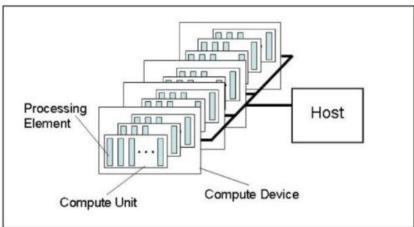

Quantifying the Performance Impacts of Using Local Memory for Many-Core Processors

Jianbin Fang¹, Ana Lucia Varbanescu², Henk Sips¹

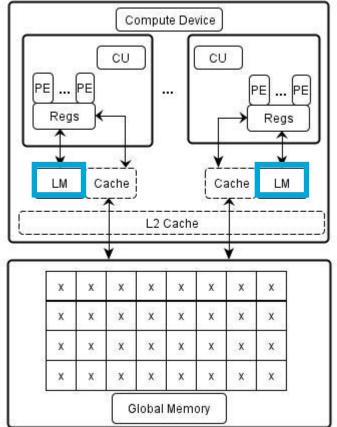
1 Delft University of Technology 2 University of Amsterdam The Netherlands


MuCoCoS'13: Quantifying the Performance Impacts of Using Local Memory

Looking Back on OpenCL

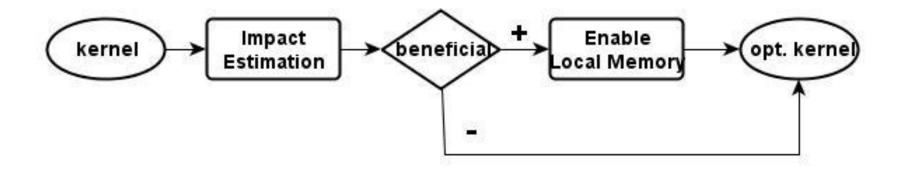
OpenCL- Open Computing Language

- An open programming framework by Khronos group
- Heterogeneous platforms CPUs, GPU, MIC, FPGA, DSPs, …
- OpenCL platform model
- An OpenCL program
 - ✓ Kernel: a language based C99
 - Host: a set of APIs
- Adopted by many vendors
 - Current version: v2.0 (July 2013)



OpenCL and Local Memory

Local memory is a key performance factor


- ✓ FAST: On-chip
- ✓ Not-a-Cache: User-managed
- Current status: using local memory is a trial-and-error process
 - ✓ Work hard to enable it ...
 - ✓ and hope for performance gain.

Performance impact estimation

- How can we estimate the benefits of using local memory?
 - ✓ Assess the necessity of using local memory
 - Facilitate performance modeling of OpenCL platforms

Local Memory "Myths"

Local memory assumptions for performance gain:

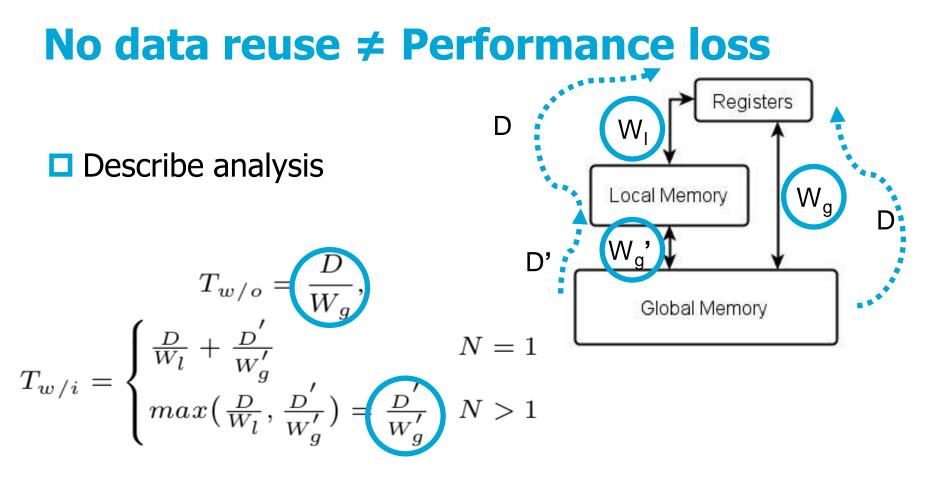
- Data sharing is mandatory
- Using LM on GPUs is mandatory
- Using LM on CPUs must be avoided

□ We contradict these myths!

- ✓ Data reuse is not equivalent with LM performance gain
- Enabling LM on GPUs can be skipped
- Enabling LM on CPUs can be beneficial

Data reuse ≠ Performance gain

□ NBody on GTX580


- Threads share exactly the same data set
- Results (in GB/s)

	64x64	128x128	256x256	512x512	1024x1024
$LM_{w/o}$	613.50	636.43	646.06	616.42	589.95
$LM_{w/i}$	512.44	495.28	516.04	518.61	520.64
Loss(%)	16.47	22.18	20.13	15.87	11.75

Conclusion

✓ Using local memory performs worse by 18% on average

Conclusion

- ✓ Besides data reuse (D↓), access order change matters (W↑)!
- Matrix transpose is a good example.

MuCoCoS'13: Quantifying the Performance Impacts of Using Local Memory

LM on CPUs ≠ Performance loss

Image convolution on CPU

- Intel Xeon E5620 (6 cores)
- ✓ Filter radius is 3
- Results (in GB/s)

	64x64	128x128	256x256	512x512	1024x1024	2048x2048
$LM_{w/o}$	6.81	7.77	7.81	8.06	8.13	8.15
$LM_{w/i}$	12.23	13.81	14.08	14.56	14.70	14.56

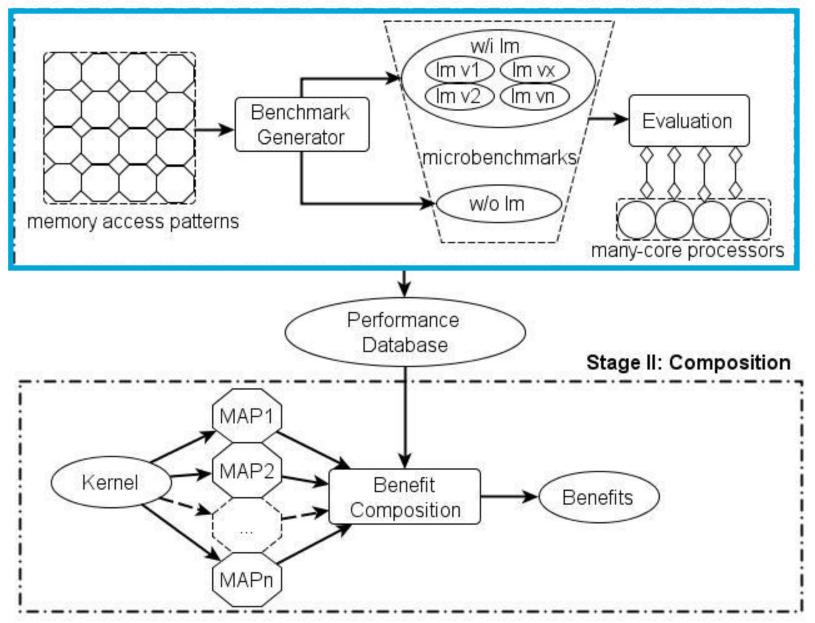
Conclusion

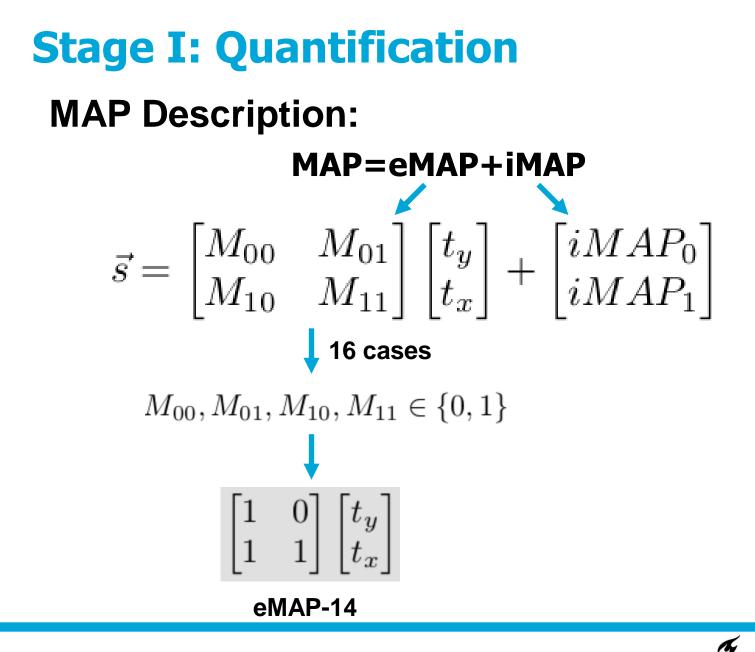
✓ Using local memory delivers (2x) better performance

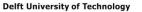
Performance Impact Estimation

Not an easy job

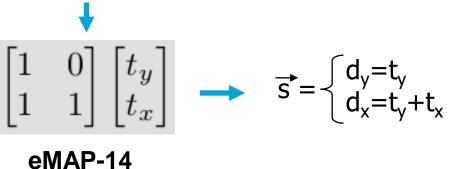
- No assumptions hold for all cases
- Application-dependent
- Platform-dependent


Our approach:


- 1. Enumerate and analyze all feasible memory access patterns
- 2. Quantify and log local memory impacts for each MAP on each platform (in terms of bandwidth)
- 3. Model applications as (compositions of) MAPs
- 4. Quantify application's gain by search and compose

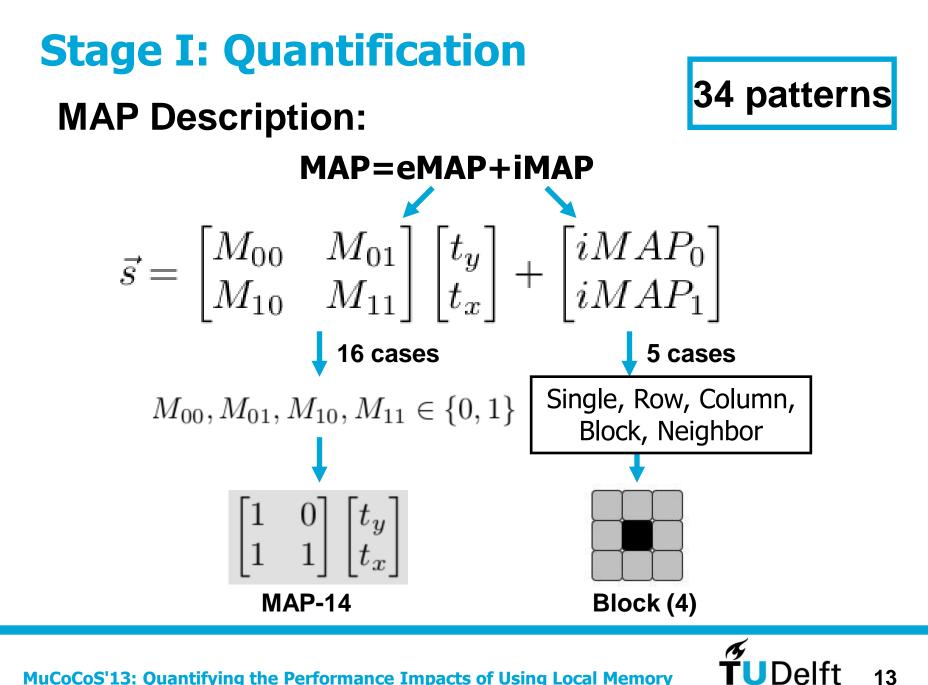

Our Approach

Stage I: Quantification

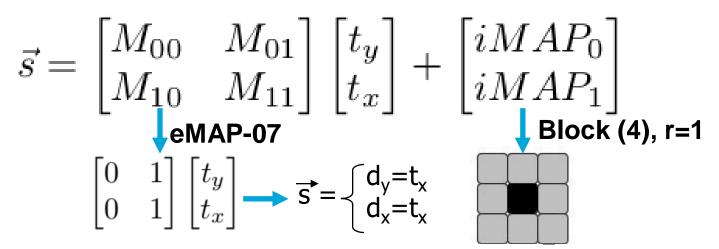


Stage I: Quantification

(\int						(Ì	Ţ	4					Y							
00	01	02	03	04	05	06	07	00	01	02	03	04	05	06	07	08	09	010	011	012	013	014
10	11	12	13	14	15	16	17	10	N	12	13	14	15	16	17	NS	19	110	111	112	113	114
20	21	22	23	24	25	26	27	20	21	22	23	24	25	26	27	28	20	210	211	212	213	214
30	31	32	33	34	35	36	37	30	31	32	N.C.	34	35	36	37	38	39	310	311	312	313	314
40	41	42	43	44	45	46	47	40	41	42	-4≯	44	45	46	47	48	49	410	411	412	413	414
50	51	52	53	54	55	56	57	50	51	52	53	54	35	56	57	58	59	510	511	512	513	514
60	61	62	63	64	65	66	67	60	61	62	63	64	65	66	67	68	69	610	611	612	613	614
70	71	72	73	74	75	76	77	70	71	72	73	74	75	76	77	78	79	710	711	712	713	714


Work-group: 8 x 8 work-items

MuCoCoS'13: Quantifying the Performance Impacts of Using Local Memory



Delft University of Technology

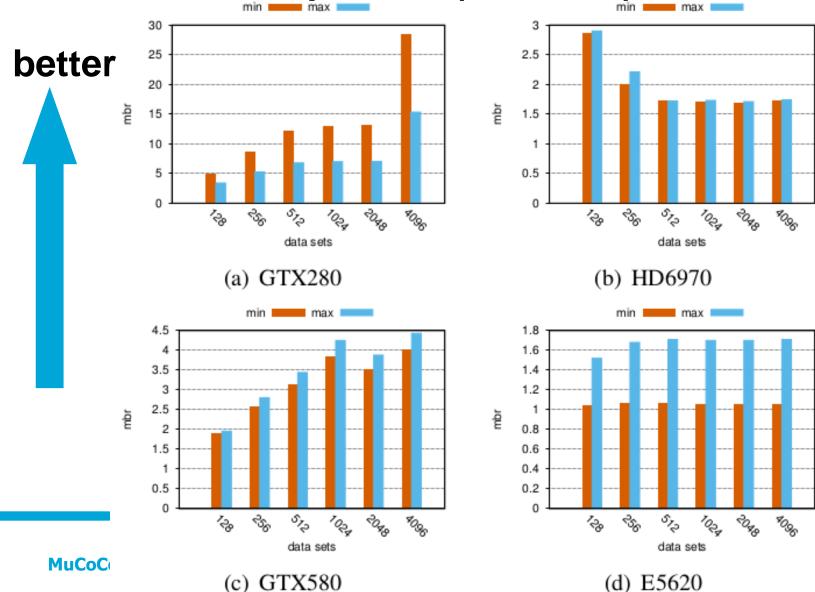
13

Stage I: Quantification

Generating Benchmarks (MAP-407)

Max vs. Min:

Ν


	10		V	3.	IV		••		0	0	01	02	_	_		-	-			<u> </u>		00	01	02
00	01	02	03	04	05	06	07		1	0	11	12	13		-	1 <u>1</u>		ŝ.	8		10	11	12	13
10	11	12	13	14	15	16	17		2	0	21	22	23	24		8 - 98 93 - 92				20	21	22	23	24
20	21	22	23	24	25	26	27		1		31	32	33	34	35					31	32	33	34	35
30	31	32	33	34	35	36	37					42	43	44	45	46			8	42	43	44	45	46
40	41	42	43	44	45	46	47				5		53	54	55	56	57			53	54	55	56	57
50	51	52	53	54	55	56	57		i					64	65	66	67			64	65	66	67	
60	61	62	63	64	65	66	67				20				75	76	77		. 8	75	76	77	11.153	
70	71	72	73	74	75	76	77	. r	-	2			- 55	-8-3				22	10			- 0.2	2.00	

14

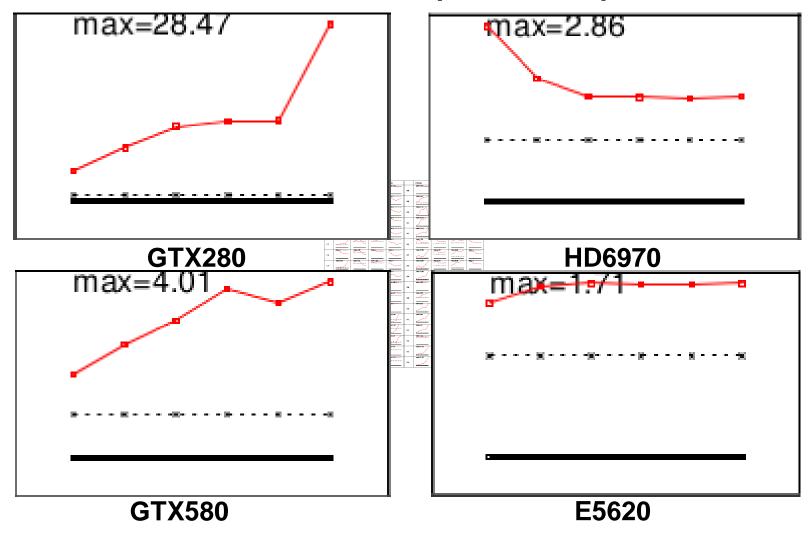
У

Stage I: Quantification Min/Max Comparison (MAP-407)

echnology

15

elft

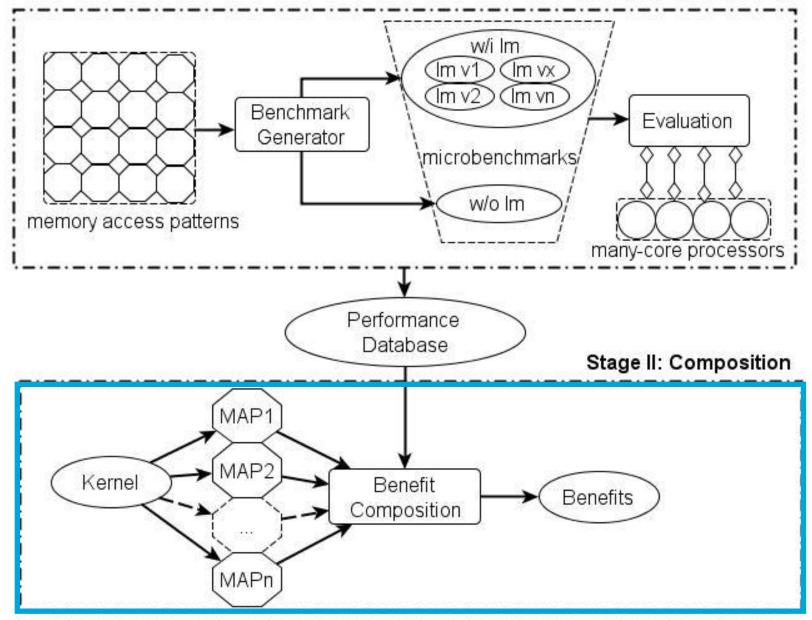

Stage I: Quantification

Performance Database Overview

MuCoCoS'13: Quantifying the Performance Impacts of Using Local Memory

Performance Database (MAP-407)

Stage I: Quantification


Performance Database Summary

	GTX280	HD6970	GTX580	E5620	
Gain Always	30	23	29	4	
Loss Always	2	0	4	25	
Varied	2	11	1	5	
Data reuse	116, 205, 40 302, 306, 41 401, 408, 50	04, 211, 303, 07, 410, 412, 13, 415, 416, 07, 509, 510, 12, 513, 515, 516	B 110, 112, 113, 115,	Access ord	ler change
oCoS'13: Quantifying t	he Performance I	mpacts of Usin	g Local Memory	ŤUD	elft 18

Delft University of Technology

Our Approach

Stage I: Quantification

Stage II: A Query-based Performance Prediction

Kernel performance gain due to LM = memory bandwidth ratio before (b) and after (B) using LM

$$mbr_{p} = \frac{B_{1} \bigotimes B_{2} \bigotimes B_{3} \bigotimes \dots \bigotimes B_{m}}{b_{1} \bigoplus b_{2} \bigoplus b_{3} \bigoplus \dots \bigoplus b_{m}}$$

Predicting bandwidth when using LM

- Identify MAPs (manually)
- Query bandwidth information (B, b) from DB
- Compose the bandwidths of individual MAPs
- □ IC, MM, MT, SOR on GTX580

Delft University of Technology

Stage II: A Query-based Performance Prediction

□ Case I: MT, SOR

The kernel has one input matrix (and MAP)

Use the corresponding mbr in DB

Case II: MM

$$mbr_p = \frac{(n_A \times B_A + n_B \times B_B)/(n_A + n_B)}{min(b_A, b_B)}$$

Case III: IC

Assume the filter is small and allocated on on-chip memory
Use mbr of MAP-408

TUDelft 21

Delft University of Technology

Stage II: A Query-based Performance Prediction

	MT	SOR	MM	IC
MAPs	(110)	(508)	(205,302)	(408)
mbr_p	1.18	0.96	2.40	1.83
T (ms)	10.63	14.06	1897.95	145.56
$T_p^{LM}(ms)$	9.01	14.64	790.81	79.54
T_m^{LM} (ms)	9.12	14.21	766.11	94.60
Accuracy(%)	1.26	3.07	3.22	15.91

MuCoCoS'13: Quantifying the Performance Impacts of Using Local Memory

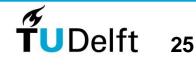
Conclusion


Quantifying the performance impact of using local memory on many-cores is possible

- Not easy expected => well-known assumptions don't always hold
- MAP-based => application-agnostic
- Query-based => prediction-friendly
- ✓ Database-based => easy to extend
- Composition-based => applicable for fairly complex kernels

On-going Work

- More MAPs and tests (on more diverse platforms, e.g. MIC)
- Investigate further the performance interference between MAPs
- An auto-tuner to automatically enable local memory



MuCoCoS'13: Quantifying the Performance Impacts of Using Local Memory

Jianbin Fang PhD student at TU Delft Email: j.fang@tudelft.nl WWW: http://www.pds.ewi.tudelft.nl/fang/

MuCoCoS'13: Quantifying the Performance Impacts of Using Local Memory