

The Effectiveness of Realistic Replication Strategies on Quality of Availability for Peer-to-Peer Systems

Motivation

www.kom.tu-darmstadt. www.httc.

> Quality of Availability Notion of QoA

Replication for QoA

Placement Strategies

Simulation

Conclusion

The 3rd IEEE International Conference on Peer-to-Peer Computing, 1-3 September 2003, Linköping, Sweden

Giwon On, Jens Schmitt, and Ralf Steinmetz

Darmstadt University of Technology Dept. of Electrical Engineering and Information Technology KOM - Multimedia Communications Lab Giwon.On@KOM.tu-darmstadt.de

Goals

Understanding & Satisfying

Availability for peer-to-peer (P2P) Systems,

i.e.

- maximizing P2P requested service time
- satisfying different availability requirements for different peers

Motivation

Quality of Availability Notion of QoA Replication for QoA Placement Strategies Simulation Conclusion

or

- given
 - set of availability demands
 - (finite) network topology
- find out
 - what to replicate?
 - how many replicas?
 - where to locate replicas?
 - when and how to replicate?

Overview

1. Motivation

2. Quality of Availability (QoA)

- Concept and Definition
- QoA Notion Availability Refinement

3. Replication for QoA

- Problem
- Placement Algorithms

4. Simulation Study

• Improving QoA - dynamic & partial replication

5. Conclusion

Motivation

Quality of Availability Notion of QoA Replication for QoA

Placement Strategies

Simulation

Conclusion

Motivation

Selected Characteristics of P2P Systems

- Peers go up/down independently of each other
- Peers are symmetric in terms of supplying and demanding services
- Different peers supply different levels of service availability
- Different peers demand different availability levels

Motivation

Quality of Availability

Notion of QoA

Replication for QoA

Placement Strategies

Simulation

Conclusion

CHALLENGING RESEARCH ISSUES

- ⇒ Offer the service differentiation for peers or p2p applications in the availability context
- ⇒ Devise mechanisms and algorithms to satisfy/provide different levels of availability for individual peers

Quality of Availability

Basic Idea

- AVAILABILITY-CENTRIC view on quality of service (QoS)
 - to treat availability as a controllable QoS parameter
- replication based on admission control concept
 - to control & guarantee QUALITY OF AVAILABILITY (QoA)

Definition of Quality of Availability (QoA):

"well-defined and controllable availability (behavior) of a service according to the quantitatively measurable parameters such as data availability, nodeavailability, and link availability"

Simulation

Motivation

Notion of QoA

Quality of Availability

Replication for QoA

Placement Strategies

Conclusion

QoA Metrics

Parameter	Definition	e.g.
satisfiedQoA	for each demanding node, how much availability is fulfilled at the selected placement	0.95, 1.05
QoA _{sat} (v)	the ratio of supplied/reached avail. to demanded/required avail. for node v, $\forall v \in V_R$ with $V_R = V$ without R	
QoA _{avg}	$1/n(\sum QoA_{sat}(\mathbf{v})) \forall \mathbf{v} \in \mathbf{V}_{R} \text{ and } n = (V - R)$	0.95

Notion of QoA

Availability: percentage of service uptime, i.e. Availability = $\frac{MTTF}{MTTF + MTTR}$ but,... **Refining Availability Definition**

- decoupled: demand vs. supply; perceived & provided closing the gap
- differentiated: different users, different availability levels
- fine-grained availability:

Avail Service = Avail Data × (Avail P2PdynamicsNode × Avail intrinsicsNode × Avail Link)

Replication for QoA

Main Concern

How to IMPROVE QOA?

HOW TO SATISFY DIFFERENT QOA LEVELS?

Focus

• to choose dynamically a 'good' placement, i.e.

- Selecting target replicas &
- Choosing their number and location

while

- Increasing/Satisfying the QoA requirement for individual users &
- Taking the data/systems' availability explicitly into account

Motivation

Quality of Availability

Notion of QoA

Replication for QoA

Placement Strategies

Simulation

Conclusion

Replication for QoA

Modeling P2P systems

- as STOCHASTIC GRAPH G(V, E)
- numbers just as example!

Placement Strategies

Replication for QoA

Quality of Availability

Simulation

Motivation

Notion of QoA

Conclusion

Features

- Partial replication (i.e. file by file)
- Decentralized, on-line placement
- Placement in two phases
 - proactive and on-demand

Placement Strategies

Proactive placement algorithms

- Random
- Popularity-based

On-demand placement (at run-time) algorithms:

- Local
 - i.e. demanding client becomes next available replica (i.e. random)
- HighlyAvailableFirst (HA)
 - as computed QoA_{supplying}
- Quality of Availability
- Notion of QoA

Motivation

- Replication for QoA
- Placement Strategies
- Simulation
- Conclusion

- per node:
 - QoA_{supplying} * average of all adjacent (QoA_{link availability})
- HighlyUpFirst (UP)
 - P2P server uptime probability
- combined HA+UP

Simulation

Methodology

- using an event-driven simulation model
- used tools Leda, CNCL

Assumptions (under P2P constraints)

- network abstraction for P2P
 - dynamic (#nodes & #links changes)
 - stochastic (nodes & links attributes)
 - unconstrained (each node can be demanding and/or providing service) graph
- node and link failure probabilities with/without a prior global knowledge

Quality of Availability

Motivation

- Notion of QoA
- Replication for QoA
- **Placement Strategies**
- Simulation Conclusion

Metrics

- SatisfiedQoA
- Service availability:

Avail Service = Avail Data × (Avail P2PdynamicsNode × Avail intrinsicsNode × Avail Link)

Effect of |R| and T(R) on SatisfiedQoA

Experiment

- Graph(1000,3000), node: up_prob: 30%, req.QoA: 50-99%, link_fail: 0-10%
- proactive placement: Random, query model: Uniform

Observation

• By increasing the replication ratio, the avg. SatisfiedQoA values are towards 1

P2P03-On-Talk-V2.fm **11**

www.kom.tu-darmstadt.de www.httc.de

Motivation

Quality of Availability

Notion of QoA

Replication for QoA

Placement Strategies

Simulation

Conclusion

Effect of Initial Replica Selection on SatisfiedQoA

Experiment

- Graph(1000,3000), fixed no. replicas: 1000
- node: up_prob: 30%, req.QoA: 50-99%, link_fail: 0-10%
- proactive placement: Random, query model: Zipf

Selection strategies: Uniform versus Proportional to access counter

Observation

Proportional offers higher SatisfiedQoA than Uniform

Motivation

Quality of Availability

Notion of QoA

Replication for QoA

Placement Strategies

Simulation

Conclusion

P2P03-On-Talk-V2.fm **12**

Effect of On-Demand Placement on SatisfiedQoA

Experiment

- Graph(1000,3000), node: up_prob: 30%, req.QoA: 50-99%, link_fail: 0-10%
- proactive placement: Random, query model: Uniform

Quality of Availability

Motivation

Notion of QoA

Replication for QoA

Placement Strategies

Simulation

Conclusion

Observation

- The heuristics (Up, Ha, Up+Ha) offer higher SatisfiedQoA than Local
- The result further indicates the benefit of cooperative placement
 - especially for P2P systems

Conclusion

Summary

- Mechanisms to study the effectiveness of replication schemes on QoA
 - Availability
 - QoA concept
 - Refinement: decoupled, differentiated & fine-grained availability
 - Replication for QoA
 - Replica selection and placement problems
 - Dynamic and partial replication
 - Ranking-based heuristics for improving QoA

Simulation

- event-driven simulation (CNCL, Leda)
- indicates the benefit of cooperative placement

Conclusion

Simulation

Motivation

Notion of QoA

Quality of Availability

Replication for QoA

Placement Strategies

Outlook

- New algorithms for GuaranteedQoA
- Simulation model extension
 - other network topology, e.g., Power-law topology, star, etc.
- Service model extension
 - Replication for streaming media

P2P03-On-Talk-V2.fm 14

Experimental Setup

Event-Driven Simulation Model

