

Marwa A. Al-Shandawely
PDC/KTH

 Algorithm overview.

 Trivial parallelization.

 Problems.

 Sequential optimization

 Proposed solutions.

 Experimental results.

 Conclusions and future work.

for i=1 to n-1
 find pivotPos in column i
 if pivotPos ≠ i
 exchange rows(pivotPos,i)
 end if

 for j=i+1 to n
 A(i,j) = A(i,j)/A(i,i)
 end for j

 for j=i+1 to n+1
 for k=i+1 to n
 A(k,j)=A(k,j)-A(k,i)×A(i,j)
 end for k
 end for j
end for i

!$omp parallel do private (i ,j)

nThreads
0

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8

N=1000 N=2000 N=3000 N=4000 N=5000

luOmpGE.html

 Poor data locality

 Pivoting is done by master thread

 Overheads of creating and destroying threads
at each iteration

 Sequential optimization

 Replace division by the constant pivot

 Avoid loop invariant access in the inner most
loop

 Eliminate the check for pivot changing
position

 Make use of fortran array notation

Do k=j+1,n
 A(k,j)=A(k,j)/A(j,j)
End do

C=1/A(j,j)
A(j+1:n)=A(j+1:n)*c

Pivots array

 Pivots array

 Locks array

 Pivot holder
◦ Eliminate (i) on column(i+1)

◦ Search (i+1)

◦ Store pivot (i+1) position

◦ Prepare colmn (i+1)

◦ Free lock (i+1)

◦ Eliminate (i) on rest of scope

P1

P2

P3

P4

Locks

nThreads
0

2

4

6

8

10

12

1 2 3 4 5 6 7

N=1000 N=2000 N=3000 N=4000 N=5000

luOmpGE.html

 The original algorithm requires pivot columns
to be prepared in order while the whole
matrix is accessed for each pivot column.

 For large input sizes; the cache is evicted
many times for each iteration and there is no
reuse of data in the cache.

 False sharing on pivots and locks array.

 Double elimination on pivot holders.
◦ Knowledge of two pivots allow data reuse.

 Each column is an accumulation of eliminations using

previous columns!
◦ Make more pivots available each step and eliminate each column

using several pivots while it is in the cache.

Pivots array

 Block of pivots

 Increase work/iter.

 Increase locality

 Less locks

 Load balancing?!

P1

P2

P3

P4

Locks

Pivots array

 Block of pivots

 Increase work/iter.

 Increase locality

 Less locks

 Load balancing?!

P1

P2

P3

P4

Locks

0

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8

Original

C=1

C=2

C=3

C=4

C=5

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8

N=2000 N=5000

0

5

10

15

20

25

30

2 3 4 5 6 7 8

0

5

10

15

20

25

2 3 4 5 6 7 8

Original

double elimination

C=25 with double

elimination

N=2000 N=5000

 Scalable performance on multicores is highly dependent on

application implementation, data layout and access patterns.

 Cache and memory access optimization techniques is vital

for performance despite the loss of readability.

 Future work:
◦ Adaptive blocking scheme that changes the block

size as a function of the matrix size, cache settings,
and number of cores.

