

Marwa A. Al-Shandawely
PDC/KTH

 Algorithm overview.

 Trivial parallelization.

 Problems.

 Sequential optimization

 Proposed solutions.

 Experimental results.

 Conclusions and future work.

for i=1 to n-1
 find pivotPos in column i
 if pivotPos ≠ i
 exchange rows(pivotPos,i)
 end if

 for j=i+1 to n
 A(i,j) = A(i,j)/A(i,i)
 end for j

 for j=i+1 to n+1
 for k=i+1 to n
 A(k,j)=A(k,j)-A(k,i)×A(i,j)
 end for k
 end for j
end for i

!$omp parallel do private (i ,j)

nThreads
0

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8

N=1000 N=2000 N=3000 N=4000 N=5000

luOmpGE.html

 Poor data locality

 Pivoting is done by master thread

 Overheads of creating and destroying threads
at each iteration

 Sequential optimization

 Replace division by the constant pivot

 Avoid loop invariant access in the inner most
loop

 Eliminate the check for pivot changing
position

 Make use of fortran array notation

Do k=j+1,n
 A(k,j)=A(k,j)/A(j,j)
End do

C=1/A(j,j)
A(j+1:n)=A(j+1:n)*c

Pivots array

 Pivots array

 Locks array

 Pivot holder
◦ Eliminate (i) on column(i+1)

◦ Search (i+1)

◦ Store pivot (i+1) position

◦ Prepare colmn (i+1)

◦ Free lock (i+1)

◦ Eliminate (i) on rest of scope

P1

P2

P3

P4

Locks

nThreads
0

2

4

6

8

10

12

1 2 3 4 5 6 7

N=1000 N=2000 N=3000 N=4000 N=5000

luOmpGE.html

 The original algorithm requires pivot columns
to be prepared in order while the whole
matrix is accessed for each pivot column.

 For large input sizes; the cache is evicted
many times for each iteration and there is no
reuse of data in the cache.

 False sharing on pivots and locks array.

 Double elimination on pivot holders.
◦ Knowledge of two pivots allow data reuse.

 Each column is an accumulation of eliminations using

previous columns!
◦ Make more pivots available each step and eliminate each column

using several pivots while it is in the cache.

Pivots array

 Block of pivots

 Increase work/iter.

 Increase locality

 Less locks

 Load balancing?!

P1

P2

P3

P4

Locks

Pivots array

 Block of pivots

 Increase work/iter.

 Increase locality

 Less locks

 Load balancing?!

P1

P2

P3

P4

Locks

0

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8

Original

C=1

C=2

C=3

C=4

C=5

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8

N=2000 N=5000

0

5

10

15

20

25

30

2 3 4 5 6 7 8

0

5

10

15

20

25

2 3 4 5 6 7 8

Original

double elimination

C=25 with double

elimination

N=2000 N=5000

 Scalable performance on multicores is highly dependent on

application implementation, data layout and access patterns.

 Cache and memory access optimization techniques is vital

for performance despite the loss of readability.

 Future work:
◦ Adaptive blocking scheme that changes the block

size as a function of the matrix size, cache settings,
and number of cores.

