Adaptive Probabilistic Search for Peer-to-Peer Networks

Dimitrios Tsoumakos, Nick Roussopoulos Department of Computer Science, University of Maryland, College Park {dtsouma, nick}@cs.umd.edu

Third IEEE International Conference on Peer-to-Peer Computing Linköping, Sweden, 1-3 Sept 2003

Dimitrios Tsoumakos

Adaptive Probabilistic Search for P2P Networks

Presentation Outline

- Short introduction to P2P technology
- Object location in *unstructured* P2P networks
- The APS algorithm
- Simulation results
- Related work
- Conclusions

The notion of P2P

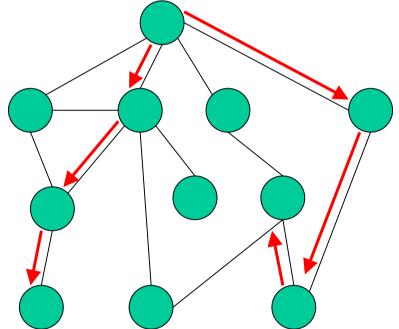
- "Sharing of resources available at the edges of the Internet"
- Resources could be content, storage, CPU-cycles, bandwidth, etc.
- Peers operate both as clients and servers
- P2P paradigm has many plausible characteristics:
 - Scalability
 - No centralized authority, robustness
 - Cooperation, sharing
 - Anonymity, etc

What can P2P be used for?

- According to a (conservative) estimate:
 - 10 billion MHz & 10,000 TB not utilized at the edges of the Internet [openP2P.com]
- The size of the networks and the complexity/ requirements from the protocols steadily increase
- On the other hand:
 - Bandwidth consumption attributed to popular filesharing applications reaches 60% of the total Internet traffic [15]
- Must be able to locate the resources efficiently

The Problem of Object Location in P2P

- We focus on *unstructured* P2P networks
 - Network does not control replica placement
 - No guarantees for a search
- Each peer obtains a set of objects, makes requests for others (no caching)
- In such networks, peers arrive and depart in an adhoc manner


Object Location Schemes for P2P

- Napster [11] utilized a central directory for the location of the music files
- Current search schemes present two basic problems:
 - Search in a blind manner ⇒ use flooding (or its variations)
 - Utilize indices too expensive to maintain

The Random Walks Approach [9]

- Deployment of *k walkers* for object discovery
- Random forwarding
- Vast message reduction
- Local load-balancing
- Varying performance
- Cannot adapt to different workloads

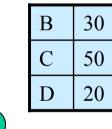
Desired Characteristics

- Bandwidth-efficient
- Effective object discovery
- Adaptation to different workloads
- Robustness in dynamic environments/failures

The Adaptive Probabilistic Search scheme (APS)

- Deploy *k* walkers
- Probabilistic forwarding using indices
- Peers keep indices regarding only their neighbors
- Indices are updated according to walker success/ failure
- Two index update policies

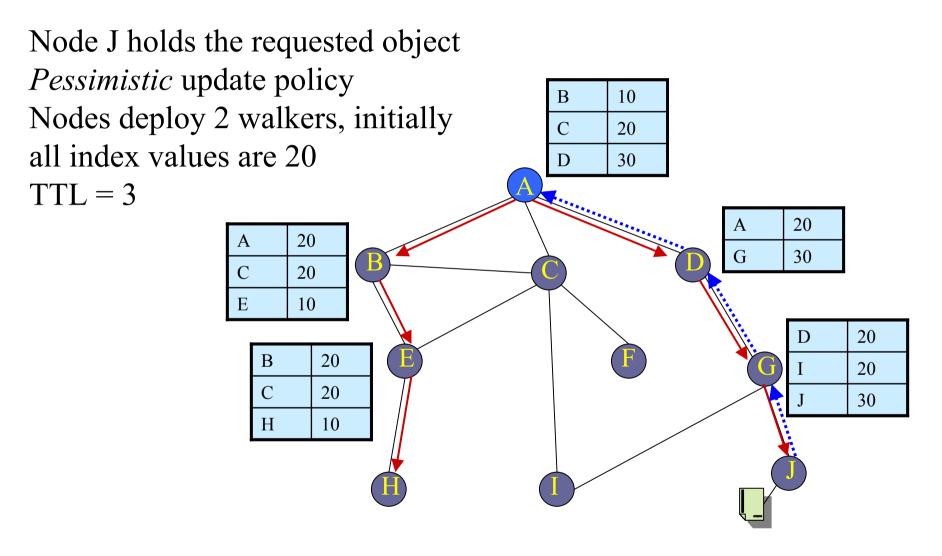
The APS scheme (1)



- Requesting peers deploy *k* walkers
- A walker can be:
 - Successful (finds a replica of the object)
 - Unsuccessful (travels TTL hops or cannot travel further or completes a circle)
- At each step, the search packet maintains the query path
- Peers maintain soft state avoid duplicates

The APS scheme (2)

- Each peer maintains one index per neighbor per requested object
- Index values represent the probability of finding that object at (or through) each neighbor
- Example (indices at node A):
 - A chooses B with Pr = 0.3
 - A chooses C with Pr = 0.5
 - A chooses D with Pr = 0.2


The APS scheme (3)

- During the search:
 - Peers increase the index value(s) of the next-hop(s) they choose (*optimistic* approach)
 - Or, they decrease them (*pessimistic* approach)
- If a walker is successful (unsuccessful) in the optimistic (pessimistic) case, there is nothing to be done
- Otherwise, correct indices along the *reverse* path
 - Increase/decrease by more than the initial amount

An example of APS

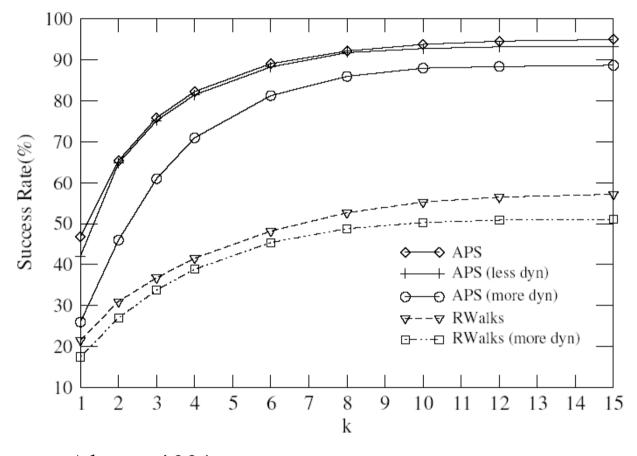
Adaptive Probabilistic Search for P2P Networks

Characteristics of APS

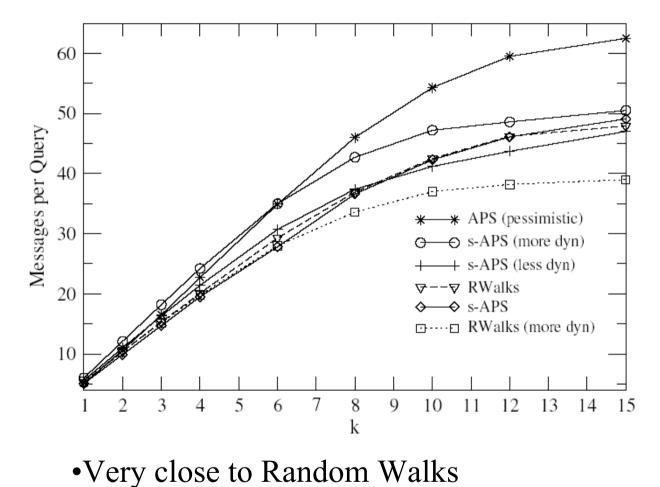
- No message exchange after node arrivals/ departures or object updates
- Utilize positive & negative feedback from walkers
- Increased performance with more queries knowledge-sharing
- The two update policies

Improving APS

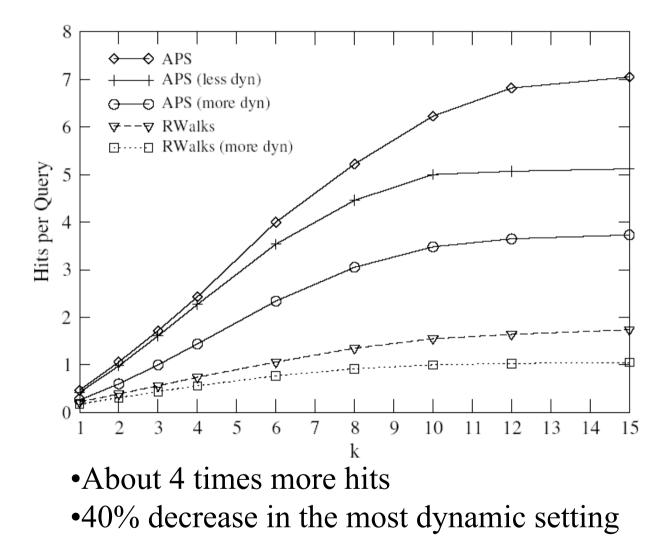
- In *swapping-APS (s-APS)*, peers monitor the ratio of successful walkers to choose a policy
 - Reduced message production
- In *weighted-APS (w-APS)*, indices are modified according to the object's distance from a peer
 - Preference to objects "near" the requesters


Simulations

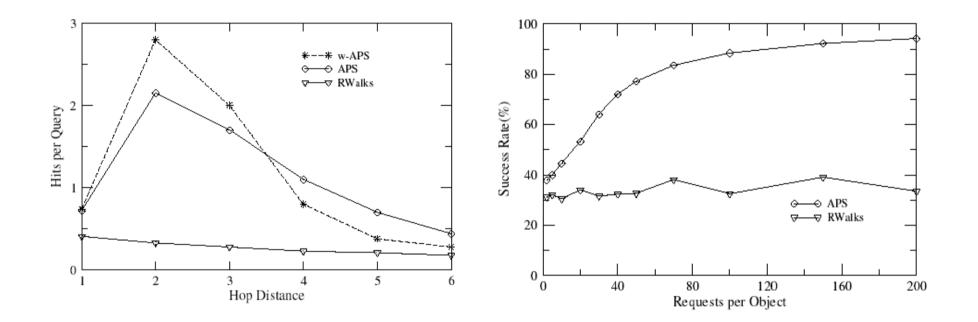
- Pure and hybrid P2P models
- Random and power-law topologies
- 100 objects of varying popularity
- Various query and replication strategies
- 3 settings of increasingly dynamic behavior
- 3 important metrics:
 - Success rate
 - Messages per query
 - Hits per query


Comparison with RWalks (1)

About 40% more accurate< 10% decrease in the most dynamic setting


Comparison with RWalks (2)

• s-APS achieves message reduction



Comparison with RWalks (3)

Comparison with RWalks (4)

- w-APS discovers more objects near the requesters
 APS benefits as more queries are generated
- •APS benefits as more queries are generated

Adaptive Probabilistic Search for P2P Networks

Comparison with GUESS [4]

	s-APS			GUESS		
Metric	Succ%	Mesg	Hits	Succ%	Mesg	Hits
Messages	97.7	16.3	5.22	63.9	16.1	1.28
	98.6	22.0	7.01	65.6	22.2	1.87
	99.7	33.2	11.39	84.0	33.1	2.55
Hits	81.0	3.2	1.33	63.9	16.1	1.28
	94.6	8.7	3.42	86.4	45.0	3.70
	97.9	16.5	5.42	94.5	65.1	5.60

For similar messages, 4 times more hitsFor similar hits, 4-5 times fewer messages

Adaptive Probabilistic Search for P2P Networks

Related Work

- Various *blind* methods
 - Flood-based (Gnutella, Modified-BFS[8], Iterative Deepening [9, 19])
 - Random Walks
- Gnutella2 [18], GUESS for hybrid networks
- *Informed* approaches:
 - Intelligent-BFS[8], DRLP[10]
 - Routing and Local Indices [3,19]
- Thorough comparison of several methods in *WebDB'03* [5]

Conclusions

- APS algorithm for object location in unstructured P2P networks
- Main features are:
 - Probabilistically directed walkers low bandwidth consumption
 - Fast, joint learning
 - Adaptation
 - Robustness
- Favors large workloads, has *k* as an upper bound to its hits