
The Different Dimensions of Dynamicity

Mayur Deshpande and Nalini Venkatasubramanian
Donald Bren School of Information and Computer Science

University of California, Irvine
Email: {mayur, nalini}@ics.uci.edu

Abstract

In a Peer-to-Peer (P2P) network, a ‘fabric’ of over-
lay links helps peers discover and use other peers’ re-
sources. This fabric, however, is highly dynamic and con-
stantly changing. While different measures of dynamicity
have been implicitly and explicitly proposed, there is lack of
deeper understanding about the various aspects of dynam-
icity. In this paper we systematically evaluate and quantify
different dimensions of dynamicity through controlled gen-
eration of different dynamic networks. We also introduce a
new dimension of dynamicity, persistence, which quantifies
stable nodes in a network. This measure could be quite use-
ful in the design and testing of P2P protocols that exploit the
presence of stable nodes. Also, quite coincidentally, and to
our surprise, a certain type of dynamic network that we de-
signed has node degree properties that resemble those ob-
served in social networks.

1. Introduction and Related Work

Peer-to-Peer(P2P) networks are evolving into an impor-
tant paradigm to support scalable, fault-tolerant and low
cost sharing of information and resources over the inter-
net. There is, therefore, a growing and widespread inter-
est in researching P2P networks to make them more ef-
fective and efficient. Researchers have explored [3] use of
novel data-structure abstractions such as Distributed Hash
Table [15] to construct overlays that have theoretical guar-
antees for object location and routing. Others propose mak-
ing current P2P application protocols more efficient through
better search protocols and scalable architectures [6, 17].
Many have also been actively observing, measuring and

quantifying different characteristics of current P2P sys-
tems [16, 9, 5] to get a ‘grounds-up’ understanding of
user/peer behavior in these networks. The studies show that
a key characteristic of P2P networks is their highly dynamic
nature [16]. In this respect, P2P networks are quite differ-
ent from other (relatively) well studied large networks such

as the Internet router network (routers are designed explic-
itly to be fail-safe) or the World Wide Web (WWW) (where
we-pages exist from weeks to years). Furthermore, under-
standing basic characteristics of a network impacts the pro-
tocols designed to operate in that environment [14]. We be-
lieve that, for P2P networks, understanding overlay dynam-
icity can be a key factor in designing effective and efficient
protocols and architectures.

1.1. Related Work

Dynamicity measure of files/objects in a P2P network
have been well studied and documented [9]. Empirical data
on aggregate node statistics (such as uptime) have also been
documented [16]. However, there seem to be a lack of statis-
tics that can reveal in a straightforward and intuitive way
the different dynamic characteristics of the whole network
of nodes.
Previous work [11, 5] has has addressed this issue to a

certain extent. In [11], the authors propose a measure of dy-
namicity called Half-life which measures the time taken for
half of the nodes in the network to change. Thus, a lower
half-life directly corresponds to a more dynamic network.
In [5], the authors (implicitly) define a notion of dynamicity
called turnover which indicates how many nodes are join-
ing and leaving the network in a given unit of time. How-
ever, these measures of dynamicity are not studied exclu-
sively by themselves but rather are introduced to provide a
basis to study or prove other properties of a P2P network.
Moreover, there is no information on how these different
metrics ‘interact’ in a network. For example, can one say
that if a network has a high turnover it will have a small
half-life?

1.2. Our Contribution

This paper makes three contributions to the study of net-
work dynamicity:

1. In addition to half-life and turnover, we identify two
more basic measures of network dynamcity, viz., size-

change and persistence. Persistence can be an useful
metric to quantify stable nodes in a network.

2. We generate different dynamic networks systemati-
cally and measure the values of the four metrics in the
networks. These measurements shed light on the corre-
lations and behavior of the four metrics and show that
no one metric is enough to characterize the dynamic-
ity of the network by itself.

3. We study the ‘evolution’ of the different networks and
observe that certain real-world network structures can
in fact be explained using simple rules and processes.

The rest of the paper is as follows. In Section- 2 we
present our model of a dynamic graph, which is used as a
basis to define the various dynamicity measures. In Section-
3, we present our approach to generate different dynamic
graphs. The dynamicity measures for these different graphs
and the inter-relation between the different measures is ex-
plored in Section- 4. In Section- 5, we explore the distribu-
tion of degree of the emergent network for the different dy-
namic graphs. We conclude in Section- 6.

2. Dynamic Graph Model

In this section, we formally define a model of a dynamic
graph and define various dynamicity measures with respect
to this model.
Dynamic graphs have an implicit notion of change and

time i.e the structure of the graph changes over time. An in-
tuitive way to think about a dynamic graph is, as a ‘record-
ing’ of snapshots of the evolving graph. Operations that
took place between graph snapshots are recorded so that ap-
plication of the operations on a previous snapshot yields the
next snapshot. We define this notion more formally as fol-
lows:
A Static Graph is defined as a graphG = {V,E} of ver-

tices and edges. A Dynamic Operation on a static graph is
any operation that changes the structure of the graph. We
define four dynamic operations in our model: AddVertex,
DeleteVertex, AddEdge & DeleteEdge. As their name sug-
gests, the operations are quite straightforward. For example,
AddVertex adds a new vertex to a graph.
Application of an ordered set of operations, {Oi}, on

a static graph, Gi, leads to the evolution of the graph to
Gi+1. Gi and Gi+1 are called consecutive Graph Snap-
shots. Graph snapshots could also be time-stamped to de-
note the time at which the snapshots were taken. A graph
snapshot is then denoted as Gt

i, the ith snapshot taken at
time t.
A Dynamic Graph DG is an ordered set of graph snap-

shots and the set of operations following each snapshot:

DG = {(G0
r, O

0
r), (G1

s, O
1
s)..(Gi

t, O
i
t)}, r < s < t (1)

The set of operations, Oi is never null i.e. two consec-
utive snapshots differ by at least one vertex or one edge.
The vertex set and edge set of a graph snapshot Gt

i are de-
noted as V t

i and Et
i respectively. Sometimes, for simplicity,

a graph snapshot is referenced by either just its snapshot
number as Gi or the time of the snapshot as Gt, as is ap-
propriate. Also, Gi ∩ Gi+1 may include the null set ({∅})
i.e. the set of vertices, if any, in Gi+1 are completely differ-
ent from the ones in Gi.
Using this model of the dynamic graph in, we now define

various dynamicity measures. These measures are all de-
fined exclusively with respect to vertices. Analogous mea-
sures with respect to edges could also be defined.

2.1. Dynamicity Measures

2.1.1. Graph Turnover We define graph turnover, θ, as
the fraction of vertices that have ’left’ the graph between
two snapshots over the total number of vertices in the ini-
tial snapshot:

θ(Gi, Oi, Gj ,) = NumDeleteV ertex(Oi)/|Vi| (2)

NumDeleteV ertex(Oi) returns the number of
DeleteVertex operations in Oi. Oi is the set of opera-
tions needed to transition Gi to Gj .
Turnover could also be measured as the total number of

vertices added (AddV ertex) during a particular timeframe
or the combination of bothAddV ertex andDeleteV ertex
operations. Turnover has been mentioned implicitly in [5].

2.1.2. Half-life Half-life of a graph is the minimum time
taken for half of the vertices in a graph to change (either
through addition or deletion). It can be defined (for a given
time of reference, i) as:

HalfLife(DG, i) = (j − i) ∧ min(j) ∧ j > i ≥ t (3)

|V i ∩ V j | ≥ |V i|/2 or |V i ∩ V j | ≥ |V j |/2

Therefore, half-life is the minimum time needed so that
the two snapshots differ by at least half of the nodes in ei-
ther snapshot (see [11] for a more detailed explanation and
analysis).

2.1.3. Graph Size-Change Graph size-change, δ, given a
graph snapshot,Gi, and the set of operations, O, performed
on Gi is defined as:

δ(Gi, O) = 1 − MinSize(Gi, O)/MaxSize(Gi, O) (4)

Let (g1, g2, ...gi) denote the graphs that have evolved
from Gi after application of each operation in {O}
(oi, o2, ...oi). Note that gi results after application of of all
operations, from (o1...oi). Using this, we define:

MinSize(Gi, O) = min(|v1|, |v2|, ...|vi|)
MaxSize(Gi, O) = max(|v1|, |v2|, ...|vi|)

Graph size-change, therefore, gives an intuitive feel into
the fluctuation of the size of a graph (in vertices) between
the two snapshots. A value close to zero indicates that the
graph size did not vary by much, while a value close to one
indicates the opposite.

2.1.4. Graph Persistence We define a measure for graph
dynamicity called Graph Persistence, σ. Persistence be-
tween two snapshots Gi and Gj , j > i (or even Gi and
Gj), is defined as:

σ(Gi, Gj) = 1 − (|Vi ∩ VJ |)/|Vi| (5)

i.e. the fraction of vertices remaining in the new snap-
shot over the total number of vertices in the old snapshot.
Persistence of a graph gives an intuition into how much a
graph has ‘changed’ (or not changed) between snapshots. A
value close to zero indicates the graph has changed dramat-
ically between the two snapshots while a value closer to one
indicates that the change is small.

3. Generation of Dynamic Networks

In this section we describe our process for generating
different dynamic networks. The networks are generated by
combining three policies in various ways (the policies and
their values are shown in Figure 2) . The policies control the
distribution of lifetimes of nodes, how new nodes attach and
how nodes leave the network. The policies are ‘plugged’
into a network simulator to simulate various types of dy-
namic networks. We first describe the simulator followed
by the three policies.

3.1. The Dynamic Network Simulator

Our simulator (Fig. 1) follows the general dynamic graph
model presented in Section 2. Each simulation is driven
by certain simulation parameters (values used in our sim-
ulations are listed in Fig. 2). Each simulation is started
with a graph snapshot that has the specified number of ver-
tices. This initial snapshot is built using only AddV ertex
and AddEdge till the required amount of vertices are met
(GraphSize).
After snapshot-0 is built, the graph is allowed to change.

Snapshot-0 is equivalent toG0
0 (snapshot zero at time zero).

Time is incremented in ‘ticks’. Each vertex has a unique
lifetime and depending upon the Lifetime Policy the life-
times of vertices follow certain distributions.
At each time tick, the uptime of each vertex is increased

by 1. If a vertex has outlived it’s life (uptime is greater than
it’s intended lifetime), it is removed from the graph. As the
graph is evolving snapshots are taken at regular intervals. A
snapshot of the graph is taken whenever GraphSize new
vertices have been added to the graph. This also implies
thatGraphSize vertices have been removed from the graph

Dynamic Network Simulator
Time T = 0
SnapshotCount = 0
GraphSnapshotList G(SnapshotCount) = G0

TotalV ertices = 0
LastCountV ertices = 0
GraphSize = SimulationParameter
SimulationV ertices = SimulationParameter
LifetimePolicyLP = SimulationParameter
AttachmentPolicyAP = SimulationParameter
DetachmentPolicyDP = SimulationParameter

DeadNodes = 0
while (TotalV ertices ≥ SimulationV ertices)

if (TotalV ertices ≥ LastCountV ertices + GraphSize)
// Take Snapshot of Graph
G(SnapshotCount) = GT

Increment SnapshotCount by 1
LastCountV ertices = TotalV ertices

∀v ∈ {VT } :
Increment vuptime by 1
if (vuptime = vlife)

RemoveV ertex(GT , v)
if (DP = Single)

vn = GenerateNewV ertex(LP)
AddV ertex(GT , vn)
AddEdge(GT , vn) using AP

ElseIf (DP = Aggregate)
IncrementDeadNodes by 1

Increment TotalV ertices by 1
If (DP = Aggregate)

ForDeadNodes times:
vn = GenerateNewV ertex(LP)
AddV ertex(GT , vn)
AddEdge(GT , vn) using AP

Increment T by 1

Figure 1. Simulation Engine

since the last snapshot. All vertices that have been removed
are recorded as well. When SimulationV ertices vertices
have been generated, the simulation is stopped and a final
snapshot is taken.

3.2. Lifetime Policy

The lifetime policy decides from which distribution to
pick a node’s lifetime value. We use four distributions; three
distributions are ”off the self” and one is “custom” which
we have explicitly designed. Lifetimes of nodes are picked
at random from the distributions.

Parameter Name Value(s)
SimualtionV ertices 1, 000, 000
GraphSize 100, 000
LifetimeParameter 100
LifetimePolicy Uniform-Random, Gaussian,

Custom, Power-Law
AttachmentPolicy Random, Preferential
DetachmentPolicy Single, Aggregate

Figure 2. Table of Simulation Parameters

3.2.1. Uniform-Random Generates uniform-random
numbers from 1 − LifetimeParameter. The Java
Math.random method generates numbers of this type.
This generator is referred to as the Uniform genera-
tor for the rest of the paper.

3.2.2. Gaussian Generates random numbers that follow a
Gaussian-Normal distribution. We used the Java Gaussian
generator for this purpose. This generator generates num-
bers between -1 and +1 with a mean of 0 and a variance
of 1. We used the following method to change the mean
and make all the generated numbers positive: (p(x)+1.0)∗
LifetimeParameter, where p(x) is the number generated
from the Java gaussian generator.

3.2.3. Power-Law Generates random numbers that follow
a Power-Law distribution. Power-Laws are characterized by
the following formula:

f(x) = βxα (6)

In our simulations, β is the maximum lifetime of a vertex
(LifetimeParameter). x was chosen uniformly at ran-
dom from from the range [1..SimulationV ertices].

3.2.4. Custom We devised a “mixture” generator that
mixes seven different generators: one a power-law gen-
erator and six other gaussian generators with different
means. This generator is labeled as ’Custom’ in all fig-
ures. The algorithm used by this generator is described in
Figure 3. Our intuition for this custom generator comes
from the fact that observed uptimes of peers do not fol-
low any of the ‘off-the-shelf’ distributions in a straight-
forward way. However, it may be possible that different
groups of peers in a P2P network follow different distribu-
tions. The custom distribution also came closest (of all the
four distributions) to modeling the distribution that was re-
ported in Figure8(b) of [16].
We plotted the distributions of the lifetimes generated by

the different generators (Figure 4) (we generated 10 mil-
lion values for each distribution). as a Cumulative Density
Function (CDF) of probabilities, i.e. the probability that a
generated lifetime is greater than a certain value. This fig-
ure is useful to illustrate the presence of a power-law in a

Custom Lifetime Generator
GraphSize = SimulationParameter
MaxLifetime = LifeTimeParameter

luck = Random () /* Between 0.0 - 1.0 */
if (luck > 0.99) return Gaussian() * MaxLifetime/4
if (luck > 0.95) return Gaussian() * MaxLifetime/8
if (luck > 0.9) return Gaussian() * MaxLifetime/16
if (luck > 0.8) return Gaussian() * MaxLifetime/30
if (luck > 0.6) return Gaussian() * MaxLifetime/50
if (luck > 0.5) return Gaussian() * MaxLifetime/75
if (luck > 0.4) return PowerLaw()

Figure 3. The Custom Lifetime Generator

straightforward manner (both axes are log-log scale). How-
ever, as can be seen in Figure 4, the power-law generator
does not yield a “straight line” in the log-log plot. The im-
precision may be due to rounding errors in floating point
operations.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

P(
X>

x)

Uptime

Uniform-Random
Gaussian

Custom
Power-Law

1.04*x**-3.5

Figure 4. Vertex Lifetimes Distribution as
Probability CDF

3.3. Attachment Policy

When new nodes join the network, they do so by form-
ing an edge to one of the existing nodes in the network.
How they form this edge is dictated by the attachment pol-
icy. An attachment policy is defined as a stochastic rule. We
use two attachment policies in our network generation: Ran-
dom and Preferential. These are defined as follows (v is the
new node and vi is an existing node in the graph):

Random : p(v, vi) = 1/|V | (7)

Preferential : p(v, vi) = degree(vi)/|E| (8)

The random policy is quite straightforward to imple-
ment. A node picks an existing node at random to join. The
preferential attachment algorithm is more sophisticated and
is borrowed from [12].

3.4. Detachment Policy

In our simulator, we also control how nodes leave the
network. This is called the Detachment Policy. In Single
Detachment Policy, nodes leave ‘one at a time’, i.e., a new
node is generated immediately after a node leaves the net-
work. Thus, at most, the size of the network changes by 1.
In Aggregate Detachment Policy, all nodes that have out-
lived their life (at a particular time tick) are removed to-
gether. New nodes equal in number to the removed nodes
are then generated and added back to the network.

4. Empirical Comparison of Dynamicity
Measures

In this section we analyze the various dynamic networks
(Section 3) using the different dynamicity metrics (Sec-
tion 2) and comment on the appropriateness of the dynam-
icity metrics to measure a particular aspect of dynamicity.

4.1. Turnover

In our network simulator, we simulate a certain total
number of nodes (SimulationV ertices) and take snap-
shots of the dynamic network after every GraphSize of
nodes leave the network (Figure 1). When turnover is high,
the time between snapshots is small (lesser simulation ticks)
as compared to when the turnover is lower (higher simula-
tion ticks). Figure 5(a) shows this.
Of interest is the fact that Custom has a higher turnover

than Power-Law (one would have expected the opposite).
The reason for this is becasue 68% of nodes in Custom have
lifetimes less than 1 as compared to 50% in Power-Law.

4.2. Persistence

Persistence gives an intuition into the presence of stable
nodes in a network. Figure 5(b) shows the persistence value
for the different lifetime policies across snapshots. We mea-
sure persistence after a fixed number of nodes have left the
network and not in relation to time ticks. The reason for
this is to make the persistence statistic independent of time
frame and compare the different networks in a objective and
straightforward way (Note that the average lifetimes for the
different lifetime policies are different).
The results in Figure 5(b) are counter-intuitive if

turnover and persistence are expected to be directly corre-
lated. If they were, Uniform should have higher persistence
than Gaussian, and Power-law higher than Custom. Sur-
prisingly, Custom has a higher persistence than both
Power-Law and Uniform! Thus, in the Custom-generated
network, more nodes are persistent even though a higher

number of nodes have lesser lifetime. A key motiva-
tion in the design of the Custom generator was also to
illustrate this counter-intuition. In P2P networks, it is im-
portant to differentiate between the more stable in the net-
work (some protocols such as KaZaa already do this by
making stability as one of the parameters in the selec-
tion of super-nodes). Doing so, one can utilize the more sta-
ble nodes to make the P2P protocol, as a whole, more
scalable.

4.3. Half-life

Half-life measures the time it takes for half of the net-
work to change. From a given snapshot, we measure the ear-
liest tick when half of the network has changed. Figure 5(c)
plots the half-life when different lifetime policies are used.
As can be seen from Figure 5(c), the correlation between

turnover (Figure 5(a)) and half-life is quite apparent; the
lower the turnover, the higher the half-life (For custom and
power-law, our granularity of measurements in time ticks
was not sufficient to reveal the differences between them.
Since their turnovers are greater than 25% for each time
tick, their half-life is also 1 time-tick).

4.4. Size-change

Size-change measures how much the network as a whole
has fluctuated in size. In single-change Detachment Policy
(DP), the size change of the network is the same (differ-
ence of 1 node at maximum). In aggregate DP, however, the
more nodes that, the bigger the size change. However, given
the way, size-change is defined, in our simulation model,
turnover and size-change are identical for aggregate DP.
To understand this, consider the definition of size-change.
Starting with the definition of size change 4, MinSize is
equivalent to (GraphSize − DeadNodes). (DeadNodes
are the total number of nodes that died during a time tick).
MaxSize is GraphSize. Therefore,

δ = 1 − ((GraphSize − DeadNodes)/GraphSize)
= (DeadNodes/GraphSize)
= Turnover

Size-change has an impact more on the evolution of the
structure of the network and this is discussed in Section- 5.

Summary

Different dynamicity measures are useful in showing dif-
ferent characteristics of the network. Moreover, they may
not be directly correlated. A higher turnover does not nec-
essarily mean that the network is more ‘volatile’ in total-
ity. Additionally, a combination of measures may give a
more complete picture. For example, using both turnover

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 10 100 1000

T
u
rn

o
v
e
r

Time

Uniform
Gaussian

Custom
Power-Law

(a) Turnover

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

P
e

rs
is

te
n

c
e

Snapshot Number

Uniform
Gaussian

Custom
Power-Law

(b) Persistence

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9

H
a
lf
-L

if
e
 T

im
e

Snapshot Number

Uniform
Gaussian

Custom
Power-Law

(c) Half-Life

Figure 5. Dynamicity Measures of Different Networks

and size-change we can judge how fast (turnover) a network
is growing or shrinking (size-change), if at all.

5. Dynamicity Impact on Structure of Net-
work

In this section we explore the impact of dynamicity on
the structure of a network. By structure, we mean the dis-
tribution of edges (nodes degree) in the network. A power-
law distribution, for example, indicates presence of hubs [4]
while an exponential distribution is a characteristic of a
‘Random Network’ [8]. Our goal is to study whether dy-
namicity impacts the structure of a network and if so, what
is the impact.
This could have important implications into the design

of how nodes in a P2P network initiate and form connec-
tions with each other. As we’ll describe, dynamicity com-
bined with different attachment policies can lead to radi-
cally different network structures.
The effect of attachment policies in static or growing net-

works has been well studied across many types of actual
networks and simulations [4, 1, 10, 7]. However, there has
been relatively little research into how the structure changes
as a network evolves for different kinds of dynamic net-
works. We feel that our work is (one of the) first to address
this issue.
We study the impact of dynamicity on the structure of

the network by plotting the degree distribution of the ini-
tial (G0) and final (G10) snapshot. The time tick of the final
snapshot is indicated in parenthesis in the results. We com-
pare the ‘evolution’ in the degree for all the combinations
of Lifetime, Attachment and Detachment policies. The re-
sults are presented in the following sub sections. For brevity,
networks using Random Attachment Policy are called as
random-networks (and similarly preferential-networks. Ad-
ditionally, we use the lifetime policy in the network name as

well (for example, a uniform-random-network is a random-
network in which the nodes follow uniform-random distri-
bution in lifetimes).

5.1. Single Change Detachment Policy

We study the impact of dynamicity when the detachment
policy is single change. The results of the experiment are
shown in Figure 6. The bottom part of the figures are snap-
shots from the first snapshot while the top parts are from the
final snapshots (for the same attachment policy, we should
not see any difference in the distribution of degree for the
different lifetime policies at snapshot-0, since the lifetime
policies have still to come into effect. However small dif-
ferences can be seen at the tail of the distributions and these
give an idea about the possible deviations in different runs
of the simulator).

Analysis As a network evolves under the single change de-
tachment policy, vertices with higher degree start to dis-
appear and more vertices have lesser degree. This is ob-
served in both random and preferential networks. The ef-
fect of Lifetime Policy (and hence different types of dynam-
icity) seems to have minimal effect on random-networks
(the resulting distributions are still strongly exponential in-
dicated by straight lines, though with a higher slope). The
degree distributions for all the lifetime policies seem quite
similar suggesting that a random-network is quite ‘insensi-
tive’ to variation in lifetimes of vertices. Structured P2P net-
works (that use Distributed Hash Table) use a randomiza-
tion function to select which node a new node should join
to. In this regard, DHT-based P2P networks, can be thought
of as random-networks. For these networks, therefore, dy-
namicity of nodes does not lead to any big change in the
structure of the network (when size change is small).
In the case of preferential-networks, however, there is

perceptible differences in the emergent distributions.; the

10-6

10-5

10-4

10-3

10-2

10-1

100

0 2 4 6 8 10 12 14 16 18

P
(X

>x
)

1/(2x)
Uniform (0)

Gaussian (0)
Custom (0)

Power-Law (0)

10-6

10-5

10-4

10-3

10-2

10-1

100

P
(X

>x
)

Degree

1/(2x)
Uniform (413)

Gaussian (161)
Custom (19)

Power-Law (24)

(a) Random Attachment Policy

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

P
(X

>x
)

0.74*x-1.75

Uniform (0)
Gaussian (0)

Custom (0)
Power-Law (0)

10-5

10-4

10-3

10-2

10-1

100

P
(X

>x
)

Degree

0.74*x-1.75

Uniform (413)
Gaussian (161)

Custom (19)
Power-Law (24)

(b) Preferential Attachment Policy

Figure 6. First and Last Snapshots of a Dynamic Graph Under Different Attachment and Lifetime Poli-
cies with Single Change Detachment Policy

power-laws are ‘truncated’ [13, 2]. Dynamicity of nodes
combined with steady change leads to this truncation. Net-
works such as the WWW and router networks are predom-
inantly growing (and show power-laws in their structure)
whereas the networks we simulated are not growing but at
a constant size. Networks where truncated power-laws have
been observed are also approximately steady state (nodes
join and leave but the rates of both are approximately equal).
Examples of these are actor-networks (ties between actors
who act together in movies) or social ecology networks
(prey-predator ties in ecologies).

5.2. Aggregate Change Detachment Policy

In aggregate detachment model, the difference in the size
of the networks varies across the lifetime policy used; Cus-
tom has highest size difference while Uniform has the least
(Figure 5(a)). Figure 7 shows the effect of dynamicity on
the different networks when the aggregate change policy is
used.

Analysis Unlike in single-change networks, aggregate-
change networks (networks where aggregate change
detachment policy is used) show both truncation and exten-
sion. In both random and preferential networks, power-law
and custom-networks show distributions where ver-
tices have higher degree (as compared to snapshot-0). In
preferential-networks, this effect is highly pronounced
with vertices having an orders of magnitude greater num-
ber of edges (Custom and Power-law). This is because,
in aggregate change, a large percent of nodes are re-
moved at once (in Custom and Power-law). Thus when new
nodes join, they join nodes that already have many con-
nections leading to those nodes becoming even more ‘pre-
ferred’. As the network evolves, these preferred nodes

amass a huge number of links to other nodes. Where
the rate of leaving is not so high (Uniform and Gaus-
sian), more nodes are available for new nodes to choose
from. These networks, therefore, in contrast, exhibit trun-
cation in degree distributions.
Also, it is interesting to see the effect of the interplay be-

tween persistence and size-change in the preferential attach-
ment model. Custom has a higher size-change and higher
persistence than power-law. Therefore more nodes leave
and join the network at each time tick. However more nodes
are also present consistently across time, for new nodes to
join to. In Power-law, lesser number of nodes leave the net-
work at each time tick but only a select few are able to
stay in the network consistently. Therefore the select few
end up acquiring massive number of edges as compared
to the Custom-preferential-network (Figure 7(b)). For un-
structured P2P networks with highly skewed lifetime dis-
tributions, therefore, protocols must be designed to avoid
preferential attachment. Else, the load on ‘preferred’ nodes
may increase exponentially making them a bottleneck to the
whole system.

6. Conclusion and Future Work

In this paper, through exploratory simulation, we showed
how systematically studying dynamicity may provide im-
portant clues and insights in understanding and modelling
dynamic networks. However, it would be good to apply the
results found here to real-world P2P networks. We are cur-
rently working on collecting data from real P2P applica-
tions and applying the dynamicity measures to characterize
them. Many types of network dynamicity were not consid-
ered, such as network partitioning. Moreover, it is not ob-
vious that the dynamic graph model that we used will be

10-6

10-5

10-4

10-3

10-2

10-1

100

0 2 4 6 8 10 12 14 16 18

P
(X

>x
)

1/(2x)
Uniform (0)

Gaussian (0)
Custom (0)

Power-Law (0)

10-6

10-5

10-4

10-3

10-2

10-1

100

P
(X

>x
)

Degree

1/(2x)
Uniform (413)

Gaussian (161)
Custom (19)

Power-Law (24)

(a) Random Attachment Policy

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104

P
(X

>x
)

0.74*x-1.75

Uniform (0)
Gaussian (0)

Custom (0)
Power-Law (0)

10-5

10-4

10-3

10-2

10-1

100

P
(X

>x
)

Degree

0.74*x-1.75

Uniform (413)
Gaussian (161)

Custom (19)
Power-Law (24)

(b) Preferential Attachment Policy

Figure 7. First and Last Snapshots of a Dynamic Graph Under Different Attachment and Lifetime Poli-
cies and with Aggregated Delete-And-Join Policy

sufficient for all P2P networks (e.g. multicast addresses and
caching other peers’ addresses but not explicitly connect-
ing to them are difficult to model using a graph). More so-
phisticated models (such as hyper-graphs) may be needed.
However, this only shows that studying network dynamic-
ity by itself is a rich area for exploration.

Acknowledgements

We would like to thank Prof. Carter Butts and the four
anonymous reviewers for their insightful comments and
feedback. This work was supported by the National Science
Foundation, under award numbers 0331707 and 0331690.

References

[1] R. Albert, H. Jeong, and A. L. Barabasi. The internet’s
achilles’ heel: Error and attack tolerance of complex net-
works. Nature, 2000.

[2] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stan-
ley. Classes of small-world networks. Proc. Natl. Acad. Sci.
USA, 97(21):11149–11152, 2000.

[3] H. Balakrishnan. Looking up data in p2p systems. In Com-
munications of the ACM (CACM), 2002.

[4] A.-L. Barabasi, R. Albert, and H. Jeong. Scale-free charac-
teristics of random networks: the topology of the world-wide
web. Physica A, 281:69–77, 2000.

[5] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding
availability. In International Workshop on Peer-to-Peer Sys-
tems (IPTPS), 2003.

[6] A. Crespo and H. Garcia-Molina. Routing Indices For Peer-
to-Peer Systems. In Proceedings of the 22nd International
Conference on Distributed Systems, pages 23–32, Vienna,
Austria, 2002.

[7] D. Eppstein and J. Wang. A steady state model for graph
power laws. In 2nd International Workshop on Web Dynam-
ics, May 2002.

[8] P. Erdos and A. Renyi. On random graphs. Publ. Math. De-
brecen, 6:290–297, 1959.

[9] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. Measurement, modeling and analy-
sis of a peer-to-peer file-sharing workload. In Symposium on
Operatinng Systems Principles (SOSP), October 2003.

[10] K. Klemm and V. M. Eguiluz. Highly clustered scale-free
networks. Physical Reeview E., 65, 2002.

[11] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analy-
sis of the evolution of peer-to-peer systems. In PODC, pages
233–242, 2002.

[12] A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: Univer-
sal topology generation from a user’s perspective. In In Pro-
ceedings of Workshop the International Workshop on Mod-
eling, Analysis and Simulation of Computer and Telecommu-
nications Systems (MASCOTS ’01), October 2001.

[13] S. Mossa, M. Barthelemy, H. E. Stanley, and L. A. N. Ama-
ral. Truncation of power law behavior in scale-free network
models due to information filtering. Physical Review Let-
ters, 88(13), 2002.

[14] C. R. Palmer and J. G. Steffan. Generating network
topologies that obey power laws. In In Proceedings of
GLOBECOMM, 2000.

[15] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-
ment. In Ninth annual ACM symposium on Parallel algo-
rithms and architectures, pages 311–320, 1997.

[16] S. Sen and J. Wang. Analyzing peer-to-peer traffic across
large networks. ACM Transactions of Networking, 12(2),
2004.

[17] B. Yang and H. Garcia-Molina. Designing a super-peer net-
work. In Proceedings of the 19th International Conference
on Data Engineering (ICDE), March 2003.

