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Abstract: 
     An Interest-based Clustering peer-to-peer Network 
(ICN) architecture is introduced in this paper. ICN uses a lot 
of Freenet mechanisms and is based on cache management. 
ICN is self-organizing, fully distributed, scalable, and 
logically hierarchical. In ICN, the upper level is bound by de 
Bruijn graph. Nodes in the lower level self-cluster based on 
interest. Through analysis and simulation, ICN shows good 
fault-tolerance, efficient data retrieval and resource usage as 
well as low overhead traffic.   
 
1. Introduction 
 
     In recent years, many peer-to-peer (p2p) schemes ([1-9] 
etc.) have been proposed for file sharing or distributed 
computing. However, none of these proposals can support all 
of the following features probably required in a global 
system: 1) A distributed control mechanism. This follows 
from the requirement for scalability. Besides, only a 
distributed system can be highly fault-tolerant. 2) Efficient 
data retrieval. First, the less overhead traffic the better. 
Second, a quick response for newly published resources, a 
fast search time and overall stability of the data resource are 
desired. 3) A robust architecture and service. The architecture 
should not fail due to the failure of a small number of critical 
elements.  Under adverse circumstances, for example, when 
under DDOS attack, service quality should not degrade 
sharply. 4) Efficient resource usage. Both network resources, 
like total network bandwidth, and local machine resources 
should be used efficiently.   
    Sharing the common interest of trying to provide a better 
solution for the above, a user-friendly p2p proposal is 
introduced in this paper. Particularly, the starting point for 
our proposal is human interests.   
    We note that in real world usually people do have 
distinctive preferences and taste. For example, among those 
who like music, some are interested in heavy metal, some 
like classical, while others like blues or jazz. A reading club 
survey result shows that, some students like storybooks while 
others like research books [10]. Furthermore, these story-
books can be classified into five small categories according to 
different student preferences. We further note that such taste 
does not change dramatically over time. If you have some 
preference, it may change, but usually the change is very 
slow. The survey [10] shows that the preference for love 
book is getting stronger when students are maturing. And 

[11] also shows that some interest, e.g. for computer 
technology, may change with people’s age. Preference and its 
very slow change compared to the computing time scale are 
two starting points for our peer networking proposal.  
    In our Interest-based Clustering p2p Network (ICN), 
contents are classified and human interest is considered for 
clustering. ICN is more humanized, and it shows advantages 
on both functionality and as a distribution channel for 
commercial content.       
     The map of this paper is as follows.  Next, we take a 
look at related work. In Section 3 we introduce the constru-
ction of ICN, and the way it works. In Section 4 an analysis 
and evaluation are given. Finally, we present some conclu-
sions and our future work.    
 
2. Related work 
 
     Gnutella[12] and Freenet[8] are two well-known, large 
scale, fully decentralized directory and distribution systems. 
Although, they both belong to the random DHT (Distributed 
Hash Table) class of architectures, they use different mechan-
isms to locate and retrieve shared files. Gnutella uses broadc-
ast while Freenet uses chain routing. One advantage brought 
by the decentralized indexing network architecture is the 
inherent scalability. Additionally fault tolerance is improved. 
The main disadvantages are slow information discovery and 
added query traffic on the network.  
    Gnutella faces serious scaling and reliability problems 
when the network is very large [13]. Although Freenet is of 
better scalability, it provides a very limited sort of directory 
service putting search efficiency in question. Lookup process 
may traverse significant portions of the entire peer space.  In 
Freenet, data replication along the retrieval path improves 
reliability and robustness. But such treatment without 
discrimination will result in low efficiency for local resource 
usage. A simple example will make this clearer: Node A is 
interested in movies. If its routing table and the cached 
content are mostly movie-related, it will definitely facilitate 
A’s search. However, the fact that A is on the path of several 
nodes that are interested in pictures makes A have to keep a 
lot of information about pictures.  
   Chord[5], CAN[2], Oceanstore[3], etc., belong to the 
class of deterministic DHT architectures where the assignm-
ent of a key to the node is determined by the structure of the 
key space. They all have some graph theoretic background 
making search more efficient than what is achieved by rand-
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om DHT schemes. However, their highly structured approach 
makes them vulnerable to malicious users. 
    ICN uses novel cache management, shares the common 
routing strategy used in Freenet, and is logically hierarch-
ical. But by nature it still belongs to the class of random DHT 
architectures. De Bruijn graph is used to build a deterministic 
DHT relationship to facilitate content locating in the upper 
layers of ICN.    
 
3.  The architecture of ICN 
 

 Interest based Clustered Network (ICN) has three levels, 
as shown in Figure 1.  
 

      
     Figure 1.  ICN may have two or three logical layers.  
 
    Descriptions in this section  are based on three-layered 
ICN.    
    The top is the class level. Each class captures a big 
content category: music, movie, pictures and so forth. The 
middle level contains the clusters. Clusters, which are defined 
in advance, are small categories contained in classes. The 
node level is the lowest. To illustrate the use of levels, let’s 
look at an example. A class can be Music in which there are 
many clusters like Heavy Metal, Classical, Blues, etc. In the 
Classical cluster, there are a large number of users who are 
interested in classical music and will publish and look for 
classical music resources. 
    Although the number of levels could be larger than three 
and as a result, we could pinpoint human interest more 
accurately, we prefer to give ICN quite a flat architecture 
with just three or two layers. We believe flatter architecture 
will reduce traffic for clustering and re-clustering especially 
when user volumes are very large.     
    A node can register in different clusters of classes at the 
same time.  
   A special class, null-class, is created for the new coming 
nodes and those that show no preference. This class directly 
contains nodes at the third level, that is, no clusters. In each 
class, except in the null-class, there is a special cluster, null-
taste for those users, for example, who like music and no 
matter what kind. Figure 2 illustrates this.            
  

             
Figure 2.  Special classes and clusters in two-layered or 
three-layered ICN architecture      
 
    The upper levels, that is, the sets of classes and clusters 

are fixed beforehand in the ICN. This can be easily done by 
the software provider.  

Users can decide which cluster they will join, as well as 
leave. These actions can also be determined by statistic data 
from individual user actions. More details about the actions 
of nodes will be illustrated later in this paper. Each class has 
a unique binary id, so does each cluster.  

 
3.1 Node information 

Each node has a unique node id as shown in Figure 3: 
 

     
               Figure 3.  Node id structure 
 
Because one node may belong to different classes and 
different clusters, each node prefix has a flexible length, as in 
Figure3 (right). 

Each node also keeps a routing table as in Figure 4: 

              
      Figure 4.  Routing table structure 

 
The Flag field is reserved for routing table management 

function extensions, e.g. mark for different ISPs. There are 
two parts in the nodes’ routing table: part one is for locating 
in the cluster the node is registered and part two is formed by 
retrieving data from other places. The size for part one is 
dynamical according to the number of clusters the node 
belongs to. The second part size is fixed. Assuming N entries 
for each cluster and M entries for part two, one node that has 
registered for K different clusters will have a routing table 
with NK+M entries.  
    There is a strong connection between caching and 
routing in DHT topologies. For effective caching, copies of 
objects should be placed in such a way that routing paths are 
shortened [14]. While Freenet cares little about this, ICN has 
a simple but effective cache management mechanism built in 
each node. This mechanism is explained in the following 
sections. 
 
3.2 Self clustering and ICN construction 
 

    ICN has two or three logical layers in a dynamic 
environment where nodes can join and leave at any time. On 
the node level, nodes can cluster and re-cluster.   

For a new node, the process to register for one cluster 
usually takes three steps shown in Figure 5: First the new 
node a must find a node b already in the ICN, and download 
all the routing table information from b; Then the new node a 
contacts a node c that is already in the cluster node a prefers. 
This procedure will be done by a regular search as described 
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in the following subsection. If the node does not choose any 
cluster to register, the node will try to contact a node in the 
null-class; Finally, download class id, cluster id and routing 
table from the contacted node c. Node a’s id will change 
adopting the prefix of the same class id and cluster id as node 
c. 

         
                Figure 5.  Adding a node  
 
    After the node has registered, a function built in each 
node begins getting statistic data for further control.  
    There are two typical circumstances this function looks 
for. If in the beginning the node registered in a cluster it is 
not really interested in, after some time, the function notes 
this and removes the corresponding class id and cluster id 
from the node id. That is, this node will be kicked out of its 
non-matching interest cluster. This node will change its 
prefix to point to the null-class or the null-taste, if it has no 
other prefixes. In its routing table some entries in part one 
will move to part two. Another circumstance is the opposite. 
If a node in the beginning just registers in the null-class or 
the null-taste, but its actions like resource sharing and 
requests show a strong preference, the function will make the 
node register to the proper cluster following steps 2 and 3 
mentioned above. 
    The control mechanism working together with the 
routing table management improves local resource usage 
efficiency, data retrieving efficiency and depresses overhead 
traffic. 
 
3.3 Retrieving Data 

 
     In ICN, before sending a request message, the user 
must first obtain or calculate the binary id for the file she 
wants. This file id also contains a class id and a cluster id.  
     In three-layered ICN, there are three kinds of data 
retrieving: from the same cluster, from a different cluster in 
the same class, and from a different class. Similarly, in two- 
layered ICN, two kinds of data retrieving exist.   

 When a node requests for some data in the same 
cluster, chain model search is used as what happens in 
Freenet. A steepest-ascent hill-climbing search with 
backtracking is used to locate the objective. Loop detection 
and a HopsToLive (Freenet’s TTL ) counter are added to 
avoid request looping and exhaustive searching. Figure 6 
shows a typical sequence of request messages. A request for 
key 8 is initiated at node A. Node A forwards the request to 
node B, which forwards it to node C because in B’s routing 
table C is the node that has the closest key to key 8. Node C 
is unable to contact any other nodes and returns a 
backtracking “request failed” message to B. Node B then 
tries its second choice, D. Node D finds key 8 in its routing 

table and forwards the request to the corresponding node E. 
The data is returned from E via D and B back to A ending 
this request sequence. The data is cached on D, B and A. An 
entry for key 8 is also created in the routing tables of D, B 
and A.  

Data inserts follow a similar strategy to requests in ICN. 
However, insertion request will never be forwarded to other 
clusters. It largely decreases the traffic caused by data 
insertion.  

           

    
Figure 6. Simplified illustration for chain search process in 
ICN. All nodes have already registered in one cluster and they 
are using the proper cluster part in part one of the routing 
table. In intra cluster search part two is not used. 

 
When a node is requesting an objective that is not in the 

cluster where this node is, routing between clusters and 
classes is needed. Classes or clusters in the upper layers are 
bounded by de Bruijn graph according to their ids. 

Figure 7 shows a de Bruijn graph for k = 2 and N = 8, 
where k is the fixed number for outgoing and incoming edges 
at each class, N is the total number of classes. The original 
graph is shown in [15]. Here we just use it as an example. N 
and k can be determined in advance. 

                     

     
     Figure 7. Class/cluster level de Bruijn graph bounding, 
an example (left) and Routing path in de Bruijn graph (right) 
 
   One of the sweet pots for de Bruijn graph is routing. The 
shortest path routing between any two nodes in a de Bruijn 
graph follows a greedy procedure in a distributed manner 
[14]. The algorithm used to find the next hop is quite simple. 
Suppose X and Y are two class ids and they are two nodes in 
the de Bruijn graph. If X wants to find the path to Y, it just 
needs to find the longest overlap between them. By merging 
A from X, overlap B, and C from Y, X can get a complete 
path to Y. For example, if class A wants to find class H, the 
longest overlap of 100 and 011 is 0, so we can get path 10011 
that means 011001100 →→ . 
    Hence, once the de Bruijn graph has been created in 
upper levels, shortest path routing can be done in a 
distributed manner.  
    The entire process for a node retrieving an objective is 
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described below: The first two steps are common: 
    1. Generate the key for the objective content with 
corresponding cluster id and class id; 
    2. Comparing with all its own cluster ids and class ids, 
find if the objective is in another cluster, another class or not. 
    Node now knows clearer what does it want. The 
following procedures can be different under three 
circumstances: 

 Circumstance One: The target is in the same cluster as 
where the requesting node is. A chain mode search process 
will be called to locate the content, as what was described 
earlier. The node will keep a copy in cache along the path 
while retrieving data successfully. The whole procedure is 
just like in Freenet.   

 Circumstance Two: The target is not in the cluster but 
resides in the same class. The node will first look up in its 
routing table part two for a “short cut”, that is an entry with 
the node id of the same cluster id as the object. If the “short 
cut” is found, a request message will be forwarded to this 
node. Then this node will execute the search-in-cluster 
process as in circumstance one. If there is no such “short 
cut”, using the properties of the de Bruijn graph, the node kn- 
 

 
   Figure 8. An example: Retrieving data in a difficult class  
 
ows what are the neighbors (cluster ids) on the shortest path. 
Hence, it will look for this kind of node id in its routing table 
part two. If such a node is found, a request message will be 
forwarded to this node. And the search-in-cluster process is 
repeated. If there are no such nodes, a request message will 
be forwarded to the node with the nearest cluster id. This 
node will carry on the search r. In ICN, when returning the 
data, the nodes do not cache the copy of the content from a 
different cluster, instead, just an entry will be added in the 
routing table. 
Circumstance Three: The target is in a different class. To 
illustrate the procedure, Figure 8 provides an example.   
   
   In Figure 8: Step 1: Node A wants to find a file in class 
18, cluster 1 with content key 116. Node A looks for “short 
cut” firstly in routing table part two. Since no “short cut” is 

found, upper level routing is needed. A is in class 10 and 
class 7. Let us assume that in class de Bruijn network class 10 
is nearer to class 18 than class 7. Consequently, A tries to 
forward the request message to the next hop for 10, say class 
16, according to the de Bruijn graph. However, A cannot find 
any node in its routing table with the class id 16. So, the 
request message is forwarded to a node with class id 12 that 
is the next hop in the shortest path in class de Bruijn graph 
for class 7. Step 2: The node with class id 12 looks for a 
“short cut” in its routing table but fails. The request message 
is forwarded to a node with the class id 17 that is the next hop 
on the shortest path in class de Bruijn graph for class 12. Step 
3: The node with class id 17 looks for “short cut” in its 
routing table but fails. The request message is forwarded to a 
node with the class ID 18, which is the next hop on the 
shortest path in class de Bruijn graph for class 17. Now this 
node knows that the objective content is in the same class but 
in a different cluster. This node will execute the search as 
described under circumstance two. Step 4: The request 
message is forwarded to a node in the same cluster as the 
object content. Step 5: Through searching in the cluster, just 
like under circumstance one, finally the node that keeps the 
objective content is found. Step 6: Return the data to the 
upstream node where the request came from, cache a copy of 
the data and add an entry in its routing table part one. Step 7: 
Return the data to the upstream node where the request came 
from and add an entry in its routing table part two. This node 
does not cache a copy because the content belongs to a 
different cluster. Step 8: Return the data to the upstream node 
where the request came from and add an entry in its routing 
table part two. This node does not cache a copy because the 
content belongs to a different class. Step 9: Return the data to 
the upstream node where the request came from and add an 
entry in its routing table part two. This node does not cache a 
copy because the content belongs to a different class. Step 10: 
Return the data to the upstream node where the request came 
from and add an entry in its routing table part two. This node 
does not cache a copy because the content belongs to a 
different class. 

 
3.4 Cache Management 
  

    Cache management plays a very important role in ICN.  
    In ICN, nodes also keep the copies of data by using LRU 
(Least Recently Used) cache in which data items are stored in 
decreasing order by the time of most recent request. LRU is 
also used for both parts of the routing table. 

Further, ICN caches copies of data with discrimination. 
A node in ICN just caches the content with the same cluster 
id as what it has registered for. This procedure is illustrated in 
the above example from step 6 to 10.  Since interest guides 
the behavior, this caching mechanism will largely improve 
the efficiency for most requests without exhausting storage 
resources. The bindings in upper layers are also achieved by 
caching with discrimination. In a directional de Bruijn graph, 
the number for downstream clusters or classes is limited. The 
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entries in part two of a routing-table are for contents with 
downstream cluster or class ids. According to what id the 
node itself has, the node keeps entries of downstream cluster 
or class ids with high priority. Hence, most entries in part two 
provide binding while some existing other entries in part two 
can provide “shortcuts” for popular content located in some 
other class to facilitate subsequent requests.      
 
4. Evaluation and analysis 
 
4.1 Routing efficient 
 

When evaluated as a whole, ICN can be seen as a logical 
tree, like we show in Figure 9. The logical tree architecture 
gives us a direct view that the overall routing efficiency 
mainly depends on de Bruijn routing in upper layers and on 
routing among nodes in the final cluster.  

      
 Figure 9. Tree-like architecture in two or three layer ICN  
     
   The paper [16] gives an analysis on de Bruijn graph that is 
the basis for our ICN upper layer routing. 
 

      
    Table 1 [12]. Graph diameter for the number of peers N = 
106 (cells with a dash indicate that the graph does not support 
the corresponding node degree).  k is the fixed number for 
outgoing and incoming edges. Viceroy [17] and Ulysses [18] 
are based on an extension of the classical butterfly graph. 
      

From Table 1, we can see that de Bruijn graph is very 
good in terms of the diameter. Even when the number of clas-
ses equals 106, or the number of clusters in each class equals 
to 106, we still can construct a graph with a very small diame-
ter. Since the diameter of a graph means the maximum dista-
nce for a pair in the network, it provides the upper bound for 
the required hops in routing. Due to the limitation for the 
number of classes or clusters, it is highly possible to construct 
a de Bruijn graph with a very low diameter in the upper laye-
rs of ICN.  
   The diameter for a de Bruijn graph is: D = logkN, where N 
is the total number of peers. The average distance for a pair in 
de Bruijn graph follows µd ≈ D-1/(k-1), where k is the deg-ree 
[15][16]. Hence, de Bruijn graph offers low end-to-end upper 
bounds for the required routing hops if no loops exist. 

Considering intra-cluster routing, although the chain 
model looks very similar to Freenet, except for some caching 
management, we should note two aspects. First is the number 

of nodes. Since we are in clusters, the number of nodes is 
definitely smaller than in global scale Freenet. Second is the 
request pattern. Since clusters are interest based, requests will 
be of more regular pattern than those in Freenet. In one 
cluster, most traffic is for content of the same kind. 

We fist check the Freenet search model. The effect of 
caching policy will be analyzed in the following subsection. 
Suppose there are totally NT different files being cached in N 
nodes for sharing. Each node has a cache room for K files. 
HopsToLive (Freenet’s TTL) is n, which is actually the 
limitation for searching steps. Let s be the possible number of 
steps used to search the target. And we suppose search steps 
are evenly distributed and NT -1≈ NT.   

If there are no repeat contents in each node and no sear-
ch loops, the possibility for hitting the target can be obtained: 
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In some time snap there are NK files in nodes and NT is 
fixed. When NK > NT , some repeat files exist. We define the 
repeat possibility Pr (n): the possibility for some cached file 
in the node checked in nth step to be the same as some file in 
the nodes checked before, that is, in the nodes checked in 
0th...(n-1)th steps. Pr(0) = 0.   
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   Now we consider the condition that loops are possible. If 
the search process hits the target in n steps, then the 
maximum number of the checked nodes is n, and the 
maximum number of steps that can be wasted due to loops is 
n-2.  That one step is wasted means that one node that has 
already been checked is checked again. Suppose the number 
of possible loop is evenly distributed.  
Let )()|()()|()( 2211111 bBPbBaAPbBPbBaAPaAP ===+===== denote 
the possibility for hitting target in a steps with b steps wasted 
because of loops. Let )|(1 baP denote )|(1 bBaAP ==  for 

simplicity and nS denote the possibility for hitting the target 
in nth step. Then we have: 
 )0|0(10 PS = , )0|1(11 PS =  )0|2(12 PS = ,  
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   Consider our two-layered ICN model, where the top layer 
is classes bound by a de Bruijn graph: Suppose N nodes in k-
connectivity de Bruijn graph, which has Q interest classes. Its 
diameter is 2. Request is from class A to class B. We do not 
consider the effects brought by short-cuts. 

             
      Figure 11. Request from class A to a proper middle 
node, then from the middle node to class B  
 
     In the nodes in A, M1, M2,…Mk, we are not looking for 
contents, but proper id. And when request is forwarded to B, 
search is carried out just like above. Now we consider the 
steps needed for request being forwarded from A to a middle 
class and from the middle class to B. The number of entries 
in routing table part two is T’. The probability for that from A 
to the middle class in one step is PM. S1 denotes the step 
needed from A to a middle class.   
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The probability that the entries of our middle class node do 
not contain an id for B:  
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S2 denotes the step needed from the middle class to B.   
After considering the circumstance with loops: 
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S3 denotes the step needed to hit the target in class B. 
Combining the above we get:  
Hit target in 2 steps:  S1=1, S2=1, S3=0; 
Hit target in 3 steps:  S1=1, S2=1, S3=1; 
                      S1=1, S2=2, S3=0; 
                      S1=2, S2=1, S3=0;    
       … 
Hit target in n steps:  S1: from 0 to n-1 
                      S2: from 1 to n-S1 

                      S3: n-S1-S2 
Pn denotes the probability to hit the target in n steps in ICN: 
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Figure 12. In two-layer ICN: Number of different files is 10000, 
TTL is 10, file caching room is 250, the number of entries in 
routing table part two is 100, number of classes is 10, 
connectivity is 4. In Freenet, the number of different files is 
10000, TTL is 10, caching room for files is 250. File repeat 
probability in both is 0.    
   

   
Figure 13. In two-layer ICN: Number of different files is 10000, 
TTL is 10, file caching room is 250, the number of entries in 
routing table part two is 100, number of classes is from 8 to 
20, connectivity is 4. In Freenet, the number of different files is 
10000, TTL is 10, caching room for files is 250. File repeat 
probability in both is 0.    
 

   
Figure 14. In two-layer ICN: Number of different files is 10000, 
TTL is 10, file caching room is 250, the number of entries in 
routing table part two is 100, number of classes is from 8 to 
20, connectivity is 4. In Freenet, the number of different files is 
10000, TTL is 10, caching room for files is 250. File repeat 
probability in both is from 3% to 30%. File repeat probability in 
ICN means that in each class.     

   
Figure 15. In two-layer ICN: Number of different files is 10000, 
TTL is 10, file caching room is 250, entries number of routing 
table part two is 100, number of class is from 8 to 20, 
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connectivity is from 3 to 10. In Freenet, the number of 
different files is 10000, TTL is 10, caching room for files is 
250. 
 
    From Figures 12-15, the advantages of ICN when evalu-
ating hit probability are clear. Furthermore, our results show 
some trends for parameters changes.   
  
4.2 Effect from request model  
    We use two models to simulate the impact of interest 
pattern on data retrieving. One is time a shifting zipf model 
and the other is a hot-cold model. The results given in this 
subsection are from our Freenet simulator [19]. These results 
can help us with the analysis of the advantages of ICN.        
    A simple description of data that follow a Zipf popularity 
distribution is that 1) a few items of content are requested 
very frequently 2) there is a medium number of items with 
middle-of-the-road frequency of requests); 3) a huge number 
of items that are requested very rarely[20]. We further put a 
time shifting function on it. We allow new content item to 
join the ranking and the old ones to change their ranking. So 
in our simulation, rank is not static while the whole still 
follows a zipf distribution. However, our simulation does not 
show the preference of ranking for the newly inserted items. 
A hot-cold model simply means that about 10% of content 
items attract about 90% of requests. Also some interest shifts 
exist in our simulation.  
      

         
    Figure 16. Hit Rate will decrease while request messages 
are generated more often. The x scale is the probability that 
each node will generate a request.  
 

         
Figure 17. Average Hops per Successful Request will 

increase while request messages are generated more often. 
The x scale is the probability that each node will generate a 
request. 

 
Figures 16 and 17 show that Hit Rate and Average 

Number of Hops per Successful Request will be quite 
different for different request model. Especially when the 
request traffic is larger, the difference is very clear. We 
believe time shifting zipf model and hot-cold model match 

the real world better than even distribution.  
Results show that Freenet performance is quite sensitive 

to the request models due to it caching files without discrim-
ination. In ICN, we use the nearly same strategy in the cluster 
or class where the target is. Hence, our performance in the 
final cluster is also sensitive. However, in Freenet, the 
caching is global while in ICN the caching is localized 
because of the policy that ICN nodes will not cache the files 
from other clusters.  

This localization brought by ICN cache management 
policy has two main advantages: 1) like Freenet, it will 
facilitate search for those popular targets. Even for the 
request from other clusters, because nodes in the middle 
cluster have the proper routing entry with high priority, the 
target can be found with high efficiency; 2) better protection 
for those contents in other clusters. Because LRU is used in 
every node, localized caching will definitely alleviate the 
impact of popular contents from other clusters. When looking 
for some less popular contents, it will give a better 
performance. It also provides a more user-friendly 
environment. As a music fan, you may be happy for some 
new movies, but these movies should not hamper your search 
for music so much.        
  
4.3 Robustness  
 
    As a Freenet alike network shows a surprisingly robust 
behavior under quite a large portion of nodes failing [8], the 
robustness of ICN intra cluster networks can be guaranteed.  
    When considering the inter class or inter cluster 
communication, we check the architecture of the upper levels 
in ICN. The cluster level and the class level are based on de 
Bruijn graph. 
    A smaller cluster coefficient means that in a peer-to-peer 
network a request can reach more nodes within a certain 
number of hops and that the network can provide a more 
fault-resilient environment where a simultaneous collapse of 
several nodes does not separate the graph into disjoint 
components [16]. The cluster coefficient of a de Bruijn graph 
is (k-1)/N, which is really small. 
     Further, we note that in Figure 7, there are two self 
cycles in nodes 000 and 111. These cycles do not exist in 
ICN. In ICN, to be more precise, chain-linked de Bruijn 
graphs are used. Consider node (h,h,…h), h∈ ∑, with a self-
loop. A chain-linked de Bruin graph has directed links 

),...,(),...,( ggghhh → , for all Σ∈h  and g=(h+1) mod k. 
Research in [21] proved that chain-linked de Bruijn graphs 
are k-node connected. A k-node-connected graph can tolerate 
the failure of any 1−k nodes without becoming 
disconnected. And after any 1−k nodes have failed, the 
diameter of a k-node-connected graph is at most D+1, where 
D is the diameter before nodes failed. 
    Analysis in [16] shows that the  de Bruijn graph can 
further offer optimal resilience, large bisection width, and 
good node expansion that guarantees very little overlap 
between parallel paths to any destination.  
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    In ICN, node failure or leave in upper level de Bruijn 
graph means that nearly all nodes in some cluster or in some 
class malfunction or leave, which is an event with a rather 
small probability. However, even when this happens, the de 
Bruijn architecture can still work very well. 
 
4.4 Commercial view       
 
    The ICN scheme is great for classifying users by their 
interest. Therefore, content providers immediately can 
segment the users very efficiently and can target their new 
offerings in the best way. No need to waste efforts in pushing 
stuff to people who are very unlikely to buy your goods. On 
the other hand, if the content owner can target his new 
offering to users of a cluster, it is likely that the promotion 
activities are cost effective. 
 
5. Conclusion 
           

ICN shows many advantages as a p2p architecture. Alth-
ough there are logical levels in ICN, the essence is still node-
based distribution. We simply add some prefix to nodes and 
then make them cluster to facilitate retrieving data. The ICN 
architecture is different from a traditional tree shape hierarc-
hical network. In particular, ICN has no single vulnerable 
spot. Upper logical levels are connected following a de 
Bruijn graph improving the routing efficiency and network 
robustness. Cache management mechanisms not only support 
ICN structure but also make searching more efficient in 
clusters using routing table part one and provide possible 
shortcuts using routing table part two when requesting files 
from other clusters or classes.  
    The drawback of ICN is that for each node in ICN the 
routing table grows larger when a node registers for more 
interest clusters or classes.   
      
6. Future work 
 
    Although ICN is based on the graph theory and good 
performance can be expected directly, a proper human inter-
est or behavior model with strong statistical support is needed 
for evaluating the whole system more accurately. 
   Further more, we see a need to study new routing table 

and cache management mechanisms for further improvement.  
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