As a
comparisonrk′ becomes greater than1/1000 for r = 0.3
whenk′ = 6, r = 0.5 whenk′ = 10, r = 0.63 when
k′ = 15. This is consistent with the expected probability
of failure rk′ shown in Section 4.1. Much better results
are obtained with a random choice of contacts and a final
brother lookup.

Figure 2 shows the percentage of left shifting lookup
failures as a function ofr for k′ = 15. The simulation
assumes that the worst alive contact among thek′′ closest
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Figure 2: Percentage of lookups failures as a function of
the node renewal fractionr for k′ = 15 when thek′′th
furthest alive contact (with respect to the key) is selected
for the next lookup step fork” = 7, 9, 11.

known nodes (with respect to the bits of the key) is cho-
sen at each step. We observe that left shifting lookups are
less reliable than right shifting lookups when the furthest
contacts are chosen. Choosing the worst alive node among
thek′ closest nodes gives poor results. However, satisfy-
ing results are obtained when thek′′ closest contacts are
preferred withk′′ < k′. The proof in Section 4.1 will give
some hints about the reasons for that. For lowr, this is the
main reason for lookup failure. For larger, the probability
of loosing thek′′ closest contacts becomes preponderant.

As we are going to see in the following section, a larger
value ofb would also enhance reliability.

4. Protocol analysis

4.1. Correctness of lookup procedures

We are going to show that the probability that a lookup
fails is in the same order of magnitude that the probability
that thek nodes storing the information fail. Ifpn is the
probability that a node fails, the probability thatk nodes
fail is pk

n. (We will give numerical values for protocol pa-
rameters assumingpn = 0.3 andk = 20.)

However, Broose has two independent lookup proce-
dures. We are going to show that a right shifting lookup
fails with probability less thanpk′

n and that a left shifting
lookup fails with probability less thanpk−k′

n (for appropri-
ate value ofk′′). This avoids to double the size of routing
tables and still ensures that the probability of failure of both
lookup procedures is approximately less thanpk

n.
Our proofs are mainly based on the fact that nodes choose

their identifier randomly and that the probability of choos-
ing an identifier ofn bits at xor distance less thanx from a
given identifier isx/2n. (This is due to the fact that there

are exactlyx positive integers at xor distance less thanx.)
These properties allow the following lemma which is a di-
rect implication of Chernoff bounds [4].

Lemma 1 Consider a normalized distancex = dN (µ) de-
fined bydN (µ) = µ ∗ 2n/N and an identifieru (N is the
number of nodes). Then the numberNx of nodes at dis-
tance less thanx from u is Θ(µ) with high probability.
More precisely, there exist some increasing functionsf+

andf− such thatP [Nx ≥ m] < exp(−µf+(m/µ − 1))
andP [Nx ≤ m′] < exp(−µf−(1−m′/µ)).

Notice that the average number of nodes at distancex
is E[Nx] = µ since the probability that a random identifier
falls at distance less thanx is µ/N . Whenµ = log N , the
above probabilities thus get smaller than1/Nr wherer is a
constant depending on the values off+ andf−. (Note that
k = 20 for example is greater thanlog N for N ≤ 108.)

The Chernoff bounds state that there existf+ andf−
such thatP [Nx ≥ (1+ε)µ] < exp(−f+(ε)µ) andP [Nx ≤
(1− ε)µ] < exp(−f−(ε)µ). The bounds of the lemma are
obtained forε = m/µ − 1 and ε = 1 − m′/µ respec-
tively. The classical Chernoff bounds usef+(ε) = ε2/2
and f−(ε) = ε2/3. However, we will use the sharper
bounds obtained withf+(ε) = (1 + ε) log(1 + ε) − ε and
f−(ε) = (1 − ε) log(1 − ε) + ε. See [4] for more details
about Chernoff bounds. Notice finally that the above prob-
abilities fall down exponentionally asµ increases.

As a first application of Lemma 1, consider the nodes
at distance less thandN (ck) = ck∗2n/N from some iden-
tifier for some constantc > 1. The probabilitypc that there
are less thank such nodes is bounded byexp(−ckf−(1−
1/c)). Fork = 20, we getpc < 0.320 for c = 3.5. In the
sequel, letc denote the constant such thatpc < pk

n (we will
usec = 3.5 for numerical applications).

Let l = dlog2
N
ck e denote the prefix length such that

1
2

N
ck < 2l ≤ N

ck . There exists almost surely at leastk
nodes whose identifier shares thel first bits of any given
key w. (It is equivalent to share thel first bits ofw and to
be at xor distance less than2n−l ≥ ck ∗ 2n/N = dN (ck)
from w.)

Brother lookup. First consider theB bucket of a node
u. We have to prove that knowing theδ closest nodes tou
is sufficient for knowing thek closest nodes to some keyw
whenu is one of thek closest nodes tow. Almost surely,
the k closest nodes tow share the same prefixw[1, l]. If
there are less thanδ nodes with prefixw[1, l], thenB con-
tains all the nodes sharing this prefix includingu and thek
closest nodes tow.

Now suppose that more thanδ nodes have prefixw[1, l].
Then we can show that almost surely, more thank nodes
have prefixw[1, l+1]. Considerδ nodes with prefixw[1, l].



As their l + 1th bit is random they have prefixw[1, l + 1]
with probability1/2. Applying the lower Chernoff bound,
the probability that less thank nodes have prefixw[1, l+1]
is less thanexp(−µf−(1 − k/µ)) with µ = δ/2. It is
typically very low for δ = 2ck. (At least, it is less than
0.320 for δ = 7k with k = 20.)

Now suppose that more thank nodes have prefixw[1, l+
1]. Again if there are less thanδ nodes with prefixw[1, l +
1], thenB contains all the nodes sharing this prefix. The
probability thatB does not contain thek closest nodes to
w is thus bounded by the probability that there are more
than δ nodes at distance less than2n−l−1 < dN (ck) =
ck ∗ 2n/N from w. This probability is again bounded
thanks to Lemma 1. It is also very low forδ = 2ck. (It
is less than0.320 for δ = 7k with k = 20.)

In any case, we have proved that the probability thatB
does not contain thek closest nodes tow is very low. (Take
δ = 7k whenk = 20 andpn = 0.3.)

Right shifting lookup. Now consider a right shifting lookup
procedure fromu for a keyw. With probability greater
than1 − pk′

n , a nodevi will answer for each iteration at
an estimated distance ofi hops. Consider this sequence
u = vd, . . . , v0 of nodes that answer.

Let us first show thatvi shares theb(d − i) first bits
of w �b i as long as at leastk′ nodes share this pre-
fix. This is true forvd (empty matching prefix). Suppose
vi[1, b(d − i)] = (w �b i)[1, b(d − i)] = w[bi + 1, bd].
TheR bucket ofvi contains thek′ closest nodes tow[b(i−
1) + 1, bi]vi[1, n − b] andvi−1 is one of them. If there
are at leastk′ nodes with prefixw[b(i − 1) + 1, bd] =
w[b(i− 1) + 1, bi]vi[1, b(d− i)], then thek′ closest nodes
to w[b(i− 1) + 1, bi]vi[1, n− b] must share this prefix im-
plying thatvi−1 has prefixw[b(i− 1) + 1, bd]. The above
property is thus true by induction.

Consider the first indexim such that less thank′ nodes
have prefixw[bim, bd − 1]. If d was chosen sufficiently
large, im ≥ 1. Indeed, the probability that less thank′

nodes have prefixw[1, l] (wherel = dlog2
N
ck e) is less than

pk
n. As there are at leastk nodes with a given prefix ofl

bits with rather high probability,vim
shares thel first bits

of w �b im. For the same reason,vi will share thel first
bits of w �b i for im ≥ i ≥ 1. v1 thus shares thel first
bits ofw �b 1 with high probability.

Finally, with probability less than1 − O(pk
n), v0 is

among thek closest nodes tow[1, b]v1[1, n − b] which
sharesl + b bits with w. We can then use the following
arguments of the proof concerning brother lookups. Ifv0

shares at leastl + 1 bits with w, then theB bucket ofv0

almost surely contains thek closest nodes tow. As thek
closest nodes tow almost surely share the prefixw[1, l], the
final step may thus fail only if there are less thank nodes

with prefix w[1, l + 1] and more thanδ nodes with prefix
w[1, l] which happens again with probability less thanpk

n.
This achieves the proof of right shifting lookups correct-
ness.

Notice that we can deduce from this proof an estimation
of d: b(d − im) ≥ l and im ≥ 1 allow initiation of the
proof. d ≥ 1 + l

b is thus sufficient. Notice also that the
length of the longest prefix of thek closest nodes to a node
u is greater or equal tol with high probability.u may thus
obtain an upper bound ofl from its B bucket. A better
bound can even be obtained from theR bucket: ask′ ≤ k,
thek′ closest nodes to some identifier share the samel first
bits with high probability. For each prefix ofb bits, an
estimation of an upper bound ofl can be obtained.d can
be computed from the smallest estimation.

Left shifting lookup. Due to space limitations, the proof
of correctness of left shifting lookups is omitted here. How-
ever, the arguments are similar to previous proofs and the
interested reader may consult [3]. Fork′′ = 9 it can be
shown that the appropriate value ofk′ is k′ = 18 when
b = 3, k′ = 15 whenb = 4 andk′ = 14 whenb = 5.
Again, the hop distance from the first nodeu performing
the lookup can be estimated from theB bucket :d should
be sufficiently large so thatu is among thek′′ closest nodes
to u[1, d]w[1, n − d]. We haved ≤ d 1

b log2
N
k′′ e + 1 with

high probability.

4.2. Routing table size

b 7k 2bk k′ 2bk′ Broose Kademlia
1 140 40 20 40 180 400
2 140 80 20 80 220 600
3 140 160 18 144 428 933
4 140 320 15 240 620 1500
5 140 640 14 448 1036 2480

Table 1: Average number of contacts for Broose and
Kademlia for various values ofb with k = 20 andk′′ = 9.

TheL bucket will contain an average of2bk′ contacts.
With similar arguments as before we can prove that it will
contain more thanc2bk′ contacts (for some smallc) with
probability less thanpk′

n . More precisely, fork′ = 15 and
b = 4 (resp.k′ = 14 andb = 5), we getc = 4.3 (resp.c =
4). and less than one percent of the nodes will have more
than2.4 ∗ 2bk′ contacts. TheR bucket contains exactly
2bk′ contacts.

Table 1 compares the average number of contacts for
Broose and Kademlia for various values ofb. Kademlia
uses a parameter similar tob (identifiers are considered by



chunks ofb bits) allowing similar lookup complexity. For
b < 3, Broose should only use theR buckets since theL
bucket becomes reliable forb ≥ 3. For b ≥ 3, the best
values ofk′ according to the proof of correctness of left
shifting lookup are used fork′′ = 9.

5. Conclusion

With it’s novel symmetricized De Bruijn topology and
its optimized contact list, Broose improves the loose frame-
work for distributed hashtables introduced by Kademlia.
We have shown how Broose can obtain significantly smaller
routing tables than Kademlia. It has been proven that lookups
succeed with high probability under the model of constant
node failure probability and bucket consistency. This proof
is confirmed by simulations for some degree of bucket in-
consistency between nodes with a continuous node arrival
and departure model.

Broose allows physical proximity to be taken into ac-
count. However, further work is needed to estimates how
much it can gain from this flexibility with regard to physi-
cal proximity. Finally, Broose is the first peer-to-peer sys-
tem introducing a solution for balancing key collision hotspots
and is thus a good candidate for peer-to-peer file sharing
with keyword indexing.
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