
Oliver Pell

Multiscale Dataflow Computing
(Building vertically in a horizontal world)

MuCoCoS 2013

Multiscale dataflow computing

 Definiton: “Multiscale”

 Problems which have important features at multiple scales

Multiple scales of computing Important features for optimization

complete system level balance compute, storage and IO

parallel node level maximize utilization of compute and
interconnect

microarchitecture level minimize data movement

arithmetic level tradeoff range, precision and accuracy
= discretize in time, space and value

bit level encode and add redundancy

transistor level => create the illusion of ‘0’ and ‘1’

A heterogeneous system

CPUs

Infiniband

Dataflow Engines

Memory

0110101001010010

The Multiscale Dataflow Computer

Dataflow Box: Custom Intelligent Memory System

Controlflow Box: conventional CPUs

Fast Interconnect

Linux based MaxelerOS: Realtime communication management

MaxIDE
MaxCompiler

Multiscale Dataflow Computing Platforms

MaxSkins
MatLab,Python,R,Excel,C/C++,Fortran

Risk
Analytics
Software
Platform

Scientific
Computing
Software
Platform

Trading
Transactions

Software
Platform

4

H
W

 la
ye

r
Th

re
e

 S
o

ft
w

ar
e

La
ye

rs

Multiscale Dataflow Advantage

Acoustic Modelling 25x Weather Modeling 60x Trace Processing 22x

Financial Risk 32x Fluid Flow 30x Seismic Imaging 29x

5

Amdahl’s Laws

• First law: Serial processors always win; too much
time spent in programming the parallel processor.

• Second law: fraction of serial code, s, limits
speedup to:

 Sp = T1 / (T1 (s) + T1 (1-s)/p) or

 Sp = 1 / (s + (1-s)/p)

6

Gene Amdahl

Slotnick’s law (of effort)

 “The parallel approach to computing does require
that some original thinking be done about
numerical analysis and data management in order
to secure efficient use.

 In an environment which has represented the
absence of the need to think as the highest virtue
this is a decided disadvantage.”

 -Daniel Slotnick

7

A

T

A

D
Dataflow Application Areas
Finance, Geophysics, Chemistry
Physics, Genetics, Astronomy

 Application Programming Interface
MaxCompiler: Dataflow in Space and Time
Heterogeneous dataflow+controlflow optimization

Transactions Management
MaxelerOS manages dataflow transaction
MaxelerOS keeps Dataflow-Controlflow balance

Architecture: Static Dataflow
Static Dataflow microarchitecture, cards, boxes
Predictable execution time and efficiency

T
h

e
 V

e
rt

ic
a
l

P
e
rs

p
e
c
ti

v
e

Control flow vs. Dataflow

9

Static Dataflow
“Systolic Arrays” without nearest neighbour interconnect restrictions

One result

per clock cycle

Static ultradeep (>1000 stage) computing pipelines

10

• Moving data on-chip will use as much energy as computing with it

• Moving data off-chip will use 200x more energy!
– And is much slower as well

The power challenge

Today 2018-20

Double precision FLOP 100pj 10pj

Moving data on-chip: 1mm 6pj

Moving data on-chip: 20mm 120pj

Moving data to off-chip memory 5000pj 2000pj

11

The data movement challenge

The memory hierarchy (challenge)

John von Neumann, 1946:

“We are forced to recognize the
possibility of constructing a hierarchy of
memories, each of which has greater
capacity than the preceding, but which
is less quickly accessible.”

• Deploy domain expertise to co-design application,
algorithm and computer architecture

13

Vertical Co-design of applications

17 × 24 = ?

Thinking Fast and Slow

Daniel Kahneman
Nobel Prize in Economics, 2002

back to 17 × 24

Kahneman splits thinking into:

System 1: fast, hard to control ... 400

System 2: slow, easier to control ... 408

Putting it all together on the arithmetic level

Computing f(x) in the range [a,b] with |E| ≤ 2⁻ⁿ

 Table Table+Arithmetic Arithmetic

 and +,-,×,÷ +,-,×,÷

Tradeoff: number of coefficients, number of bits per coefficient,

range versus precision of result and

maximal versus average error of result

Dong-U Lee, Altaf Abdul Gaffar, Oskar Mencer, Wayne Luk
Optimizing Hardware Function Evaluation
IEEE Transactions on Computers. vol. 54, no. 12, pp. 1520-1531. Dec, 2005.

Given range and precision for the result, what is the optimal

table+arithmetic solution?

Architecture Level: Star versus Cube Stencil

More Computation in Less Time?

Local temporal parallelism
=> Cascading timesteps

System level: algorithm vs. resource

19

Compute resources

R
u

n
ti

m
e

20

System level: algorithm vs. resource

Compute resources

R
u

n
ti

m
e

Identify and classify options

21

Data Access Plans Code Partitioning

Tr
an

sf
o

rm
at

io
n

s

Pareto Optimal Options

Runtime

D
ev

el
o

p
m

en
t

Ti
m

e

Try to minimise runtime and
development time, while
maximising flexibility and precision.

Data Flow Analysis: Matrix Multiply

22

Maxeler Dataflow Computers

CPUs plus DFEs
Intel Xeon CPU cores and up to

4 DFEs with 192GB of RAM

DFEs shared over Infiniband
Up to 8 DFEs with 384GB of
RAM and dynamic allocation

of DFEs to CPU servers

Low latency connectivity
Intel Xeon CPUs and 1-4 DFEs

with up to twelve 40Gbit
Ethernet connections

MaxWorkstation
Desktop development system

MaxCloud
On-demand scalable accelerated
compute resource, hosted in London

23

• 1U Form Factor

• 4x dataflow engines

• 12 Intel Xeon cores

• 96GB DFE RAM

• Up to 192GB CPU RAM

• MaxRing interconnect

• 3x 3.5” hard drives

• Infiniband/10GigE

MPC-C500

24

MPC-X1000

• 8 dataflow engines (384GB RAM)

• High-speed MaxRing

• Zero-copy RDMA between
CPUs and DFEs over Infiniband

• Dynamic CPU/DFE balancing

25

• Optimized to balance
resources for particular
application challenges

• Flexible at design-time and
at run-time

26

Dataflow clusters

48U seismic
imaging cluster

42U in-memory
analytics cluster

Application Programming Process
St

ar
t

Original
Application

Identify code
for acceleration

and analyze
bottlenecks

Write
MaxCompiler

code
Simulate DFE

Functions
correctly?

Build full DFE
configuration

Integrate with
CPU code

Meets
performance

goals?

Accelerated
Application

NO

YES YES

NO

Transform app,
architect and

model
performance

27

SLiC

Programming with MaxCompiler

Computationally
intensive

components

28

Programming with MaxCompiler

29

for (int i =0; i < DATA_SIZE; i++)
 y[i]= x[i] * x[i] + 30;

Main

Memory

CPU
CPU
Code

CPU Code (.c)

Programming with MaxCompiler

int *x, *y;

30 iii xxy

30

PCI

Express

Manager

Chip

Memory

Manager (.java)

x

x

+

30

x

Manager m = new Manager(“Calc”);
Kernel k =
 new MyKernel();

m.setKernel(k);
m.setIO(
 link(“x", CPU),

m.createSLiCInterface();
m.build();

 link(“y", CPU));

Main

Memory

CPU
CPU
Code

CPU Code (.c)

Programming with MaxCompiler

SLiC

MaxelerOS

DFEVar x = io.input("x", dfeInt(32));

DFEVar result = x * x + 30;

io.output("y", result, dfeInt(32));

MyKernel (.java)

int *x, *y;

y

x

x

+

30

y

x

31

#include “MaxSLiCInterface.h”
#include “Calc.max”

Calc(x, y, DATA_SIZE)

PCI

Express

Manager

Chip

Memory

Manager (.java)

Manager m = new Manager(“Calc”);
Kernel k =
 new MyKernel();

m.setKernel(k);
m.setIO(
 link(“x", CPU),

m.createSLiCInterface();
m.build();

device = max_open_device(maxfile,
 "/dev/maxeler0");

Calc(x, DATA_SIZE)

Main

Memory

CPU
CPU
Code

CPUCode (.c)

Programming with MaxCompiler

SLiC

MaxelerOS

DFEVar x = io.input("x", dfeInt(32));

DFEVar result = x * x + 30;

io.output("y", result, dfeInt(32));

MyKernel (.java)

#include “MaxSLiCInterface.h”
#include “Calc.max”
int *x, *y;

x

y

 link(“y", LMEM_LINEAR1D));

x

x

+

30

x

x

x

+

30

y

32

x

x

+

30

y

public class MyKernel extends Kernel {

 public MyKernel (KernelParameters parameters) {

 super(parameters);

 HWVar x = io.input("x", hwInt(32));

 HWVar result = x * x + 30;

 io.output("y", result, hwInt(32));

 }

}

The Full Kernel

33

x

x

+

30

y

Kernel Streaming
5 4 3 2 1 0

34

x

x

+

30

y

Kernel Streaming
5 4 3 2 1 0

0

35

x

x

+

30

y

Kernel Streaming
5 4 3 2 1 0

0

1

36

x

x

+

30

y

Kernel Streaming

30

1

2

5 4 3 2 1 0

37

x

x

+

30

y

Kernel Streaming
5 4 3 2 1 0

31

4

3

30

38

x

x

+

30

y

Kernel Streaming
5 4 3 2 1 0

34

9

4

30 31

39

x

x

+

30

y

Kernel Streaming
5 4 3 2 1 0

39

16

5

30 31 34

40

x

x

+

30

y

Kernel Streaming
5 4 3 2 1 0

46

25

30 31 34 39

41

x

x

+

30

y

Kernel Streaming
5 4 3 2 1 0

55

30 31 34 39 46

42

x

x

+

30

y

Kernel Streaming
5 4 3 2 1 0

30 31 34 39 46 55

43

A (slightly) more complex kernel

44

Kernel Execution

45

Kernel Execution

46

Kernel Execution

47

Kernel Execution

48

Kernel Execution

49

Kernel Execution

50

Real data flow graph as
generated by MaxCompiler

4866 nodes;
10,000s of stages/cycles

51

Maxeler University Program

52

• Tackling a vertical problem at multiple scales can allow
you to make major jumps in capability

• Dataflow computing achieves high performance through:

– Explicitly putting data movement at the heart of the program

– Employing massive parallelism at low clock frequencies

– Embodying application co-design

• Many scientific applications can benefit from this
approach

Summary & Conclusions

53

