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Multiscale dataflow computing 

   Definiton: “Multiscale”  

         Problems which have important features at multiple scales  

Multiple scales of computing Important features for optimization 

complete system level balance compute, storage and IO 

parallel node level maximize utilization of compute and 
interconnect 

microarchitecture level minimize data movement  

arithmetic level  tradeoff range, precision and accuracy 
= discretize in time, space and value 

bit level encode and add redundancy 

transistor level => create the illusion of ‘0’ and ‘1’ 



A heterogeneous system 
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The Multiscale Dataflow Computer 

Dataflow Box: Custom Intelligent Memory System  

Controlflow Box: conventional CPUs 

Fast Interconnect 

Linux based MaxelerOS: Realtime communication management 

MaxIDE 
MaxCompiler   

Multiscale Dataflow Computing Platforms 

MaxSkins  
MatLab,Python,R,Excel,C/C++,Fortran 

Risk 
Analytics 
Software 
Platform 

Scientific 
Computing 
Software 
Platform 

Trading  
Transactions

Software 
Platform 
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Multiscale Dataflow Advantage 
 

Acoustic Modelling 25x Weather Modeling 60x Trace Processing 22x 

Financial Risk 32x Fluid Flow 30x Seismic Imaging 29x 
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Amdahl’s Laws 

• First law: Serial processors always win; too much 
time spent in programming the parallel processor. 

• Second law: fraction of serial code, s, limits 
speedup to: 

  Sp = T1 / (T1 (s) + T1 (1-s)/p) or 

  Sp = 1 / (s + (1-s)/p) 
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Gene Amdahl 



Slotnick’s law (of effort) 

    “The parallel approach to computing does require 
that some original thinking be done about 
numerical analysis and data management in order 
to secure efficient use.   

     In an environment which has represented the 
absence of the need to think as the highest virtue 
this is a decided disadvantage.” 
 
    -Daniel Slotnick  
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Dataflow Application Areas 
Finance, Geophysics, Chemistry 
Physics, Genetics, Astronomy  
 
   Application Programming Interface 
MaxCompiler: Dataflow in Space and Time 
Heterogeneous dataflow+controlflow optimization 
 
Transactions Management 
MaxelerOS manages dataflow transaction 
MaxelerOS keeps Dataflow-Controlflow balance 

Architecture: Static Dataflow 
Static Dataflow microarchitecture, cards, boxes 
Predictable execution time and efficiency 
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Control flow vs. Dataflow 
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Static Dataflow 
“Systolic Arrays” without nearest neighbour interconnect restrictions 

One result  

per clock cycle 

Static ultradeep (>1000 stage) computing pipelines 
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• Moving data on-chip will use as much energy as computing with it 

• Moving data off-chip will use 200x more energy! 
– And is much slower as well 

The power challenge 

Today 2018-20 

Double precision FLOP 100pj 10pj 

Moving data on-chip: 1mm 6pj 

Moving data on-chip: 20mm 120pj 

Moving data to off-chip memory 5000pj 2000pj 
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The data movement challenge 



The memory hierarchy (challenge) 

John von Neumann, 1946:  

 

“We are forced to recognize the 
possibility of constructing a hierarchy of 
memories, each of which has greater 
capacity than the preceding, but which 
is less quickly accessible.” 



• Deploy domain expertise to co-design application, 
algorithm and computer architecture 
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Vertical Co-design of applications 



17 × 24 = ? 



Thinking Fast and Slow 

Daniel Kahneman  
Nobel Prize in Economics, 2002 

 

back to 17 × 24 

 

Kahneman splits thinking into: 

System 1: fast, hard to control ... 400 

System 2: slow, easier to control ... 408 



Putting it all together on the arithmetic level 
 

 

  

Computing f(x) in the range [a,b] with |E| ≤ 2⁻ⁿ 

    Table                 Table+Arithmetic                      Arithmetic 

 and +,-,×,÷ +,-,×,÷ 

Tradeoff: number of coefficients, number of bits per coefficient, 

range versus precision of result and  

maximal versus average error of result  

Dong-U Lee, Altaf Abdul Gaffar, Oskar Mencer, Wayne Luk 
Optimizing Hardware Function Evaluation 
IEEE Transactions on Computers. vol. 54, no. 12, pp. 1520-1531. Dec, 2005. 



Given range and precision for the result, what is the optimal 

table+arithmetic solution? 



Architecture Level: Star versus Cube Stencil 

More Computation in Less Time? 

Local temporal parallelism 
=> Cascading timesteps 



System level: algorithm vs. resource 
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System level: algorithm vs. resource 
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Identify and classify options 
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Data Access Plans Code Partitioning 
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Try to minimise runtime and 
development time, while 
maximising flexibility and precision. 



Data Flow Analysis: Matrix Multiply 
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Maxeler Dataflow Computers 

CPUs plus DFEs 
Intel Xeon CPU cores and up to 

4 DFEs with 192GB of RAM 

DFEs shared over Infiniband  
Up to 8 DFEs with 384GB of 
RAM and dynamic allocation 

of DFEs to CPU servers 

Low latency connectivity 
Intel Xeon CPUs and 1-4 DFEs 

with up to twelve 40Gbit 
Ethernet connections 

MaxWorkstation 
Desktop development system 

MaxCloud 
On-demand scalable accelerated  
compute resource, hosted in London 
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• 1U Form Factor  

• 4x dataflow engines 

• 12 Intel Xeon cores 

• 96GB DFE RAM 

• Up to 192GB CPU RAM 

• MaxRing interconnect 

• 3x 3.5” hard drives 

• Infiniband/10GigE 

MPC-C500 
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MPC-X1000 

• 8 dataflow engines (384GB RAM) 

• High-speed MaxRing 

• Zero-copy RDMA between  
CPUs and DFEs over Infiniband 

• Dynamic CPU/DFE balancing 
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• Optimized to balance 
resources for particular 
application challenges 

• Flexible at design-time and 
at run-time 
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Dataflow clusters 

48U seismic 
imaging cluster 

42U in-memory 
analytics cluster 



Application Programming Process 
St

ar
t 

Original 
Application 

Identify code 
for acceleration 

and analyze 
bottlenecks 

Write 
MaxCompiler 

code 
Simulate DFE 

Functions 
correctly? 

Build full DFE 
configuration 

Integrate with 
CPU code 

Meets 
performance 

goals? 

Accelerated 
Application 

NO 

YES YES 

NO 

Transform app, 
architect and 

model 
performance 
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SLiC 

Programming with MaxCompiler 

Computationally 
intensive 

components 
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Programming with MaxCompiler 
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for (int i =0; i < DATA_SIZE; i++) 
    y[i]= x[i] * x[i] + 30; 

Main 

Memory 

CPU 
CPU 
Code  

CPU Code (.c) 

Programming with MaxCompiler 

 
 
int *x, *y; 

30 iii xxy
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PCI 

 

 

Express 

Manager 

Chip 

Memory 

Manager (.java) 

x

x

+

30

x

Manager m = new Manager(“Calc”); 
Kernel k =  
     new MyKernel(); 
 
m.setKernel(k); 
m.setIO( 
    link(“x", CPU), 
 
m.createSLiCInterface(); 
m.build(); 

 
 
 
 
 
 
 
    link(“y", CPU)); 

Main 

Memory 

CPU 
CPU 
Code  

CPU Code (.c) 

Programming with MaxCompiler 

SLiC 

MaxelerOS 

DFEVar x = io.input("x", dfeInt(32)); 
 
DFEVar result = x * x + 30; 
 
io.output("y", result, dfeInt(32)); 

MyKernel (.java) 

 
 
int *x, *y; 

y 

x 

x 

+ 

30 

y 

x 
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#include “MaxSLiCInterface.h” 
#include “Calc.max” 
 
 
 
Calc(x, y, DATA_SIZE) 



PCI 

 

 

Express 

Manager 

Chip 

Memory 

Manager (.java) 

Manager m = new Manager(“Calc”); 
Kernel k =  
     new MyKernel(); 
 
m.setKernel(k); 
m.setIO( 
    link(“x", CPU), 
 
m.createSLiCInterface(); 
m.build(); 

 
 
 
 
 
 
 

device = max_open_device(maxfile, 
    "/dev/maxeler0"); 
 
 
 
Calc(x, DATA_SIZE) 

 
 
 

Main 

Memory 

CPU 
CPU 
Code  

CPUCode (.c) 

Programming with MaxCompiler 

SLiC 

MaxelerOS 

DFEVar x = io.input("x", dfeInt(32)); 
 
DFEVar result = x * x + 30; 
 
io.output("y", result, dfeInt(32)); 

MyKernel (.java) 

#include “MaxSLiCInterface.h” 
#include “Calc.max” 
int *x, *y; 

 
 
 
 
 
 
 

x 

y 

 link(“y", LMEM_LINEAR1D)); 

x

x

+

30

x

x 

x 

+ 

30 

y 
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public class MyKernel extends Kernel { 

 

 public MyKernel (KernelParameters parameters) { 

  super(parameters); 

 

  HWVar x = io.input("x", hwInt(32)); 

 

  HWVar result = x * x + 30; 

 

  io.output("y", result, hwInt(32)); 

 } 

} 

The Full Kernel 
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A (slightly) more complex kernel 
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Kernel Execution 
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Kernel Execution 
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Kernel Execution 

47 



Kernel Execution 
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Kernel Execution 
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Kernel Execution 
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Real data flow graph as  
generated by MaxCompiler  

4866 nodes; 
10,000s of stages/cycles 
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Maxeler University Program 
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• Tackling a vertical problem at multiple scales can allow 
you to make major jumps in capability 

• Dataflow computing achieves high performance through: 

– Explicitly putting data movement at the heart of the program 

– Employing massive parallelism at low clock frequencies 

– Embodying application co-design 

• Many scientific applications can benefit from this 
approach 

Summary & Conclusions 
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