
 1

 ICN: Interest-based Clustering Network
 Xiaole Bai, Shuping Liu, Peng Zhang, Raimo Kantola
 Networking Laboratory
 Helsinki University of Technology
 {xbai, sliu1, pgzhang, kantola}@netlab.hut.fi

Abstract:
 An Interest-based Clustering peer-to-peer Network
(ICN) architecture is introduced in this paper. ICN uses a lot
of Freenet mechanisms and is based on cache management.
ICN is self-organizing, fully distributed, scalable, and
logically hierarchical. In ICN, the upper level is bound by de
Bruijn graph. Nodes in the lower level self-cluster based on
interest. Through analysis and simulation, ICN shows good
fault-tolerance, efficient data retrieval and resource usage as
well as low overhead traffic.

1. Introduction

 In recent years, many peer-to-peer (p2p) schemes ([1-9]
etc.) have been proposed for file sharing or distributed
computing. However, none of these proposals can support all
of the following features probably required in a global
system: 1) A distributed control mechanism. This follows
from the requirement for scalability. Besides, only a
distributed system can be highly fault-tolerant. 2) Efficient
data retrieval. First, the less overhead traffic the better.
Second, a quick response for newly published resources, a
fast search time and overall stability of the data resource are
desired. 3) A robust architecture and service. The architecture
should not fail due to the failure of a small number of critical
elements. Under adverse circumstances, for example, when
under DDOS attack, service quality should not degrade
sharply. 4) Efficient resource usage. Both network resources,
like total network bandwidth, and local machine resources
should be used efficiently.
 Sharing the common interest of trying to provide a better
solution for the above, a user-friendly p2p proposal is
introduced in this paper. Particularly, the starting point for
our proposal is human interests.
 We note that in real world usually people do have
distinctive preferences and taste. For example, among those
who like music, some are interested in heavy metal, some
like classical, while others like blues or jazz. A reading club
survey result shows that, some students like storybooks while
others like research books [10]. Furthermore, these story-
books can be classified into five small categories according to
different student preferences. We further note that such taste
does not change dramatically over time. If you have some
preference, it may change, but usually the change is very
slow. The survey [10] shows that the preference for love
book is getting stronger when students are maturing. And

[11] also shows that some interest, e.g. for computer
technology, may change with people’s age. Preference and its
very slow change compared to the computing time scale are
two starting points for our peer networking proposal.
 In our Interest-based Clustering p2p Network (ICN),
contents are classified and human interest is considered for
clustering. ICN is more humanized, and it shows advantages
on both functionality and as a distribution channel for
commercial content.
 The map of this paper is as follows. Next, we take a
look at related work. In Section 3 we introduce the constru-
ction of ICN, and the way it works. In Section 4 an analysis
and evaluation are given. Finally, we present some conclu-
sions and our future work.

2. Related work

 Gnutella[12] and Freenet[8] are two well-known, large
scale, fully decentralized directory and distribution systems.
Although, they both belong to the random DHT (Distributed
Hash Table) class of architectures, they use different mechan-
isms to locate and retrieve shared files. Gnutella uses broadc-
ast while Freenet uses chain routing. One advantage brought
by the decentralized indexing network architecture is the
inherent scalability. Additionally fault tolerance is improved.
The main disadvantages are slow information discovery and
added query traffic on the network.
 Gnutella faces serious scaling and reliability problems
when the network is very large [13]. Although Freenet is of
better scalability, it provides a very limited sort of directory
service putting search efficiency in question. Lookup process
may traverse significant portions of the entire peer space. In
Freenet, data replication along the retrieval path improves
reliability and robustness. But such treatment without
discrimination will result in low efficiency for local resource
usage. A simple example will make this clearer: Node A is
interested in movies. If its routing table and the cached
content are mostly movie-related, it will definitely facilitate
A’s search. However, the fact that A is on the path of several
nodes that are interested in pictures makes A have to keep a
lot of information about pictures.
 Chord[5], CAN[2], Oceanstore[3], etc., belong to the
class of deterministic DHT architectures where the assignm-
ent of a key to the node is determined by the structure of the
key space. They all have some graph theoretic background
making search more efficient than what is achieved by rand-

 2

om DHT schemes. However, their highly structured approach
makes them vulnerable to malicious users.
 ICN uses novel cache management, shares the common
routing strategy used in Freenet, and is logically hierarch-
ical. But by nature it still belongs to the class of random DHT
architectures. De Bruijn graph is used to build a deterministic
DHT relationship to facilitate content locating in the upper
layers of ICN.

3. The architecture of ICN

 Interest based Clustered Network (ICN) has three levels,
as shown in Figure 1.

 Figure 1. ICN may have two or three logical layers.

 Descriptions in this section are based on three-layered
ICN.
 The top is the class level. Each class captures a big
content category: music, movie, pictures and so forth. The
middle level contains the clusters. Clusters, which are defined
in advance, are small categories contained in classes. The
node level is the lowest. To illustrate the use of levels, let’s
look at an example. A class can be Music in which there are
many clusters like Heavy Metal, Classical, Blues, etc. In the
Classical cluster, there are a large number of users who are
interested in classical music and will publish and look for
classical music resources.
 Although the number of levels could be larger than three
and as a result, we could pinpoint human interest more
accurately, we prefer to give ICN quite a flat architecture
with just three or two layers. We believe flatter architecture
will reduce traffic for clustering and re-clustering especially
when user volumes are very large.
 A node can register in different clusters of classes at the
same time.
 A special class, null-class, is created for the new coming
nodes and those that show no preference. This class directly
contains nodes at the third level, that is, no clusters. In each
class, except in the null-class, there is a special cluster, null-
taste for those users, for example, who like music and no
matter what kind. Figure 2 illustrates this.

Figure 2. Special classes and clusters in two-layered or
three-layered ICN architecture

 The upper levels, that is, the sets of classes and clusters

are fixed beforehand in the ICN. This can be easily done by
the software provider.

Users can decide which cluster they will join, as well as
leave. These actions can also be determined by statistic data
from individual user actions. More details about the actions
of nodes will be illustrated later in this paper. Each class has
a unique binary id, so does each cluster.

3.1 Node information

Each node has a unique node id as shown in Figure 3:

 Figure 3. Node id structure

Because one node may belong to different classes and
different clusters, each node prefix has a flexible length, as in
Figure3 (right).

Each node also keeps a routing table as in Figure 4:

 Figure 4. Routing table structure

The Flag field is reserved for routing table management

function extensions, e.g. mark for different ISPs. There are
two parts in the nodes’ routing table: part one is for locating
in the cluster the node is registered and part two is formed by
retrieving data from other places. The size for part one is
dynamical according to the number of clusters the node
belongs to. The second part size is fixed. Assuming N entries
for each cluster and M entries for part two, one node that has
registered for K different clusters will have a routing table
with NK+M entries.
 There is a strong connection between caching and
routing in DHT topologies. For effective caching, copies of
objects should be placed in such a way that routing paths are
shortened [14]. While Freenet cares little about this, ICN has
a simple but effective cache management mechanism built in
each node. This mechanism is explained in the following
sections.

3.2 Self clustering and ICN construction

 ICN has two or three logical layers in a dynamic
environment where nodes can join and leave at any time. On
the node level, nodes can cluster and re-cluster.

For a new node, the process to register for one cluster
usually takes three steps shown in Figure 5: First the new
node a must find a node b already in the ICN, and download
all the routing table information from b; Then the new node a
contacts a node c that is already in the cluster node a prefers.
This procedure will be done by a regular search as described

 3

in the following subsection. If the node does not choose any
cluster to register, the node will try to contact a node in the
null-class; Finally, download class id, cluster id and routing
table from the contacted node c. Node a’s id will change
adopting the prefix of the same class id and cluster id as node
c.

 Figure 5. Adding a node

 After the node has registered, a function built in each
node begins getting statistic data for further control.
 There are two typical circumstances this function looks
for. If in the beginning the node registered in a cluster it is
not really interested in, after some time, the function notes
this and removes the corresponding class id and cluster id
from the node id. That is, this node will be kicked out of its
non-matching interest cluster. This node will change its
prefix to point to the null-class or the null-taste, if it has no
other prefixes. In its routing table some entries in part one
will move to part two. Another circumstance is the opposite.
If a node in the beginning just registers in the null-class or
the null-taste, but its actions like resource sharing and
requests show a strong preference, the function will make the
node register to the proper cluster following steps 2 and 3
mentioned above.
 The control mechanism working together with the
routing table management improves local resource usage
efficiency, data retrieving efficiency and depresses overhead
traffic.

3.3 Retrieving Data

 In ICN, before sending a request message, the user
must first obtain or calculate the binary id for the file she
wants. This file id also contains a class id and a cluster id.
 In three-layered ICN, there are three kinds of data
retrieving: from the same cluster, from a different cluster in
the same class, and from a different class. Similarly, in two-
layered ICN, two kinds of data retrieving exist.

 When a node requests for some data in the same
cluster, chain model search is used as what happens in
Freenet. A steepest-ascent hill-climbing search with
backtracking is used to locate the objective. Loop detection
and a HopsToLive (Freenet’s TTL) counter are added to
avoid request looping and exhaustive searching. Figure 6
shows a typical sequence of request messages. A request for
key 8 is initiated at node A. Node A forwards the request to
node B, which forwards it to node C because in B’s routing
table C is the node that has the closest key to key 8. Node C
is unable to contact any other nodes and returns a
backtracking “request failed” message to B. Node B then
tries its second choice, D. Node D finds key 8 in its routing

table and forwards the request to the corresponding node E.
The data is returned from E via D and B back to A ending
this request sequence. The data is cached on D, B and A. An
entry for key 8 is also created in the routing tables of D, B
and A.

Data inserts follow a similar strategy to requests in ICN.
However, insertion request will never be forwarded to other
clusters. It largely decreases the traffic caused by data
insertion.

Figure 6. Simplified illustration for chain search process in
ICN. All nodes have already registered in one cluster and they
are using the proper cluster part in part one of the routing
table. In intra cluster search part two is not used.

When a node is requesting an objective that is not in the

cluster where this node is, routing between clusters and
classes is needed. Classes or clusters in the upper layers are
bounded by de Bruijn graph according to their ids.

Figure 7 shows a de Bruijn graph for k = 2 and N = 8,
where k is the fixed number for outgoing and incoming edges
at each class, N is the total number of classes. The original
graph is shown in [15]. Here we just use it as an example. N
and k can be determined in advance.

 Figure 7. Class/cluster level de Bruijn graph bounding,
an example (left) and Routing path in de Bruijn graph (right)

 One of the sweet pots for de Bruijn graph is routing. The
shortest path routing between any two nodes in a de Bruijn
graph follows a greedy procedure in a distributed manner
[14]. The algorithm used to find the next hop is quite simple.
Suppose X and Y are two class ids and they are two nodes in
the de Bruijn graph. If X wants to find the path to Y, it just
needs to find the longest overlap between them. By merging
A from X, overlap B, and C from Y, X can get a complete
path to Y. For example, if class A wants to find class H, the
longest overlap of 100 and 011 is 0, so we can get path 10011
that means 011001100 →→ .
 Hence, once the de Bruijn graph has been created in
upper levels, shortest path routing can be done in a
distributed manner.
 The entire process for a node retrieving an objective is

 4

described below: The first two steps are common:
 1. Generate the key for the objective content with
corresponding cluster id and class id;
 2. Comparing with all its own cluster ids and class ids,
find if the objective is in another cluster, another class or not.
 Node now knows clearer what does it want. The
following procedures can be different under three
circumstances:

 Circumstance One: The target is in the same cluster as
where the requesting node is. A chain mode search process
will be called to locate the content, as what was described
earlier. The node will keep a copy in cache along the path
while retrieving data successfully. The whole procedure is
just like in Freenet.

 Circumstance Two: The target is not in the cluster but
resides in the same class. The node will first look up in its
routing table part two for a “short cut”, that is an entry with
the node id of the same cluster id as the object. If the “short
cut” is found, a request message will be forwarded to this
node. Then this node will execute the search-in-cluster
process as in circumstance one. If there is no such “short
cut”, using the properties of the de Bruijn graph, the node kn-

 Figure 8. An example: Retrieving data in a difficult class

ows what are the neighbors (cluster ids) on the shortest path.
Hence, it will look for this kind of node id in its routing table
part two. If such a node is found, a request message will be
forwarded to this node. And the search-in-cluster process is
repeated. If there are no such nodes, a request message will
be forwarded to the node with the nearest cluster id. This
node will carry on the search r. In ICN, when returning the
data, the nodes do not cache the copy of the content from a
different cluster, instead, just an entry will be added in the
routing table.
Circumstance Three: The target is in a different class. To
illustrate the procedure, Figure 8 provides an example.

 In Figure 8: Step 1: Node A wants to find a file in class
18, cluster 1 with content key 116. Node A looks for “short
cut” firstly in routing table part two. Since no “short cut” is

found, upper level routing is needed. A is in class 10 and
class 7. Let us assume that in class de Bruijn network class 10
is nearer to class 18 than class 7. Consequently, A tries to
forward the request message to the next hop for 10, say class
16, according to the de Bruijn graph. However, A cannot find
any node in its routing table with the class id 16. So, the
request message is forwarded to a node with class id 12 that
is the next hop in the shortest path in class de Bruijn graph
for class 7. Step 2: The node with class id 12 looks for a
“short cut” in its routing table but fails. The request message
is forwarded to a node with the class id 17 that is the next hop
on the shortest path in class de Bruijn graph for class 12. Step
3: The node with class id 17 looks for “short cut” in its
routing table but fails. The request message is forwarded to a
node with the class ID 18, which is the next hop on the
shortest path in class de Bruijn graph for class 17. Now this
node knows that the objective content is in the same class but
in a different cluster. This node will execute the search as
described under circumstance two. Step 4: The request
message is forwarded to a node in the same cluster as the
object content. Step 5: Through searching in the cluster, just
like under circumstance one, finally the node that keeps the
objective content is found. Step 6: Return the data to the
upstream node where the request came from, cache a copy of
the data and add an entry in its routing table part one. Step 7:
Return the data to the upstream node where the request came
from and add an entry in its routing table part two. This node
does not cache a copy because the content belongs to a
different cluster. Step 8: Return the data to the upstream node
where the request came from and add an entry in its routing
table part two. This node does not cache a copy because the
content belongs to a different class. Step 9: Return the data to
the upstream node where the request came from and add an
entry in its routing table part two. This node does not cache a
copy because the content belongs to a different class. Step 10:
Return the data to the upstream node where the request came
from and add an entry in its routing table part two. This node
does not cache a copy because the content belongs to a
different class.

3.4 Cache Management

 Cache management plays a very important role in ICN.
 In ICN, nodes also keep the copies of data by using LRU
(Least Recently Used) cache in which data items are stored in
decreasing order by the time of most recent request. LRU is
also used for both parts of the routing table.

Further, ICN caches copies of data with discrimination.
A node in ICN just caches the content with the same cluster
id as what it has registered for. This procedure is illustrated in
the above example from step 6 to 10. Since interest guides
the behavior, this caching mechanism will largely improve
the efficiency for most requests without exhausting storage
resources. The bindings in upper layers are also achieved by
caching with discrimination. In a directional de Bruijn graph,
the number for downstream clusters or classes is limited. The

 5

entries in part two of a routing-table are for contents with
downstream cluster or class ids. According to what id the
node itself has, the node keeps entries of downstream cluster
or class ids with high priority. Hence, most entries in part two
provide binding while some existing other entries in part two
can provide “shortcuts” for popular content located in some
other class to facilitate subsequent requests.

4. Evaluation and analysis

4.1 Routing efficient

When evaluated as a whole, ICN can be seen as a logical
tree, like we show in Figure 9. The logical tree architecture
gives us a direct view that the overall routing efficiency
mainly depends on de Bruijn routing in upper layers and on
routing among nodes in the final cluster.

 Figure 9. Tree-like architecture in two or three layer ICN

 The paper [16] gives an analysis on de Bruijn graph that is
the basis for our ICN upper layer routing.

 Table 1 [12]. Graph diameter for the number of peers N =
106 (cells with a dash indicate that the graph does not support
the corresponding node degree). k is the fixed number for
outgoing and incoming edges. Viceroy [17] and Ulysses [18]
are based on an extension of the classical butterfly graph.

From Table 1, we can see that de Bruijn graph is very
good in terms of the diameter. Even when the number of clas-
ses equals 106, or the number of clusters in each class equals
to 106, we still can construct a graph with a very small diame-
ter. Since the diameter of a graph means the maximum dista-
nce for a pair in the network, it provides the upper bound for
the required hops in routing. Due to the limitation for the
number of classes or clusters, it is highly possible to construct
a de Bruijn graph with a very low diameter in the upper laye-
rs of ICN.
 The diameter for a de Bruijn graph is: D = logkN, where N
is the total number of peers. The average distance for a pair in
de Bruijn graph follows µd ≈ D-1/(k-1), where k is the deg-ree
[15][16]. Hence, de Bruijn graph offers low end-to-end upper
bounds for the required routing hops if no loops exist.

Considering intra-cluster routing, although the chain
model looks very similar to Freenet, except for some caching
management, we should note two aspects. First is the number

of nodes. Since we are in clusters, the number of nodes is
definitely smaller than in global scale Freenet. Second is the
request pattern. Since clusters are interest based, requests will
be of more regular pattern than those in Freenet. In one
cluster, most traffic is for content of the same kind.

We fist check the Freenet search model. The effect of
caching policy will be analyzed in the following subsection.
Suppose there are totally NT different files being cached in N
nodes for sharing. Each node has a cache room for K files.
HopsToLive (Freenet’s TTL) is n, which is actually the
limitation for searching steps. Let s be the possible number of
steps used to search the target. And we suppose search steps
are evenly distributed and NT -1≈ NT.

If there are no repeat contents in each node and no sear-
ch loops, the possibility for hitting the target can be obtained:

)()|(...)0()0|()(nsPnshitPsPshitPhitP ==++===

∑∏∏
=

−

=

−

= −
⋅

−
−

+
=

−
⋅

−
−+

+
−−

−−+
−

−+
+

=

n

i T

i

j TT

n

i T

TTTTTT

iKN
K

jKN
K

nnKN
K

iKN
K

KN
K

KN
K

N
K

KN
K

N
K

N
K

n

0

1

0

1

0

)1(
1

1))1(

...
2

)1)(1()1((
1

1

In some time snap there are NK files in nodes and NT is
fixed. When NK > NT , some repeat files exist. We define the
repeat possibility Pr (n): the possibility for some cached file
in the node checked in nth step to be the same as some file in
the nodes checked before, that is, in the nodes checked in
0th...(n-1)th steps. Pr(0) = 0.

)()(1)1(
K
N

K
KN

P TT
r

−
−= ,)/()

))1(1(
(1)2(

K
N

K
PKKN

P TrT
r

−−−
−= ,…

)/()))(1((1)(
1

0
K

N

K
iPKNnP T

n

iT
r

∑ −

=
−−−=

)
))(1(

))(1(
)

))(1(

))(1(
1(...

))1(1(
))2(1(

)
))1(1(

1)(1(

))1(1(
)1((

1
1)(

1

0

1

0
1

0
∑

∏
∑

−

=

−

=
−

=
−−

−
⋅

−−

−
−++

−−−
−

−
−

−−+

−
−

−+
+

=

n

i
rT

r
n

i
i

j
rT

r

rT

r

T

r

T

T

r

TT

iPKN

nPK

jPKN

iPK
PKKN

PK
KN

PK
N
K

KN
PK

N
K

N
K

n
hitP

∑ ∏
∑∑

=

−

=
−

=

−

=

−−

−
⋅

−−

−
−

+
= n

i

i

j
i

j
rT

r
j

k
rT

r

iPKN

iPK

kPKN

jPK
n

hitP
0

1

0
1

0

1

0

)
))(1(

))(1(()
))(1(

))(1(1(
1

1)(

 Now we consider the condition that loops are possible. If
the search process hits the target in n steps, then the
maximum number of the checked nodes is n, and the
maximum number of steps that can be wasted due to loops is
n-2. That one step is wasted means that one node that has
already been checked is checked again. Suppose the number
of possible loop is evenly distributed.
Let)()|()()|()(2211111 bBPbBaAPbBPbBaAPaAP ===+===== denote
the possibility for hitting target in a steps with b steps wasted
because of loops. Let)|(1 baP denote)|(1 bBaAP == for

simplicity and nS denote the possibility for hitting the target
in nth step. Then we have:
)0|0(10 PS = ,)0|1(11 PS =)0|2(12 PS = ,

 6

))0|2()0|3((
2
1)

2
1)1|3(

2
1)0|3((11113 PPPPS +=+= ,…

 ∑ =−
= n

in iP
n

S
2 1)0|(

1
1 . Hence we have:

 ∑ ∑= =−
++

+
= n

i

i

j
jP

i
PP

n
hitP

3 2 111))0|(
1

1)0|2()0|1((
1

1)(

)
))(1(

))(1(
)

))(1(

))(1(
1()0|(1

0

1

0
1

0

1

∑
∏

∑
−

=

−

=
−

=

−−

−
⋅

−−

−
−= n

i
rT

r
n

i
i

j
rT

r

iPKN

nPK

jPKN

iPK
nP

 Consider our two-layered ICN model, where the top layer
is classes bound by a de Bruijn graph: Suppose N nodes in k-
connectivity de Bruijn graph, which has Q interest classes. Its
diameter is 2. Request is from class A to class B. We do not
consider the effects brought by short-cuts.

 Figure 11. Request from class A to a proper middle
node, then from the middle node to class B

 In the nodes in A, M1, M2,…Mk, we are not looking for
contents, but proper id. And when request is forwarded to B,
search is carried out just like above. Now we consider the
steps needed for request being forwarded from A to a middle
class and from the middle class to B. The number of entries
in routing table part two is T’. The probability for that from A
to the middle class in one step is PM. S1 denotes the step
needed from A to a middle class.
 '

'

'

)11()1(T
T

T

M kk
kP −=−= , MM PP −= 1

After considering the circumstance with loops:
 TTLniP

n
P n

inS ≤≤
−

= ∑ == 3,)0|(
1

1
2 11

TTLnPPnP M
n

M ≤≤= − 1,)0|(1
1

The probability that the entries of our middle class node do
not contain an id for B:
 '

'

'

)11()1(T
T

T

B kk
kP −=−= , hence BB PP −= 1

S2 denotes the step needed from the middle class to B.
After considering the circumstance with loops:

TTLniP
n

P n

inS ≤≤
−

= ∑ == 3,)0|(
1

1
2 22

TTLnPPnP B
n

B ≤≤= − 1,)0|(1
2

S3 denotes the step needed to hit the target in class B.
Combining the above we get:
Hit target in 2 steps: S1=1, S2=1, S3=0;
Hit target in 3 steps: S1=1, S2=1, S3=1;
 S1=1, S2=2, S3=0;
 S1=2, S2=1, S3=0;
 …
Hit target in n steps: S1: from 0 to n-1
 S2: from 1 to n-S1

 S3: n-S1-S2
Pn denotes the probability to hit the target in n steps in ICN:

)0|()0|()0|(
)1(

2
1

1
3212 1

jinPjPiP
iin

P n

i

in

jn −−
−+

= ∑ ∑=

−

=

 Where

)
))(1(

))(1()
))(1(

))(1(1()0|(1

0

1

0
1

0

3

∑
∏

∑
−

=

−

=
−

=

−−

−⋅
−−

−−= n

i
rT

r
n

i
i

j
rT

r

iPKN

nPK

jPKN

iPKnP

Figure 12. In two-layer ICN: Number of different files is 10000,
TTL is 10, file caching room is 250, the number of entries in
routing table part two is 100, number of classes is 10,
connectivity is 4. In Freenet, the number of different files is
10000, TTL is 10, caching room for files is 250. File repeat
probability in both is 0.

Figure 13. In two-layer ICN: Number of different files is 10000,
TTL is 10, file caching room is 250, the number of entries in
routing table part two is 100, number of classes is from 8 to
20, connectivity is 4. In Freenet, the number of different files is
10000, TTL is 10, caching room for files is 250. File repeat
probability in both is 0.

Figure 14. In two-layer ICN: Number of different files is 10000,
TTL is 10, file caching room is 250, the number of entries in
routing table part two is 100, number of classes is from 8 to
20, connectivity is 4. In Freenet, the number of different files is
10000, TTL is 10, caching room for files is 250. File repeat
probability in both is from 3% to 30%. File repeat probability in
ICN means that in each class.

Figure 15. In two-layer ICN: Number of different files is 10000,
TTL is 10, file caching room is 250, entries number of routing
table part two is 100, number of class is from 8 to 20,

 7

connectivity is from 3 to 10. In Freenet, the number of
different files is 10000, TTL is 10, caching room for files is
250.

 From Figures 12-15, the advantages of ICN when evalu-
ating hit probability are clear. Furthermore, our results show
some trends for parameters changes.

4.2 Effect from request model
 We use two models to simulate the impact of interest
pattern on data retrieving. One is time a shifting zipf model
and the other is a hot-cold model. The results given in this
subsection are from our Freenet simulator [19]. These results
can help us with the analysis of the advantages of ICN.
 A simple description of data that follow a Zipf popularity
distribution is that 1) a few items of content are requested
very frequently 2) there is a medium number of items with
middle-of-the-road frequency of requests); 3) a huge number
of items that are requested very rarely[20]. We further put a
time shifting function on it. We allow new content item to
join the ranking and the old ones to change their ranking. So
in our simulation, rank is not static while the whole still
follows a zipf distribution. However, our simulation does not
show the preference of ranking for the newly inserted items.
A hot-cold model simply means that about 10% of content
items attract about 90% of requests. Also some interest shifts
exist in our simulation.

 Figure 16. Hit Rate will decrease while request messages
are generated more often. The x scale is the probability that
each node will generate a request.

Figure 17. Average Hops per Successful Request will

increase while request messages are generated more often.
The x scale is the probability that each node will generate a
request.

Figures 16 and 17 show that Hit Rate and Average

Number of Hops per Successful Request will be quite
different for different request model. Especially when the
request traffic is larger, the difference is very clear. We
believe time shifting zipf model and hot-cold model match

the real world better than even distribution.
Results show that Freenet performance is quite sensitive

to the request models due to it caching files without discrim-
ination. In ICN, we use the nearly same strategy in the cluster
or class where the target is. Hence, our performance in the
final cluster is also sensitive. However, in Freenet, the
caching is global while in ICN the caching is localized
because of the policy that ICN nodes will not cache the files
from other clusters.

This localization brought by ICN cache management
policy has two main advantages: 1) like Freenet, it will
facilitate search for those popular targets. Even for the
request from other clusters, because nodes in the middle
cluster have the proper routing entry with high priority, the
target can be found with high efficiency; 2) better protection
for those contents in other clusters. Because LRU is used in
every node, localized caching will definitely alleviate the
impact of popular contents from other clusters. When looking
for some less popular contents, it will give a better
performance. It also provides a more user-friendly
environment. As a music fan, you may be happy for some
new movies, but these movies should not hamper your search
for music so much.

4.3 Robustness

 As a Freenet alike network shows a surprisingly robust
behavior under quite a large portion of nodes failing [8], the
robustness of ICN intra cluster networks can be guaranteed.
 When considering the inter class or inter cluster
communication, we check the architecture of the upper levels
in ICN. The cluster level and the class level are based on de
Bruijn graph.
 A smaller cluster coefficient means that in a peer-to-peer
network a request can reach more nodes within a certain
number of hops and that the network can provide a more
fault-resilient environment where a simultaneous collapse of
several nodes does not separate the graph into disjoint
components [16]. The cluster coefficient of a de Bruijn graph
is (k-1)/N, which is really small.
 Further, we note that in Figure 7, there are two self
cycles in nodes 000 and 111. These cycles do not exist in
ICN. In ICN, to be more precise, chain-linked de Bruijn
graphs are used. Consider node (h,h,…h), h∈ ∑, with a self-
loop. A chain-linked de Bruin graph has directed links

),...,(),...,(ggghhh → , for all Σ∈h and g=(h+1) mod k.
Research in [21] proved that chain-linked de Bruijn graphs
are k-node connected. A k-node-connected graph can tolerate
the failure of any 1−k nodes without becoming
disconnected. And after any 1−k nodes have failed, the
diameter of a k-node-connected graph is at most D+1, where
D is the diameter before nodes failed.
 Analysis in [16] shows that the de Bruijn graph can
further offer optimal resilience, large bisection width, and
good node expansion that guarantees very little overlap
between parallel paths to any destination.

 8

 In ICN, node failure or leave in upper level de Bruijn
graph means that nearly all nodes in some cluster or in some
class malfunction or leave, which is an event with a rather
small probability. However, even when this happens, the de
Bruijn architecture can still work very well.

4.4 Commercial view

 The ICN scheme is great for classifying users by their
interest. Therefore, content providers immediately can
segment the users very efficiently and can target their new
offerings in the best way. No need to waste efforts in pushing
stuff to people who are very unlikely to buy your goods. On
the other hand, if the content owner can target his new
offering to users of a cluster, it is likely that the promotion
activities are cost effective.

5. Conclusion

ICN shows many advantages as a p2p architecture. Alth-
ough there are logical levels in ICN, the essence is still node-
based distribution. We simply add some prefix to nodes and
then make them cluster to facilitate retrieving data. The ICN
architecture is different from a traditional tree shape hierarc-
hical network. In particular, ICN has no single vulnerable
spot. Upper logical levels are connected following a de
Bruijn graph improving the routing efficiency and network
robustness. Cache management mechanisms not only support
ICN structure but also make searching more efficient in
clusters using routing table part one and provide possible
shortcuts using routing table part two when requesting files
from other clusters or classes.
 The drawback of ICN is that for each node in ICN the
routing table grows larger when a node registers for more
interest clusters or classes.

6. Future work

 Although ICN is based on the graph theory and good
performance can be expected directly, a proper human inter-
est or behavior model with strong statistical support is needed
for evaluating the whole system more accurately.
 Further more, we see a need to study new routing table

and cache management mechanisms for further improvement.

7. Reference

[1] Napster. http://www.napster.com
[2] S. Ratnaswamy, P. Francis, etc., “A scalable content-addressable
network”
[3] J. Kubiatowicz, D. Bindel, Y. Chen, etc., “Oceanstore: An
architecturefor global-scale persistent storage”, Proceedings of the
ASPLOS Nov. 2000
[4] Gnutella. http://www.gnutella.co.uk
[5] I. Stoica, R. Morris, etc., “Chord: A peer-to-peer lookup service
for internet applications”, ACM SIGCOMM,2001
[6] Y. Chu, S. Rao, etc., “A Case for end system multicast.
Proceedings of ACM Sigmetrics”, 2000
[7] Yallcast. http://www.yallcast.com
[8] I. Clarke, O. Sandberg, etc., “Freenet: A distributed anonymous
information storage and retrieval system in designing privacy
enhancing technologies”. LNCS, 2001
[9] A. Rowstron, P. Druschel, “Pastry: Scalable, Decentralized
Object location and routing for large-scale peer-to-peer system”,
IFIP/ACM ICDS, 2002
[10] Reading Club Survey. http://ihouse.hkedcity/
[11] AFW Cultureral Survey. http://geoctities.
[12] Clips, “The Gnutella Protocol Specification”, http://www.clip2-
.com, 2000
[13] Ajay chander, Steven Dawson, etc., “NEVRLATE: Scalable
Resource Discovery”, Procedings of the 2nd CCGRID’02
[14] Gurmeet Singh Manku, “Routing Networks for Disteributed
Hash Table”, ACM PODC’03, 2003
[15] K.N.Sivarajan, R. Ramaswami, “Lightwave Networks Based on
de Bruijn Graph”, IEEE/ACM Trans. on Networking, vol. 2, no.1,
1994
[16] Dmitri Loguinov, Anuj Kumar, “Graph-Theoretic Analysis of
Structured Peer-to-Peer System: Routing Distances and Fault
Resilience”. SIGCOM, 2003
[17] D.Malkihi, M. Naor, etc., “Viceroy: A Scalable and Dynamic
Emulation of the Butterfly”, ACM PODC, 2002
[18] J.Xu, A. Kumar,etc., “On the Fundamental Tradeoffs between
Routing Table Size and Network Diameter in Peer-to-Peer
Networks”, IEEE JSAC, Nov. 2003
[19] Raimo Kantola, “Peer to Peer and Spam in The Internet”,
Seminar Report, Helsinki University of Technology, 2004
[20] Zipf’s Law. http://www.cpe.ku.ac.th/~arnon/
[21] D.Z.Du, D.F.Hsu “On Connectivity of Consecutived Digra-
phs”, Discrete Mathematics, vol. 257, no. 2-3, 2002

