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Abstract

We present a peer-level protocol for forming adaptive,
self-organizing topologies for data-sharing P2P networks.
This protocol is based on the idea that a peer should di-
rectly connect to those peers from which it is most likely to
download satisfactory content. We show that the resulting
topologies are more efficient than standard Gnutella topolo-
gies. Furthermore, we show that these adaptive topologies
have the added benefits of increased resistance to certain
types of attacks, intrinsic rewards for active peers and pun-
ishments for malicious peers and freeriders.

1. Introduction
While peer-to-peer networks have great potential for

large-scale, robust, distributed information sharing, current
P2P systems such as Gnutella are not highly efficient or
scalable because peers are connected randomly to other
peers in the network. Alternative P2P organization proto-
cols that place content at nodes based on hash functions
have been proposed, [15], [19]. Such schemes are efficient
for queries where the exact search key is known, but be-
have poorly for approximate queries. Furthermore, neither
of these schemes addresses the issues of malicious peers or
freeriders as inherent parts of the topology design.

A useful concept for designing scalable, efficient, and
robust overlay topologies is that ofinteraction topologies.
The interaction topology for a P2P file-sharing network is a
graph whose nodes are the peers in the network, and whose
arcs are defined by downloads. For example, one may place
an arc between nodesi andj if nodei has downloaded con-
tent from nodej more than 3 times.

We propose a peer-level protocol for forming self-
organizing topologies based on the idea that efficiency and
robustness can be achieved by designing an overlay topol-
ogy to match the interaction topology. We call the resulting
topologies Adaptive P2P Topologies and we call the proto-
col the APT protocol.

More specifically, the APT protocol is based on two fun-
damental notions. First, peers should directly connect to

those peers from which they are likely to download satis-
factory files. Second, peers may use past history to deter-
mine the peers from which they are likely to download sat-
isfactory files. (For simplicity, we refer to retrieved content
as “files” even though in general it could be any type of
query results.) At a basic level, the practical implementa-
tion of these ideas involves each peer keeping a score of how
many good files it has downloaded from each other peer
in the network. Peers connect to those peers that have high
scores, and disconnect from peers with low scores. After de-
scribing our network model in Section 2, we present a self-
organizing, distributed protocol for forming such topologies
in Section 3.

We will show several natural characteristics of a topol-
ogy derived from peers connecting to download sources
based on past history. One such property isefficiency; peers
are more likely to receive responses to their queries with
less query forwarding overhead. This is discussed in further
detail in Section 4.5. Another property issecurity; malicious
peers are moved to the fringe of the network, thereby in-
creasing the network’s resistance to inauthentic file attacks.
This is the subject of Section 4.2. The third isincentives;
freeriders are moved to the fringe of the network, whereas
peers that actively share files are moved to the center of
the network. Peers that lie on the fringe of the network re-
ceive a limited number of responses to their queries. On the
other hand, active peers have a wider view of the network
and consequently receive a higher quality of service, even if
they limit the number of connections they make. The intrin-
sic rewards and punishments are discussed in Sections 4.3
and 4.4.

2. Network Model

2.1. Network Topology

The P2P network is represented as an undirected graph
G = (P, E), whereP is the set of nodes, andE is the set
of edges(i, j) describing the connections between nodes
i, j ∈ P . The connections in the P2P network are symmet-
ric and describe a peer’s neighbor set. That is, peeri’s neigh-
bor set is defined asN(i) = {j | (i, j) ∈ E}. The network
is initialized to contain some number of peers whose con-



Figure 1. Query propagation model.

nections form a power-law topology, as described in [14].

2.2. Joining the network

A peer joins the P2P network by contacting a desig-
nated pong server1 to obtain some number of live IP ad-
dresses [11]. Before adding a node to its neighbors set, the
peer must be permitted to make a direct connection. A con-
nection request messageR(i, j) is initiated by peeri re-
questing a direct connection to peerj. The request is sent
directly to peerj which then decides whether to accept the
connection. If peerj accepts the connection then both peers
add one another to their neighbor sets. System bootstrap
proceeds by having each peer attempt an initial number of
connectionsγ that does not exceed some system wide max-
imum number of connectionsτ .

Bootstrapping and node discovery are still open issues
in P2P systems. Schemes that distribute the IP addresses
maintained by the pong servers to nodes in the network are
evaluated in [18]. Such schemes can easily be incorporated
into our model, since the APT protocol is independent of
the method for establishing connections. In addition, we as-
sume it is not easy for peers to create new identities. Such
an assumption can be met through the use of certificates or
binding identities to real-world entities (e.g. static IP ad-
dress) [1].

2.3. Query Propagation

Query messages are propagated via flooding-based
broadcast. A search query can be initiated by any node in
the network by first broadcasting to all peers in its neigh-
bor set. Each node, upon receiving a propagated search
query, will examine its local file system for a match.
Any matches are returned directly to the query initia-
tor. The peer may then propagate the query to all its neigh-
bors except for the node from which it received the query.

1 Pong servers maintain lists of IP addresses of live peers in the net-
work.

Each query maintains a time-to-live (TTL) field to limit
the scope of the query flooding. At query time, the issu-
ing peer will set the TTL field to some default value, which
is then decremented by one at each propagation. A node re-
ceiving a query withTTL = 0 will not forward the
query.

Figure 1 illustrates how a query propagates through the
P2P network. In the example, peerk initiates the search
query, withTTL = 1, by broadcasting to all of its neigh-
bors, in this case peerj. Peerj decides not to respond to
the query and forwards the query to its neighbors, except to
peerk. Upon receiving the query, peeri directly responds to
peerk with a match. The query flooding terminates at peeri
since the TTL is now 0.

3. Adaptive P2P Topologies

3.1. Local Trust Scores

Adaptive P2P Topologies are based on two notions:

1. A peer should directly connect to those peers from
which it is likely to download files in the future.

2. A peer may use its past history to estimate the likeli-
hood of a future successful download.

In the APT protocol, a peer encodes its past history with
a set oflocal trust values[8]. Peeri stores a local trust value
for each peer it has interacted with. Ifsat(i, j) is the num-
ber of satisfactory transactions peeri has had with peerj,
andunsat(i, j) is the number of unsatisfactory transactions
peeri has had with peerj, then we define the local trust
value as

sij = sat(i, j)− unsat(i, j).

Peeri may deem a transaction unsatisfactory if, for ex-
ample, the file downloaded is inauthentic or tampered with,
or if the download is either slow or interrupted. Thelocal
trust vector~si associated with peeri contains allsij val-
ues wherej varies over all peers in the network. In our im-
plementation, each peer maintains a hash table containing
the local trust values of all its acquaintances. An acquain-
tance is then defined as an entry in the hash table. If peeri
has never interacted with peerj then there will be no en-
try in peeri’s table for peerj, and thussij = 0.

3.2. Protocol

We define thetrustworthinessof a network to be:

Q =
v∑

i=1

v∑

j=1

connection(i, j)× si,j

where v is the number of nodes inP and
connection(i, j) = 1 if (i, j) ∈ E, otherwise
connection(i, j) = 0. Intuitively, a network where
peers are connected to peers that they trust will have a high
Q value.



Generally, in any P2P System, there will be some con-
nection barriers; for example, peers may wish to set a limit
τ on the number of peers to which they connect in order
to conserve bandwidth. Connection barriers are common
in real world P2P Systems and support fair sharing of re-
sources [7]. We may therefore formulate the problem of cre-
ating a trustworthy network as: maximize Q subject to the
constraint that each peeri has at mostτ connections.

The APT protocol is a peer-level greedy algorithm for
maximizingQ and it proceeds as follows. Peeri joins the
network by attemptingγ random connections as described
in Section 2.2. The join process is repeated until at least
1 connection is made. After downloading an authentic file
from peerj /∈ N(i), peeri with ni < τ connections sends
the connection requestR(i, j) to peerj. If ni = τ then
peeri sends a connection request if one of the following
holds:

1. Peerj /∈ N(i) achieves a higher local trust value than
one of peeri’s neighbors (messageR(i, j) is sent).

2. Peerj ∈ N(i) is assigned a lower local trust value
than some acquaintancek /∈ N(i) of peeri (message
R(i, k) is sent).

The first scenario describes an authentic download from
peerj, while the second occurs after an inauthentic down-
load from peerj. In both cases, if peeri’s connection re-
quest is granted then it will disconnect from its neighbor
with the lowest local trust value. A special case occurs if a
neighbor of peeri is assigned a negative local trust score
and peeri is not able to connect to an acquaintance. In this
situation peeri immediately disconnects from that neigh-
bor and attempts a connection to a random peer.

Peerj will only accept peeri’s connection request if
peerj’s local trust valuesji of peeri is non-negative and
one of the following conditions is true:

1. Peerj has fewer thanτ connections.

2. Peerj’s local trust valuesji of peeri is greater than
the local trust value of at least one neighbor.

In the second case peerj will replace its lowest trust val-
ued neighbor with peeri. The careful reader will notice that
peerj would have previously made a connection request
to peeri because of peeri’s desirablesji value. It is as-
sumed that peeri had denied the connection requestR(j, i)
but then later sent the connection requestR(i, j).

3.3. Practical Issues

Hidden malicious peers and local maxima are two prac-
tical issues not addressed by the basic algorithm described
in Section 3.2.

Hidden Malicious Peers.A malicious peer may dissem-
inate corrupt or inauthentic files by connecting to a peer to

which it does not directly upload files. To illustrate with Fig-
ure 1, let an altruistic peer be defined as a peer that shares
files but does not download files. Suppose that peeri is a
malicious peer and peerj is an altruistic peer. Since peerj
does not download any files, its local trust vector will be an
all-zero vector and consequently peerj will have no reason
to disconnect from any other peer. Furthermore, other peers
will connect to peerj because it provides authentic files.
Therefore, the altruistic peerj unwittingly serves as a con-
duit through which malicious peeri receives queries used
to disseminate inauthentic files. In effect, malicious peeri
is ”hiding” behind altruistic peerj.

We addresses this issue by defining the notion ofcon-
nection trust. While the local trust valueskj quantifies the
number of authentic files that peerk downloads from peerj,
the connection trust valuerkj quantifies the number of au-
thentic files that peerk discoversthrough peerj. For exam-
ple, suppose that in Figure 1 peerj forwards peerk’s query
to peeri which then responds with a match. If peerk down-
loads a file from peeri and the file is authentic, then the lo-
cal trustski and the connection trustrkj are incremented
by 1. If the file is inauthentic, then both values are decre-
mented by 1.

Connection trust is included in the overall value of an
acquaintance. We are then able to combat the hidden mali-
cious peer problem by having peers disconnect from neigh-
bors with low connection trust values. By dropping connec-
tions to peers that serve as malicious conduits, hidden ma-
licious peers lose their ability to upload malicious content.
To recover from severe connection loss, the altruistic peer
can replace all remaining connections with new connec-
tions. Due to space limitations, we are unable to include a
detailed outline of the APT algorithm with connection trust
scores. We refer the reader to our extended report [3] for fur-
ther details.

In order to keep track of the peer through which a file
is discovered, the standard query-response protocol needs
to be slightly modified. Peeri issuing a query must tag the
query with an encrypted2 identifier of the neighbor to which
it initially sends the query. Any query responder must ap-
pend the same encrypted identifier to its query response.
Response messages that do not contain an encrypted iden-
tifier to some outstanding query are dropped. The identifier
allows peeri to know the peer through which it discovers
each of the files it downloads.

Local Maxima. A peer may find itself in a part of the
network where it receives few responses to its queries. We
define the notion of a void download to be the situation in
which a peer receives no response to a query. The basic prin-
ciple behind adaptive P2P topologies is that the peer should

2 The encryption algorithm should be secret key (e.g., one time pad, per-
fect secrecy, stream ciphers, RC4) so that any other peer is not able to
generate false identifiers.



local trust peer score based on download
transaction.

connection trust neighbor score based on the
outcome of a query forwarded by
the neighbor.

void downloads number of queries with no
response.

Table 1. Connection Variables

be able to bootstrap its way to a better-suited part of the net-
work by establishing and breaking connections. However, if
after a long period of time, a peer is still experiencing many
void downloads, it may be stuck in a local maxima.

We handle this issue using random restarts. That is, if a
peer has a consistently low number of responses per query
over a long period of time, then it may choose to do the fol-
lowing:

1. Exchange connections that exhibit low performance3

with new connections to random peers.

2. Break all connections and re-enter elsewhere in the
network.

The first option avoids dropping current connections that
may still provide future use. The second is used when all
connections fail to provide responses to a large number
of queries. The APT protocol incorporates these options,
which are loosely analogous to simulated annealing tech-
niques in traditional optimization [10].

4. Empirical Results
In this section we assess the performance of the proposed

scheme, and compare it to a P2P network with a standard
power-law topology. The performance analysis is given for
standard conditions as well as a variety of threat models.
The success of the APT protocol is dependent on the vari-
ables a peer uses to determine its connections to other peers.
The variables listed in Table 1 enable a peer to avert mali-
cious attacks and choose, from its acquaintances, peers that
share similar interests.

4.1. Simulation

Our findings are based on simulations of a P2P network
model described in [14]. The network model is described in
Section 3, while the peer and content models are briefly ex-
plained here.

Node model.The network consists of good nodes (nor-
mal nodes, participating in the network to download and
upload files) and malicious nodes (adversarial nodes, par-
ticipating in the network to undermine its performance).

3 Measured by the number of responses received through the connec-
tion.

We also consider cases that include freeriders, nodes that
only download files and do not share any files of their own
[9]. We analyze different behaviors of a malicious peer in
the network using threat models. These models will be de-
scribed in more detail later on.

Content distribution model. Interactions between peers
i.e. which queries are issued and which queries are an-
swered by given peers, are modeled using a probabilis-
tic content distribution. The detailed model is presented
in [14]. Peers are assumed to be interested in a subset of the
total available content in the network, such that each peer
initially picks a number of content categories and shares
files only in these categories. It is shown in [5] that files
shared in a P2P network are often clustered by content cat-
egories. When the simulator generates a query, it does not
generate a search string. Instead, it generates the category
and rank (or popularity) of the file that will satisfy the query.
The category and rank are based on Zipf distributions. Each
peer that receives the query checks if it supports the file
category and if so, whether it shares the file. Files are as-
signed probabilistically to peers at initialization based on
file popularity and the content categories the peer is inter-
ested in. This implies that peers are likely to share popular
files, even if they have few files. Distributions used in the
model are taken from measurements in real-world P2P net-
works [13].

Simulation execution.The simulation of a network pro-
ceeds in query cycles. In each query cycle, peeri in the net-
work may be actively issuing a query, be inactive, or even
down and not responding to queries passing by. Upon issu-
ing a query, a peer waits for incoming responses, selects a
download source among the nodes that responded and starts
downloading the file. The latter two steps are repeated un-
til a peer has properly received a good copy of the file or
runs out of responses.

Metrics. We are interested in measuring the efficiency,
security, and incentives of adaptive P2P topologies. We use
the following two metrics to measure the efficiency of the
network: the number of messages passed and the number
of authentic responses per query. We define the total num-
ber of messages to be the total number of queries, responses
and file downloads in the network. We define the number
of authentic responses as those query responses that would
lead to the download of an authentic file. The number of
inauthentic responses per query and the characteristic path
length to malicious peers are used to evaluate the security
of our protocol. The number of inauthentic responses per
query is defined as the total number of query responses that
would lead to the download of an inauthentic file. The char-
acteristic path length to a peer is the average hop-count to
the peer from all other peers in the network. We use the
characteristic path length to active peers and freeriders to
measure the incentives that our protocol gives for participa-



0 20 40 60 80 100
0 

5 

10

Inf

Cycle

C
ha

ra
ct

er
is

tic
 P

at
h 

Le
ng

th Good Peer
Malicious Peer

Figure 2. Average characteristic path length
of good and malicious peers (Cycle 0-100).

tion.
A peer’s search query adds 1 to the number of messages

passed at each propagation point. Each response to a search
query increments the total number of messages passed by 1.
The number of inauthentic responses per query represents
the total number of query responses originating from a ma-
licious peer. All other response messages increase the num-
ber of authentic responses by 1.

4.2. Malicious peers move to fringe

4.2.1. Principle One common attack on P2P networks to-
day is the inauthentic file attack, where malicious peers up-
load corrupt, inauthentic, or misnamed content onto the net-
work. In our experiments malicious peers respond to some
fraction (chosen uniformly in [0.0, 1.0)) of queries and up-
load an inauthentic file if chosen as a download source.
Since the APT protocol disconnects from peers that upload
unsatisfactory files, malicious peers eventually move to the
fringe of the network. Moving malicious peers to the fringe
of the network has been shown to be a very effective strat-
egy in combatting certain types of attacks [6].

4.2.2. ExperimentsWe use thecharacteristic path length
to illustrate how the malicious peers move to the fringe of
the network using the APT protocol. We define the charac-
teristic path length to a peeri as the average of the short-
est path lengths between all other peers in the network and
peeri.

cpli =
1

|P\i|
∑

j∈P\i
shortestPath(i, j)

whereP\i is the set of all peers in the network except peeri.
Figure 2 plots the evolution of the average characteris-

tic path length for good peers and malicious peers. Beyond
the initial 100 cycles, no path exists from a good peer to
a malicious peer. The divergence in the characteristic path
lengths of good and malicious peers indicates that these two
peer types become distinct over time. A good peer can take
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Figure 3. Average characteristic path length.

advantage of this result by limiting the scope of its search
query so that a malicious peer never receives its query. Sec-
tion 4.5 describes a strategy to avoid malicious query re-
sponses by reducing the TTL for a peer’s search query.

4.3. Freeriders move to fringe

4.3.1. Principle When peeri finds a peer that it is likely
to download from, it connects to that peer and disconnects
from its neighbor with the lowest local trust score. Since a
freerider has a local trust score of 0, freeriders move to the
fringe of the network as well.

4.3.2. ExperimentsFigure 3 is an equidistant histogram
of the characteristic path length for all good peers after a
100 cycle simulation. The x-axis lists four buckets repre-
senting the number of uploads a peer has provided. Peers
with no uploads (freeriders) fall into the bucket labeled 0,
while a peer that has uploadedN authentic files falls into
bucketB = dN

50e × 50. For example, peeri with N = 60
uploaded files is counted in bucketB = 100. The figure
shows that freeriders take an average of 3.4 hops to reach
while peers with uploads take around 2 hops. Therefore, the
peers that do not share files are given a narrow view of the
network.

4.4. Active peers are rewarded

4.4.1. Principle Active peers have more opportunities to
connect to other active peers, since their local trust scores
will be high. For example, an active peeri with τ = 3,
may have connections with local trust values of 10, 6, and
4. An inactive peer will not have the opportunity to connect
to peeri, while an active peer that has provided more than
4 authentic files to that peer will. Thus, the reward for be-
ing an active peer is the opportunity to connect directly to
other active peers.

4.4.2. ExperimentsA peer is rewarded for sharing high
quality files. An indication of a peer that shares popular files
is in the number of executed uploads. Figure 4 plots the av-
erage number of connections a peer has relative to the num-
ber of authentic uploads it has performed. The graph clearly
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Figure 5. Authentic response ratio.

shows that peers that actively upload files are rewarded with
a wide view of the network.

Figure 5 shows the fraction of authentic responses re-
ceived by a peer compared to the total number of authentic
files it uploads. For example, on average 43% of all query
responses returned to a peer that executed 50 uploads origi-
nated from a good peer. Notice that peers with more than 65
authentic file uploads receive only authentic responses. This
shows that an active peer is further rewarded with connec-
tions to peers with high fidelity. Section 4.5 describes clus-
ters or neighborhoods that contain peers with similar inter-
ests and quality of service. These clusters become unreach-
able to a malicious peer residing on the fringe of the net-
work.

4.5. Efficient Topology

4.5.1. Principle In the APT protocol, connections
are made based on download history, so peers con-
nect to peers that share their interests. Eventually, clus-
ters of like-minded peers form and are connected to other
clusters by hub peers which are active and have many in-
terests. These characteristics describe asmall-world net-
work [17]. Such a network is sparsely connected, but has
a short average characteristic path length and a high clus-
ter coefficient. A small-world network thus allows a
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wide view of the network with low communication over-
head.

4.5.2. ExperimentsThe data shown in Figures 6, 7, and 8
is extracted from the same simulated session. In this exper-
iment, peers follow the APT protocol and messages are set
with a 3 hop TTL. Furthermore, malicious peers were en-
coded to aggressively flood the network with their query re-
sponses by responding to all queries they receive. Through-
out the experiment, the average characteristic path length to
a peer was around 2.9 hops and the network diameter was
between 7 and 9 hops.
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The total number of query and response messages trans-
ferred during a given cycle is plotted in Figure 6. The de-
cline in network traffic can be attributed to good peers drop-
ping connections to malicious peers, since malicious peers
are unable to respond to queries as they lose their grasp on
the network. Figure 7 shows that the number of authentic
responses returned to a peer increases over time. The result
supports the fact that peers connect to other good peers that
share similar content, and consequently more queries are
being answered. At 70 cycles, the average number of mes-
sages transferred per cycle is about 100,000, which is 1/3
of the number of messages transferred during the first cy-
cle. Furthermore, Figure 8 shows that 97% of all responses
after 70 cycles are authentic.

A small TTL setting takes advantage of the fact that ma-
licious peers move to the fringe of the network. The number
of malicious responses to a query during a given cycle un-
der three separate TTL settings,MAX TTL = 4, MED TTL

= 3, andMIN TTL = 2 is given in Figure 9. Since a mali-
cious peer is on average 3 hops further away than a good
peer (see Figure 2), there is a significant decline in mali-
cious query responses when usingMED TTL or MIN TTL.
Therefore, setting the TTL to be less than the average char-
acteristic path can be effective in reducing the number of
malicious query responses.
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Figure 11. Link ratio vs. local trust.

In the previous figures we have shown that even as the
number of messages passed decreases, peers still receive
good quality of service. One reason is that malicious peers
are moved to the fringe of the network, thereby decreas-
ing the unnecessary message overhead caused by malicious
responses. Another reason is that peers are organized into
clusters of peers that share similar interests, so the files that
are of interest to a peer are likely located nearby.

We use the average cluster coefficient to quantify the
clustering effect of the APT protocol. The local cluster co-
efficient Ci for peer i ∈ P with ki neighbors is defined
asCi = 2Ei

ki(ki−1) , whereEi is the total number of edges
that actually exist between theki neighbors. Using this def-
inition, if peer i and all peers inN(i) form a clique then
Ci = 1. The average cluster coefficient is then defined as
Ci averaged over all peers inP .

Figure 10 measures the average cluster coefficient for
all peers in the network. The increase in cluster coefficient
from the initial power-law topology at cycle 0 shows that
clusters form using the APT protocol. These clusters con-
sist of peers that have had many positive interactions and
thus share similar content interests.

Figures 11 and 12 demonstrate this clustering effect by
measuring the link ratio. The link ratio is defined as the per-
centage of peers assigned a particular value that are also
neighbors. Figure 11 measures the link ratio with respect to
local trust values. For example, edge(i, j) exists in 29% of
all cases where peeri has a local trust value of 25 for peerj.
Notice the low ratio for local trust scores below 5 and the
high ratio for scores above 25. Since local trust scores de-
fine successful transactions, the plot shows that a peer’s con-
nections are determined by its transactions with other peers.
This graph does not increase monotonically because of the
connection capτ imposed by the system and the fact that
peer local trust scores are not symmetric.

In Figure 12, the link ratio with respect to the similar-
ity of the peers’ content is plotted. The content similarity of
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Figure 12. Link ratio vs. content similarity.

peeri and peerj is defined as,

S(i, j) = 1−
∑n

t=1 |cit − cjt|
2

wheren is the total number of content categories andcit

the number of files peeri shares in content categoryt nor-
malized by the total number of files shared by peeri. Using
this definition, the valueS(i, j) = 1 means that peeri and
peerj have the same content distribution vectorsc. That is,
cit = cjt for each content categoryt. The graph shows that
clusters form out of peers having the majority of their con-
tent similar.

Clustering based on content similarity increases the
probability that a query is answered within a few hops.
Moreover, responses to queries from closer peers can be
trusted more than responses from further away. By lower-
ing its query horizon, a peer can take advantage of the clus-
tering that occurs under the APT protocol, and thereby
increase the overall network efficiency.

5. Threat Scenarios
In the previous sections we assumed that malicious peers

simply flooded the network with inauthentic files. There are
of course many other techniques malicious nodes can use to
subvert the system, often in collaboration with other mali-
cious nodes. We have studied a number of such threat mod-
els, but due to space limitations, in this paper we only cover
two models. In general, our results (including those not pre-
sented here) show that sophisticated attacks can incur more
damage, but the APT protocol is very effective at blunting
the attacks.

5.1. Threat Model A

In this model, malicious peers respond to all queries ex-
cept those issued by a neighbor. If a malicious peer is cho-
sen as a download source, it will upload an inauthentic file.

Node Model.Let G ⊂ P be a set of good peers andm
be a malicious peer directly connected to all peers inG. The
peers inG also hold connections to peers inP \ {G ∪m}
as shown in Figure 13.

Figure 13. Node model for Threat Models A
and B.

Query Model. All queries received by peerm are han-
dled by the following two cases.

1. If the query originated by some peer inG the peerm
does not respond.

2. If the query originated by some peer inP \ {G ∪m}
then peerm is equally likely to respond or not to re-
spond to the query.

After receiving a query (and potentially responding),
peerm drops the query. Peerm does not generate search
queries of its own. If chosen as a download source, peerm
uploads an inauthentic files.

Given this query model, peerm only uploads inauthen-
tic files to peers inP \ {G ∪ m}. Consequently, peerm
avoids an inauthentic file detection by a neighboring peer
in G. That is, peeri ∈ G will have a zero value local trust
score for peerm. The goal of the malicious peer is to pre-
vent connection drops due to negative local trust scores.

Threat Model A is naturally combatted by the APT pro-
tocol. At some point peeri ∈ G begins to notice numer-
ous peers disconnecting from it, and so assumes it is relay-
ing queries to a malicious peer. The connection loss triggers
peeri to replace a low trust value connection with some ran-
dom connection. The question now is whether peeri makes
the right decision by dropping the connection to peerm.

To answer this observe that a malicious peer behaves as
a freerider, which makes it an undesirable connection. After
a connection loss, peeri drops its connection to a peer with
a low local trust score (and connects to some random peer).
Since malicious peerm will have a local trust score of 0, it
is more likely to be dropped.

Figure 14 shows the progression of malicious connec-
tions (a connection that leads to a malicious peer) for a sim-
ulated session set up for Threat Model A. The y-axis rep-
resents the total number of malicious connections that have
a good peer as an endpoint. The early drop in the number
of malicious connections is the result of swapping out low
value connections to malicious peers. The short life of a ma-
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Figure 14. Threat Model A malicious connec-
tions.

licious connection evenly distributes the inauthentic content
placed in the network by a malicious peer. This even distri-
bution works against the malicious peer, since more peers
are made aware of its intent. As the simulation moves for-
ward, malicious peers encounter resistance in making new
connections. After cycle 190, all connection requests made
by malicious peers are denied by good peers. Thus Threat
Model A is handled well by the APT protocol.

5.2. Threat Model B

In Threat Model B the malicious peer entices its neigh-
bors with a few authentic files in order to gain some lo-
cal trust and evade connection loss. The malicious peer will
likely want to minimize the number of authentic file up-
loads due to the counterproductive cost. That is, the pur-
pose of a malicious peer is to disrupt the sharing of authen-
tic files, not support it.

Node Model. Let G ⊂ P be a set of good peers and
m be a malicious peer directly connected to all peers inG.
Peers inG are then connected to peers inP \ {G ∪m} as
shown in Figure 13.

Query Model. Peerm responds to all queries subject to
the constraint that at most 10% of its uploads are to peers in
G. That is, for every 9 inauthentic uploads to peers inP \
{G ∪m}, peerm uploads a file to some peer inG. Instead
of propagating the query, peerm drops it. Peerm does not
generate a search query of its own.

Under Threat Model B, peerm will service authentic
files to peers inG and upload inauthentic files to peers in
P \ {G ∪ m}. By servicing peers inG with authentic files,
peerm increases its chances of maintaining its connection
to P \ {G ∪ m}, via G.

Threat Model B is thwarted by the connection trust ex-
tension described in Section 3.3. Peers inG will eventually
lose their connections with peers inP \ {G ∪ m} due to
poor connection trust scores caused by relaying messages to
peerm. The loss of the connections toP \{G ∪ m} lessens
the value of peers inG to peerm. Peerm will likely try to
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Figure 15. Threat Model B malicious connec-
tions.
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Figure 16. Threat Model B inauthentic down-
loads.

form connections with peers inP \ {G ∪ m}. However,
reconnecting becomes increasingly difficult since peerm
will have built up negative local trust scores with peers in
P \ {G ∪ m} and will eventually lose the ability to con-
nect to good peers inP .

Figure 15 plots the succession of malicious connections
in a simulated session under Threat Model B. The graph
starts out similar to that shown in Figure 14. However,
in later cycles the number of malicious connections re-
mains around 5, while in Figure 14 all malicious peers are
completely disconnected. Nevertheless, at this point, most
queries never reach the malicious peers since the average
path length to them is 4 hops more than to a good peer. Con-
sequently, as shown in Figure 16, the number of inauthentic
downloads is negligible.

A considerable amount of noise is present in Figures 15
and 16, which can be attributed to the volatile nature of con-
nections to malicious peers and the authentic files uploaded
by malicious peers. The noise attrition in both figures is
caused by the increased resistance toward malicious con-
nections.

Peers that remain connected to malicious peers do so



because they are serviced authentic files. These peers are
tagged as bad connections because of poor connection trust
scores. Dropping peers with low connection trust scores
closes the conduit to the malicious peers. The malicious
peers may then seek other, more fruitful connections. How-
ever, poor local trust scores make it difficult for malicious
peers to form new connections, and thus they are trapped in
their current connections. If malicious peers are not able to
continually satisfy queries then the connections will be sev-
ered due to void downloads. Although not as effective as in
Threat Model A, the APT protocol is able to prevent most
inauthentic downloads and keep malicious peers at bay.

6. Related Work

Related topologies have been proposed in [16], [4], [2],
and [12]. In [4], a peer connects to peers initially at random,
and disconnects when it becomes overloaded. The peers that
are disconnected will then connect to other peers. The con-
nections in [4] can be search links (through which search
information is sent) or index links (through which index-
ing links are sent). A similar scheme is presented in [2] and
[12]; the differences here are that there is only one type
of link and that each peer tracks its neighbors’ capacities
and suggests a replacement peer after it breaks a connec-
tion. The SLIC mechanism proposed in [16] does not add or
break connections, but rather it allows each peer to rate its
neighbors and use these ratings to control how many queries
from each neighbor to process and forward.

7. Conclusion

We have shown a simple protocol for the formation of
adaptive P2P topologies. Peers improve the trustworthiness
of the network by forming connections in a greedy fash-
ion based on local trust scores defined by past transactions.
The resulting topologies are highly efficient, robust to ma-
licious attacks, and provide built-in incentives and punish-
ments that are consistent with positive peer contribution. As
each peer chooses its neighbors, clusters of peers with sim-
ilar interests and quality of service form. The creation of
communities containing congenial peers have deep impli-
cations towards the personalization of P2P networks.
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