
George Russell + innumerable colleagues

Fourth Swedish Workshop on Multicore Computing
November 23-25, 2011, Linköping University

2nd Floor
45 York Place

Edinburgh
EH1 3HP

United Kingdom

Visit us at
www.codeplay.com

Offload C++ - Concepts and
Application

From CPU to Cell to GPU

Codeplay background

• Compiler company
based in Edinburgh,
Scotland

• 12 years experience in C/C++ and shader (OpenGL/OpenCL)
compilers

• Target special-purpose parallel hardware
– PlayStation®2 / PlayStation®3 / Cell BE

– Ageia PhysX, Mobile CPU and GPU

– Multi-core processors

– x86: SSE, MMX, 3DNow!

• Have developed technology to simplify application
deployment on complex & evolving parallel systems

Cellfactor game

from Ageia

PEPPHER Project Consortium
 Universities

 University of Vienna (coord.), Austria

 Chalmers University, Sweden

 Karlsruhe Institute of Technology,
Germany

 Linköping University, Sweden

 Vienna University of Technology, Austria

 Research center
 INRIA, France

 Companies
 Intel, Germany

 Codeplay Software Ltd., UK

 Movidius Ltd. Ireland

Performance Portability and Programmability for Heterogeneous Many-core Architectures

Questions?

• Feel free to ask as they occur!

Overview

• High Level View of Accelerator Programming

• Adapting to Accelerators

• Offload C++ Tutorial

– Some (short) C++ examples

• C++ on GPU

• A Demo of C++ for GPU

Homogenous Multicore Memory
Architecture

Core 0

L1
Data

Shared L2 Cache

RAM

L1
Code

Core 1

L1
Data

L1
Code

Core N

L1
Data

L1
Code

N Hardware threads

+ Cache

Shared Memory

Shared L3 Cache

The Rise of Cell and GPU

• Multicore (2-32 homogenous CPU cores)
– Shared memory + a coherent HW cache

– General purpose ISA

– Direct extension of single core systems

• Cell + GPU
– Accelerator devices (> 1 in a system)

– Accelerator cores (SPU / “stream processor”)

– On chip memories

– Heterogeneous systems (host + accelerators)

Motivations for Heterogeneity

• The memory wall
– Excessive contention on shared resource

• Application specialisation
– Support massive volumes of floating point

– Data parallelism / SIMD

• Power consumption
– Fast / slow == Power hungry / frugal
– On chip == faster + less power usage

• Reprioritize transistor budget / die area
– Who needs a branch predictor?

The Cell

• Automatic cross-core cache coherency seems
like a waste of good transistors.

– Jonathan Adamczewski (@twoscomplement, GPU
Compiler developer at Codeplay)

Cell i.e. ‘Host and Accelerators’

PS3 Memory Architecture

PPU SPU0 SPU1 SPU5

L1
Data

Local
Store

(256KB)

…

Local
Store

(256KB)

Local
Store

(256KB) L2 Cache
(512Kb)

L1
Code

System RAM (256MB) Video RAM (256MB) GPU

On the PPU:
2 HW threads ,
Shared Memory
+ Cache

PLUS:

6 SPU threads
Private Memory

GPU Memory Architecture

CPU
Core

0

GPU
Core 0

Global GPU RAM L2

L1

System RAM

GPU
Core 1

GPU
Core 2

GPU
Core N

Local GPU RAM Local GPU RAM Local GPU RAM

…

Private Private Private Private

CPU
Core

N

L1

Programming for Multicore

 • Now standard practice? (and is this easy?)

– Optimise, then Parallelise

– Ensure correct w.r.t.

• Deadlock / livelock / data races / scheduling

– Optimise (again)

• Consider false sharing / cache contention

– Does it scale?

• To more than N cores?

Programming Complexity

 • From most difficult to easiest

– Cell/GPU > Parallel > Sequential

• Why?

– Each level adds new complexity

– Will focus on offloading code + data i.e.

• Data movement

• Application partitioning

Programming for Heterogeneous
Systems

 • Where to perform a computation?
– On small data set? On a large data set?

• Where to place data?
– In large, relatively slow RAM?
– In smaller, faster on chip RAM?

• How to coordinate work on different cores?
– How to program the different cores?

• Is most code your computation?
– Or code to move data and coordinate?

Impact on Program Correctness

• How is architecture exposed to applications?

– Does that introduce new potential for errors?

– All too often, yes

• Coordination + control is hard

– Correct synchronisation hard to achieve

– Misuse may lead to subtle memory corruption
bugs

– Errors can be timing dependent

Impact on Code Reuse +
Portability

• Worst Case: No Reuse
– Write / debug / tune / maintain separate code

– For every class of architecture

• Challenging to accommodate portably
– Yet, desirable to avoid re-write / duplication

• A promising approach is to combine
– Compiler techniques

– Application level portable refactoring

– Data access tuning

A Software View of Hardware

• Can we hide architecture?

– Provide illusion of flat memory + homogeneity?

– Let the compiler

• move data + code to / from local stores?

• optimize appropriately for each core type?

• Developers want control

– Performance may require direct access

A Software View of Hardware (2)

• An old view of hardware pervades languages

– Scalar types and operations

– Concurrency via libraries

• (pthreads, Win32)

– No support for multiple memory spaces

• Now being addressed for Cell / GPU

– e.g. Offload C++, OpenCL, C++ AMP

Data Locality Matters…

• Latency + Bandwidth varies
– It takes longer to access ‘distant’ memory

– Higher bandwidths to contention free memory

• Visibility and capacity
– Can all cores ‘see’ all the memory?

– Faster is usually smaller (since slower is cheaper)

• Lots of code becomes memory bound
– Need to feed cores with code + data

– Need to move chunks of both around…

Data Access Matters…

• Just because RAM stands for Random Access
Memory doesn't mean you should strive to
access memory randomly.

– Colin Riley (@domipheus, Games Technology
Director at Codeplay)

GPU Programming

• Massively data parallel

– Many cores (scalar | SIMD) needing many
lightweight threads for efficiency

– Want sets of threads executing in step

– Work scheduled to mask access latency

– Care needed to ensure efficient accesses

• Need to get data into device RAM

– Need to move data within device for efficiency

Cell Programming

• Flexible (Task / Thread / Data parallel)

– 6 to 16 SPE independent cores (4 x float SIMD)

– For efficiency, computing on streaming data

• Mask latency by interleaving computation and transfer

• Prefer operating on data in SPU memory

– SPU SIMD is ubiquitous (no scalar ops!)

– Branching is costly (no prediction HW)

Accelerator Programming

• Restricted relative to CPU

• Favour data parallelism

• Data on device

 Accelerators

• Usable subset?

• Portable subset?

• Large subset?

Cell

OpenCL
/ GPU

CPU

Overview

• High Level View of Accelerator Programming

• Adapting to Accelerators

• Offload C++ Tutorial

– Some (short) C++ examples

• C++ on GPU

• A Demo of C++ for GPU

Adapting to Accelerators

• How to adapt software to accelerators?

– Without great effort?

• Avoiding needing to (re)write lots of additional code

• Avoiding duplication and maintenance

– With good performance?

– Without loss of portability?

• Across a range of distinct classes of system

• More than mere recompile for a new platform

Normal Compilation

Source File 1

Source File 3

Source File 2

Executable

Object file 3

Object file 2

Object file 1

Source Program Executable

Program

Link

Compile

Compile

Compile

Compiling for Homogenous
Multicore, Shared Memory

Adapting to Accelerators

• Cannot (sadly) run unmodified on accelerators

– No silver bullet

• If adapting manually

– Profile, and partition: run hotspots on accelerator

– Extract compute intensive code into ‘kernels’

– Glue this all together

• Compile kernels, compile host, link together

Adapting to Accelerator Cores

Source File 1

Source File 3

Host application source

Source File 3

Source
File 2

Kernel source (Accelerator)

Source
File 2

Partition into

host and kernel

code

Port hotspots to

kernel language?

Adapting to Accelerator Cores

Source File 1

Source File 3

Host application source

Source File 3

Source
File 2

Kernel source

Source
File 2

Add

boilerplate

Fix data

accesses

Need to add code to control kernel start-up and exit
Need to consider how the kernel accesses data

Adapting to heterogeneous cores

Source File 1

Source File 3

Host application source

Source File 3

Source
File 2

Kernel source

Source
File 2

Object files

Compile

Object files Executable

Compile

link link

Accelerator Sub-Programs

• Embedded sub-programs

– On Cell, SPU ELF .o objects

– On GPU, compile to OpenCL source

• Dynamically compiled

• Invoked by a runtime system

– On Cell, various: SPURS, MARS, LibSPE

– OpenCL: StarPU and the OpenCL API

• Don’t want to write glue code to control these

32

Creating Sub-Programs for
Accelerators

• Automate where possible

– Annotate

• As little as possible

• At some suitable level

– Loop level? Function call? Call-graph? Task / Thread?

– Let tools do the work

• This effectively means a compiler

– Let tools generate boilerplate

• Free programmer to experiment

Overview

• High Level View of Accelerator Programming

• Adapting to Accelerators

• Offload C++ Tutorial

– Some (short) C++ examples

• C++ on GPU

• A Demo of C++ for GPU

Offload: Adapt Automatically

Source File 1

Source File 3

Source File 2

Executable

.o file 2

.o file 1

Single

Source Program
Executable

Program

Link

to host

to host

to host

.o file 2a

.o file 3

.o file 3a and to accelerator

and to accelerator

Add

Offload

block

How to Offload to an accelerator?

void some_function(T* data, size_t len) {

 process_data(data, len);

}

• By adding an Offload block to the source
– And compiling with an Offload C++ compiler

• (and often, for simple code, that is sufficient)

void some_function(T* data, size_t len) {

 __offload { process_data(data, len); };

}
 Added offload block

Offloading to an Accelerator

Parameters Access host memory

Call graph duplication

A Synchronous Offload Block
#include <algorithm>

#include <string.h>

int main() {

 int p[] = {4, 3, 9, 8, 34};

 __blockingoffload {

 int local=9; int* ptr = &local;

 std::sort(p,p+5, [=](int l, int r){return l < (*ptr>1?r:0);});

 }

 for (int i=0; i<5; i++)

 std::printf("p[%i] = %i;\n",i,p[i]);

}

C++0x Lambda as
predicate

Invoke library code on
accelerator

How to Offload to accelerators?

• We want to use >1 accelerator!
– We don’t want to block the host

• We want to offload threads
– Existing threads, or create new threads

• We use asynchronous offload blocks
– Similar to conventional thread APIs

– Can spawn an offload block

– Obtain a handle to the running offload block

– And wait for it to terminate via a join() call.

An Asynchronous Offload Block

void some_function(T* data, size_t len) {

 // Spawn thread to run on accelerator

 thread_t handle = __offload(data, len)

 { // Process 3/4 on the accelerator (e.g. SPU)

 do_work(data, len-(len/4));

 };

 // Process 1/4 on host (e.g. on PPU)

 do_work(data + len-(len/4), (len/4));

 join(handle) ; // await completion of offload thread

}
 Join call awaiting accelerator task/thread exit

Creates accelerator thread
and returns a thread handle

Code in block executes on
accelerator in parallel with
host

The host can also perform
computation

Can capture copies of local
stack variables

• Call occurs on another thread

– On Accelerator, with Offload

• thread <RETURN_TYPE, ARGUMENT_TYPE,
FUNCTION_NAME>

Offload + Deferred Function Calls

using namespace
liboffload::constructs;

thread<int, int, PlusPlus> tPlus;

int start = 2;

tPlus.spawn(start);

int r0 = tPlus.join(); Get return value

int PlusPlus(int v) {

 return ++v;

}

Invoke with argument

Specify function + types

Offload C++

• Conservative C++ extension
– Compiler, run-time, and libraries

– Applicable to existing code bases

• Targets heterogeneous cores
– Host core + accelerator cores (e.g. Cell)

– Support for distinct memory spaces

– Compiler generates / checks cross core code

• Programming model
– Migrate threads /tasks onto an accelerator

Task Parallelism

• Games often use Task Parallelism
– Work is decomposed into tasks

• Relatively small, self contained

– Tasks are executed on a schedule
• Scheduled to allow data to be produced + consumed

• Scheduled to avoid contention on data

– Tasks can be run on CPU or accelerators

• A task ~= An asynchronous function call

Offload Tasks

__offloadtask thread_t an_accelerator_task(params…) {

 do_work(params…); // Compiled for accelerator

}

// Capture the function call

thread_t handle = an_accelerator_task(1,2);

// Start function call execution (on accelerator)

offloadThreadStart(handle);

join(handle); // Wait for completion

Task is created, but not
yet invoked

Invoke the task, with
arguments given
previously

Wait for task completion

Its not quite so simple

• Where is the data?

• How is data to be accessed?

• In our examples, we offloaded computation

– The array “data” resides in host memory

– What are the implications of that?

void some_function(T* data, size_t len) {

 __offload { process_data(data, len); };

}
 Where is “data” allocated?

Data Access on Host

• What happens to read a global variable?

– On the host (e.g. PPU), issue a read instruction

• Check the L1 / L2 cache for data
– ~60 cycles on L1 miss

– ~500 cycles on L2 miss

• Not there? Get it from RAM
– Slow, but at least it’ll be in the cache next access

– (Probably)

– How about from an Offload block on an SPU?

• Need a DMA transfer to access host RAM

Data Access on Accelerator

Global Memory (GB)

Accelerator Memory (KB)

Reads from the host’s global memory

via DMA have high latency

float fun(int n) { float local = global; return n == 0 ? local : local + fun(n-1); }

global

Data Access on Accelerator

Global Memory (GB)

Accelerator Memory (KB)

Writes to the host’s global memory

via DMA also have high latency

void fun(int n) {float local = global + n; global = local; fun(n-1); }

global

Avoiding Repeated DMA

• Offload Compiler generates data access code

– Could naively generate direct DMA transfer

– Generates read via software cache instead

– Reserves a little accelerator memory for cache

• Could use a software cache explicitly

– Convenient / safer to have compiler insert the
calls

Software Cache - Reads

Global Memory (GB)

Accelerator Memory (KB)

Reduce number of reads via DMA

via use of a software cache

__offload float fun(int n) { float local = global; return n == 0 ? local : local + fun(n-1); }

Software Cache - Writes

Global Memory (GB)

Accelerator Memory (KB)

Reduce number of writes via DMA

via software cache

__offload void fun(int n) { float local = global + n; global = local; fun(n-1); }

Data Movement Strategies

• None: fetch on demand

• Software caching

• Local shadowing

– Offloaded local variables allocated in local store

– Prefer local variable access to global

– Copy data in; use it; copy out if needed

• i.e. local_v = global_v; … ; global_v = local_v;

(Without) Local Shadowing

Global Memory (GB)

Accelerator Memory (KB)

void fun () { __offload { mutate(&global_data); }; }

Many transfers + cache lookups when mutating

data held in host’s global memory.

Local Shadowing

Global Memory (GB)

Accelerator Memory (KB)

Reduce number of DMA transfers + cache lookups.

Favour access to accelerator memory.

Transfer from/to global memory via the cache

void fun() { __offload { T local = global; mutate(&local); global = local; } }

CPU, Cell, and GPU differences

• The GPU is most restrictive

– Must identify & buffer all data a kernel may access

• The Cell allows on demand fetches

– Can be flexible, at cost of performance

• On CPU, can freely follow pointers

– No visible ‘transfers’, just ‘accesses’

• Discuss later an approach for Cell/CPU/GPU

Accelerator Programming

• Accelerators provide fast + specialised
operations

– On SPU, vector + data transfer operations

– Exposed to programmer as intrinsic functions

• Use of which is very non-portable…

• We want to use these, when available

– Have a portable fall back

Overloading for Offloads

#ifdef __offloadcpp

__offload void process_data(T* data, size_t len) , … -

#endif

void process_data(T* data, size_t len) , … -

• Add overloads optimized for accelerator
– Compiler selects function from location of call

void some_function(T* data, size_t len) {

 __offload { process_data(data, len); };

}

Offload Contexts

• Permit intrinsic functions in __offload code

• In an offload context:

– inside an offload block

– in an __offload function

• We use overloads & C++ templates

– Build portable, efficient data transfer abstractions

– Operator overloads mimic regular operations

Data View / Transfer Abstractions

• Data structure / access pattern specific

– Read / Write / Read Write

– Traversal aware? Random access?

• Motivations

– Fast access to (subsets of) of data

– Hide specific transfer mechanisms

– Provide usage equivalent to main-memory use
case

Downsides of a Software Cache

• No application level knowledge

• Non-optimal performance

– Migration aid, developer convenience

• Better than naïve DMA

– Not suited to all access patterns / applications

• Customisable is desirable

– Operates synchronously

• Permit bypassing the cache

Data Movement Strategy

Global Memory (GB)

Accelerator Memory (KB)

Minimal number of DMA transfers

Favour access to accelerator memory.

Efficient bulk transfer from/to global memory via intrinsics

void fun() { ReadWriteArray<T,N> local(&global_data[0]); mutate(&local[0]); }

Data Movement Strategies

• C++ bulk transfer strategy templates

– Bypass software cache

– Can be instantiated in portable code

– Hide non-portable code behind template interface
e.g. DMA intrinsics

• Provide a portable fall-back implementation

– Select strategy implementation at compile time

• Instantiate on basis of context and target core

• Permit asynchronous transfers

Offloading a Method Call

__offload() {

 ptr->func(ptrarg1,ptrarg2);

}

Wrap call site in
offload block

• A common use case for Offload

– Run a method on an accelerator
Call takes pointers
as arguments

Here, pointers to
host memory

Pass by reference
is common.

The call is to a method on an
object allocated in host memory

Implicit parameter to method of
‘this’ – also a host pointer

Offloading a Method Call

• Performance penalties?

– (Frequent) access object fields via “this” pointer

– (Frequent) access to data via pointer arguments

• Worthwhile caching data pointed to

– Emulate passing data by value

– Subject to some caveats:

• Space in SPU local store e.g. SPU stack

• Consideration of side-effects

• Legality of copy / instantiation in C++

• Cache instance data

– Run a method on an accelerator with object data
in local store

Offloading a Method Call (2)

__offload() {

 auto localObject = *ptr;

 localObject.func(ptrarg1,ptrarg2);

 *ptr = localObject;

}

DMA transfer or SW cache read into local

Call arguments
still pointers to
host memory

The call is now to a method on an object
allocated in accelerator memory

Implicit parameter to method of
‘this’ – now a local pointer

Transfer object back, if desired or
needed. Careful not to clobber
writes performed in func!

• Want to minimize code change

– Would like to encapsulate this caching pattern

Writing an Offload Cache Class

template <class T> struct cache {

 inline cache(T* ptr): var(*ptr) {}

 inline T* operator->() {return &var;}

 protected:

 T var;

};

template <class T>

struct writeback_cache : cache<T> {

 writeback_cache(T* p) : cache<T> (p)

 { this->ptr = p; }

 ~writeback_cache()

 { *ptr = cache<T>::var; }

 private:

 T* ptr;

};

Captures a copy
in local store
when created

Acts like a normal
pointer

Can perform a
write back to
original location

Offloading a Method Call (3)

__offload() {

 Type* tmp = ptr;

 writeback_cache ptr(tmp);

 ptr->func(ptrarg1,ptrarg2);

 …

}

• Again, now using our cache class

– We could further cache the arguments

Name shuffling to shadow the global ‘ptr’
with the local cache variable ‘ptr’

Implicit parameter to method of
‘this’ is a local pointer via our cache

Call and any subsequent calls via ptr need no
modification

Data Access Costs

Heap

Stack

…

Static

Heap

Stack

…

Static

Heap

Stack

Task on CPU Task on Accelerator

Equivalent
access costs

Synchronous
access

High latency /
high bandwidth
access to global store

Synchronous or
asynchronous access

High speed access
to local store

Fixing Data Accesses

• The compiler can inform of inefficient access

– Fragmented transfers / Misaligned transfers

– Efficient transfers of contiguous, aligned data

int add(int*a, int*b)

{ return *a + *b; }

int main() { int oVar=1;

__offload() {

 int r = add(&oVar,&oVar);

}}

Compiled with options

 -warnonouterreadswrites -fno-inline

*** WARNING: Generating outer
read, Alignment 4 , Size: 4, in function:
_Z3addPU7__outeriPiEU3_SL1.
--- In file: offloadadd.cpp, at line: 7,
column: 0
 Compiler issues a

warning per access

The Seismic Demo

• Animated simulation

• Wave propagation

 in rocks, water

• Two compute loops

– calculating stresses and wave velocities

– Traverse large 2D data arrays e.g. vertical and
horizontal stress, velocity, damping

The Seismic Demo

• Demo in Intel Threading Building Blocks (TBB)

– TBB is task based parallel programming library

– Provides high level parallel constructs

• parallel_for, parallel_reduce, parallel_invoke, …

• How can we offload this onto Cell and GPU?

Why Offload TBB Code?

• Concurrency via C++ template library

– C++ templates permit compile time techniques

• Explicit indication of (potential) parallelism

– No explicit threading / work division

• Implemented with multi-threaded runtime

– We can offload threads…

Introducing parallel_for

• becomes

• parallel_for(range<int>(1,N),Body());

• Body is a function object (or lambda in C++0x)

struct Body {

 void operator() (range<int> & r) {

 for(int i=r.begin(); i!=r.end(); ++i) { ... }

 } };

for (int i = 0; i < N; i++) , … -

parallel_for(range<int>(1,N),Body());

struct Body {

 void operator() (range<int> & r) {

 for(int i=r.begin(); i!=r.end(); ++i) { ... }

 } };

Inside parallel_for

• Loop iteration space represented by a range

• ranges are splittable

– work (loop iterations) divided between tasks executed on
threads

– tasks apply the function object to sub-ranges

• parallel_for is a facade over the task scheduler

– scheduler manages task creation, work stealing

• Implement our own parallel_for

– Offload some or all work

Offloading parallel_for

• Implemented parallel_for with Offload C++

– Execute unmodified code on SPUs and PPU

• How?

– Using __offload {} blocks to put code on SPU

– Using automatic call-graph duplication

• Compile call graph reached from function object

– Divide work range between SPUs and PPU

• Use our header and compiler

Offloading parallel_for

• Several implementations

– Different work divisions

• Static / Dynamic / Work Stealing

– Different breakdown of workspace

• Rows / tiles / strides

– Use differing worker cores

• 1-N SPU, PPU too?

• TBB evolves with C++

– Function objects, now also C++0x lambda blocks

Offloading parallel_for

// Spawn a thread per SPU

subranges*nthreads+1+ = …

for (int i = 0; i < nthreads; i++) {

 range<int>subrange(subranges[i]);

 handles[i] = __offload(body, subrange) {

 body(subrange); // Execute a sub-range asynchronously on SPU

 };

}

body(subranges[nthreads]); // Execute a sub-range on PPU

for (int i = 0; i < nthreads; i++)

 join(handles[i]); // Await SPU threads

Divide N-dimensional work
ranges into sub parts

Spawn configurable number
of threads

Sequential work on sub
range on accelerator

Sequential work on sub
range on CPU

Wait for async threads on
accelerator, CPU work was
done synchronously

Seismic Demo in 1 Slide
Index space for loop

Body of loop

Affinity hint

Functor struct

Parameter to functor

Body of loop as functor

Body of loop as function

void Universe::ParallelUpdateVelocity(tbb::affinity_partitioner &affinity) {

 tbb::parallel_for(tbb::blocked_range<int>(0, UniverseHeight-1),

 UpdateVelocityBody(*this),

 affinity);

}

struct UpdateVelocityBody {

 Universe & u_;

 UpdateVelocityBody(Universe & u):u_(u){}

 void operator()(const tbb::blocked_range<int>& y_range) const {

 u_.UpdateVelocity(Universe::Rectangle(0,y_range.begin(),

 u_.UniverseWidth-1,y_range.size()));

 }

};

void Universe::UpdateVelocity(Rectangle const& r) {

 for(int i=r.StartY(); i<r.EndY(); ++i)

 for(int j=r.StartX(); j<r.EndX(); ++j)

 V[i][j] = D[i][j]*(V[i][j] +

 L[i][j]*(S[i][j] - S[i][j-1] + T[i][j] - T[i-1][j]));

}

78

Data Access Template Example

void Universe::UpdateVelocity(Rectangle const& r) {

 for(int i=r.StartY(); i<r.EndY(); ++i)

 for(int j=r.StartX(); j<r.EndX(); ++j)

 V[i][j] = D[i][j]*(V[i][j] +

 L[i][j]*(S[i][j]-S[i][j-1]+T[i][j]-T[i-1][j]));

}

• Problems?

– Many global reads and writes.

Global read

Global write

Data Access Template on Cell

void Universe::UpdateVelocity(Rectangle const& r) {

 for(int i=r.StartY(); i<r.EndY(); ++i) {

 ReadArray<float,Width> lD(&D[i][0]),

 lL(&L[i][0]), lS(&S[i][0]),

 lT(&T[i][0]), lpT(&T[i-1][0]);

 ReadWriteArray<float, Width> lV(&V[i][0]);

 for(int j=r.StartX(); j<r.EndX(); ++j)

 lV[j] = lD[j] * (lV[j] + lL[j] * (lS[j] - lS[j-1] + lT[j] - lpT[j]));

}}

Compute on data in fast local store

Pull input to fast
local store

Mutated data
gets written back

Custom Portable Abstractions

• User definable, overloadable, extendable

– Implement custom versions of abstractions

– provide custom data access templates

– Abstract over platform APIs e.g. (mutex, lock)

– Hide use of language extensions

• Implement other parallel APIs?

C++ and Memory Spaces

• Standard C++ specifies no semantics for
NUMA with multiple memory spaces

• Offload C++ extends type checks

– Pointers to different memory spaces are
incompatible

– Detection of inconsistent usage is safer

– Type level distinction aids in informing
programmer

Types in Offload C++

• Generate different code for accesses via
different kinds of pointer

– Prevent device pointers escaping onto host
void f() { int on_host;

 __offload {

 int on_device;

 int __outer* a = &host;

 int * b = &on_device;

 a = b; // Illegal assignment!

 }

}

An __outer pointer

Reject usage of device
pointer in place of host
pointer

Annotations? We
don’t want those!

Call Graph Duplication + Type
Inference

• Analogous to C++ template instantiation

– A normal C/C++ function

– A normal C++ function template

– We can instantiate with a specific type

void add(int* res, int *a, int *b){*res=*a+*b;}

template <typename T>

void add(T* res, T *a, T *b){*res=*a+*b;}

add<int>(res, a, b);

Call Graph Duplication

• What can we infer?

– The types of arguments

– Therefore, which function is called

• What else?

– We know the context of the call site

– We know to which memory space pointers refer

• We “instantiate” a suitable function

– At compile time

– For appropriate processor + memory type

int res=0, a=1, b=2;

add(&res, &a, &b);

Why Call-Graph Duplication?

• Combinatorial explosion of signatures

– Don’t want to explicitly duplicate in source

– Maintenance nightmare

void add(int * res, int* a, int * b);

void add(int * res, int* a, int __outer * b);

void add(int * res, int __outer * a, int * b);

void add(int * res, int __outer * a, int __outer * b);

void add(int __outer* res, int* a, int * b);

void add(int __outer * res, int* a, int __outer * b);

void add(int __outer * res, int __outer * a, int * b);

void add(int __outer * res, int __outer * a, int __outer * b);

Call Graph Duplication + Inference

• Propagate __outer during compilation

– Through initialisations, casts, usage

– Recursively to compile whole call graph

• Create only needed duplicates

void f (int * res, int* a, int * b) {

 int * z = a;

 *res = g(z , b);

}

int* a, *b, *r;

void fun() {

 f(r,a,b);

 __offload {

 f(r,a,b); int * x, *y, *z

 f(r,x,y); f(x,y,z);

}}

Call Graph Specialisation

• C++ Templates support specialization

– Special casing specific types

• Analogously, we can override duplication

– __offload function overloads suppress duplication

– Can optimize specific cases

Ease of Offloading

• Offloading should be quick, easy

• Applied to a AAA PS3® Game Renderer
– In two hours

– ~800 functions

– ~170KB SPE object code

– ~45% of host performance on a single SPE

• Plenty of scope for Cell specific optimisations
to follow that

• Automation allows rapid experiments + larger
scale

Ease of Offloading

• Applied to PS3® complex Game AI code
– Running on SPU in < 1 hour (~30% speed)

– Just offload block + SW cache

– 7hrs iterative optimization of running SPU code
• Profiling memory access

– Add 20 loc (portable C++ data access templates)

– Final speedup ~4x faster than PPU

NASCAR The Game 2011 ™

Paris Game AI Conference 2011

@sheredom, Technology Lead,
 Codeplay

Offloads in NASCAR

• Late in development cycle AI Offload
– CPU over utilized / little time to implement

• Serial AI? less possible AI bot characters

• Offloaded 3 major AI components
– Onto 1 and 4 SPUs

– Small code changes (~100 / ~20 loc)

• 50% AI speed increase on PS3
– < 1 month dev time

– Incremental profile, refactor, offload

What Code to Offload?

• C++ is not a small language
– Chance of encountering feature X increases with

size of call graph attempted…

• Some challenges (Implemented in Offload C++ for PS3)

– Calls to 3rd party library code on CPU (middleware)
• On Cell, can perform callback - not on GPU?

– Indirect calls
• Virtual methods + calls via function pointer?

– Inline assembly?

– Intrinsic operations e.g. Altivec?

Do you have a flat profile?

• It is likely code has already been optimized
– If it were too slow, it probably was fixed

• Does your application have a hot-spot?
– Scientific computing on large data sets – yes

• A simulation is going to spend a lot of time simulating…

– Many different real time processes
• E.g. a game – maybe

• Simulation + AI + path finding + graphics + sound +
physics + decompression + scripting + shading …

Do you have complex data?

• That contains pointers?
– (trees, graphs, lists, objects, …)

• Including hidden in vtables

– More structured than arrays of ‘plain old data’ ?

• Patching data
– Copied data needs fixed

– Find, and adjust, each pointer
• (if wrong, your program will crash – at some point)

• Easy to evolve a convoluted data layout

Do you have complex code?

• Does it perform many different actions?
– Does it operate on many different types?

– Does it dynamically select operations?
• Is it parameterised by code?

• Does it invoke call-backs? virtual methods?

– Does it just take arguments + return a result?
• Does it read or mutate global variables directly?

• Or indirectly, via pointers?

• Is it split over many inter-related routines?
– In many compilation units / source files?

What are accelerators good at?

• Simple computation over simple data
– Lots of data

– Lots of (repeated) computation

• Is this the code you have?
– Actually, accelerators can be good at more

complex code

– It takes more programmer effort

Offloading Virtual Methods

• Call graph duplication of late bound calls

– function pointers / virtual methods

• Offload block ‘domains’

– select functions to duplicate for indirect calls

– Lookup accelerator implementation via host
address

OOP on Accelerators

// A (very simple) class hierarchy with virtual methods

struct Object { virtual void update();}

struct SubClass : public Object { virtual void update();}

// A collection of objects to update in simulation

Object * objects[N_OBJECTS]; // Objects allocated in global heap

void update_objects() {

 // Partition code: Inside the offload block is compiled to accelerator

 offload [Object::update, Subclass::update] {

 for (int i = 0; i < N_OBJECTS; i++)

 objects[i]->update(); // Invoke virtual method on each object

}} What code is invoked?
What data is accessed?

OOP on Accelerators (2)

offload [Object::update, Subclass::update] {

 // Bring collection of pointers into local store

 Array<Object*> local(objects, N_OBJECTS);

 for (int i = 0; i < N_OBJECTS; i++)

 local[i]->update(); // Invoke virtual methods on objects

}

• What was inefficient before?
– Per iteration: get pointer, lookup function, invoke

• Remove a high latency fetch per iteration
– Desirable to pre-fetch member data too..

Portable template data
transfer strategy

OOP on Accelerators (3)

offload {

 for (int i = 0; i < N_OBJECTS; i++) {

 Subclass local = *objects[i]; // Bring object into local store

 local.update(); // Call method directly

 *objects[i]=local; // Write object back to global memory

}}

• What was inefficient before?
– vtable lookup, member data access in update()

• To improve:
– Remove virtual call + ensure object data in accelerator memory

Need to be sure of specific type - sort
objects by type to achieve this.

Can improve further by double buffering transfer operations

Overview

• High Level View of Accelerator Programming

• Adapting to Accelerators

• Offload C++ Tutorial

– Some (short) C++ examples

• C++ on GPU

• A Demo of C++ for GPU

C++ Accelerated Massive
Parallelism

• Open specification: C++ on GPU

• Initial implementation

– (for MSVS 11)

• Data parallel code

– Buffer mechanism to

 get data on GPU

• No call-graph duplication

103

#include <amp.h>
using namespace concurrency;
void AddArrays(int n, int * pA, int * pB, int * pC)
{
 array_view<int,1> a(n, pA);
 array_view<int,1> b(n, pB);
 array_view<int,1> sum(n, pC);

 parallel_for_each(sum.grid,
 [=](index<1> idx) restrict(direct3d) {
 sum[idx] = a[idx] + b[idx];
 }
);
}
 From http://www.danielmoth.com/Blog/cppamp_in_1_or2_or3_slides.pptx

Offload C++ vs OffloadCL

• Offload C++ for PS3

– Mature industrial optimizing C++ compiler

– Used in AAA games titles e.g. NASCAR on PS3

• OffloadCL

– Research prototype compiler

– Not quite the same C++ dialect + libraries

• Aims at GPU in addition to Cell

• Aims at compatibility with recent C++ on GPU work

– E.g. C++AMP from AMD + Microsoft

Our modifications for OffloadCL

On GPU, we need to
map all our arrays
into buffers.

GpuPointer<float> clS(&S[0][0], MAX_HEIGHT*MAX_WIDTH);

GpuPointer<float> clT(&T[0][0], MAX_HEIGHT*MAX_WIDTH);

GpuPointer<float> clV(&V[0][0], MAX_HEIGHT*MAX_WIDTH);

GpuPointer<const float> clL(&L[0][0], MAX_HEIGHT*MAX_WIDTH);

GpuPointer<const float> clD(&D[0][0], MAX_HEIGHT*MAX_WIDTH);

GpuPointer<const float> clM(&M[0][0], MAX_HEIGHT*MAX_WIDTH);

static void OffloadCLUpdateVelocityPerf() {

 const int range = (UniverseHeight-1)*UniverseWidth - UniverseWidth-1;

 clS.push(); clT.push(); clL.push(); clD.push(); clV.push();

 GpuPointer<float> mS(clS), mT(clT), mV(clV);

 GpuPointer<const float> mM(clM), mL(clL), mD(clD);

 parallel_for (range, [=] (const Point &pt)

 {

 int iGID = pt.GetGlobalID();

 mV[iGID] = mD[iGID]*(mV[iGID] + mL[iGID]*(mS[iGID]-mS[iGID-1]+mT[iGID]-mT[iGID-MAX_WIDTH]));

 });

 clV.pull();

}

105

We use a lambda-
function version of
parallel_for

We have to push
buffers to GPU (but
this only pushes if
buffer is on host)

In OffloadCL, we use
the GpuPointer<>
class to map buffers

Pull back to host only
results we need

OffloadCL / TBB / C++AMP

• Very similar concepts

– parallel_for variants for data parallelism

• Lambda functions are C++11 only

• All array data must be stored in buffer classes

– GpuPointer<T> / array / array_view classes

– The name doesn’t really matter.

– OffloadCL will support both C++AMP style and a
new upcoming OpenCL C++ standard style

• Codeplay working with other companies in
Khronos group to standardize these issues

Andrew Richards Codeplay 106

OpenCL

• Low level C99 derived language + API

– Adds

• Vector types (SIMD)

• Memory spaces (__private __global __local __constant)

• Large set of built-in functions

– Removes

• Recursion, Function pointers

• Mutable global variables

• Multi-vendor standard

107

OpenCL (2)

• Implicitly parallel

• Dynamic compilation (load, compile, run)

• Portable (CPU, GPU, Cell, DSP, FPGA?)

• Host + Accelerator model

– Interact via API for
– Data transfers

– Program synchronization

– Compilation

– Kernel invocation

108

void square(float* input

 , float* output

 , const unsigned count) {

 for (int i = 0; i < count; ++i)

 output[i]=input[i]*input[i];

}

OpenCL (3)

109

__kernel void square(__global float* input,

 __global float* output,

 const unsigned count) {

 int i = get_global_id(0);

 if(i < count)

 output[i] = input[i] * input[i];

}

• Simple C/C++ serial computation -->

– OpenCL kernel + ~100 loc C on host

Compiling to OpenCL

• OpenCL is intentionally a low level language

– Usage requires consideration of many details

• Would rather compile to OpenCL

– Let compiler handle boilerplate

– Write programs at a higher level

• Feasible

– Offload C++ on Cell compiles to C99 for SPU/PPU

– Offload CL compiles C++ to OpenCL 1.1

110

Overview

• High Level View of Accelerator Programming

• Adapting to Accelerators

• Offload C++ Tutorial

– Some (short) C++ examples

• C++ on GPU

• A Demo of C++ for GPU

Offload CL Demo
• Simulation time

– Intel Core 2 Duo
@2.67Ghz

– AMD Radeon
HD6570

• 20.94ms

– (CPU)

• 11.43ms

– (C++ AMP)

• 9.22ms

– (Offload C++ GPU)

Andrew Richards Codeplay 112

Offload CL Demo

Andrew Richards Codeplay 113

• My laptop

– Nvidia Geforce 310M

• (Too low end to run C++AMP / DX11)

– Intel Core i5 @ 2.4Ghz

• On “Windows Experience” scores

• Relative CPU (6.8 vs 6.3)

• Relative GPU (5.9 vs 6.7)

• Some other variables:

– OpenCL implementation, etc…

Conclusions + Open Questions…

• Offloading computation to accelerators

– C++ lambdas + data parallel (the future?)

• Performance portability over many devices?

– GPU / CPU / Cell

– Even on more complex code?

– Are we stuck with GPU inflexibility?

114

References + Further Reading

• The Impact of Diverse Memory Architectures on Consumer Software: an
Industrial Perspective from the Video Games Domain

– Proceedings of the 6th ACM SIGPLAN Workshop on Memory Systems Performance and Correctness,
pages 37-42. ACM, 2011.

• Programming Heterogeneous Multicore Systems using Threading Building Blocks.

– Proceedings of the 4th EuroPar Workshop on Highly Parallel Processing on a Chip (HPPC'10), Lecture
Notes in Computer Science 6586, pages 117-125. Springer, 2010.

• Automatic Offloading of C++ for the Cell BE Processor: a Case Study Using
Offload.

– Proceedings of the 2010 International Workshop on Multi-Core Computing Systems (MuCoCoS'10),
pages 901-906. IEEE Computer Society, 2010.

• Offload - Automating Code Migration to Heterogeneous Multicore Systems.

– Proceedings of the 5th International Conference on High Performance and Embedded Architectures
and Compilers (HiPEAC'10), Lecture Notes in Computer Science 5952, pages 337-352. Springer, 2010.

115

References + Further Reading

• Preparing AI for Parallelism: Lessons from NASCAR The Game 2011

– Neil Henning <neil@codeplay.com> , Paris Game AI Conference 2011

• Optimizing Sort Algorithms for the PS3 using Offload™

– Pierre-André Saulais <pierre-andre@codeplay.com>
http://codeplay.com/resources/uploaded/Optimizing_Sort_Algorithms_for_the_PS3.pdf.pdf

• The Codeplay Offload Knowledge Base

– FAQS, Tutorials, Case Studies and Performance Tips on Offload C++ for PS3

– http://codeplay.com/kb

116

Questions + Contact

117

Find us on the web at

www.codeplay.com
(We’re hiring + have internships + doctoral sponsorships)

http://codeplay.com/jobs

Email

george@codeplay.com

Any questions?

