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Where does HTM fit in the big picture? 



HTM: Economy and Performance 

Performance 

Productivity Economy 

FGLocks 
HTM 

STM 

HTM Challenges 

• Manage design complexity 

•Utilize existing mechanisms 

better 

•Minimize changes required 

 

• Improve performance 

• Go lazy !! 

• Yet avoid bulk 

communication !!! 



Managing complexity 

Managing design complexity by 

utilize existing mechanisms 

better 
 

Use coherence protocol to 

detect conflicts early  

and  

track these at cache line 

granularity 

Managing design complexity by 

minimizing changes 
 

No ad-hoc communcation 

hardware for TM 

and 

Piggy-back TM information on 

coherence messages  



Improving performance 

Improving performance by going 

lazy  

Optimisitically run past 

conflicts 

Minimize abort overhead 

Utilize MLP better 

Improving performance by 

avoiding bulk commuication  

Lightweight commits using point-

to-point  messaging only 

between affected cores 



Scalability of lazy commits 

Naïve: One at a time … the entire address space is one giant bank 

Better: Split address space into banks … lock all required banks prior to 

committing updates … ensure progress guarantees 

Ideal: Ensure conflicting transactions re-execute and prevent  

re-executions/new transactions from reading locations not yet updated 



Prior Work 

EAZY-HTM[Micro2009]  

• Detect early – Resolve late 

• Ad-hoc communication channel for 

TM  

• Relies on directory communication 

for correctness 

The correctness concern  

Prevent other cores from 

accessing lines that are part of a 

committing transaction’s write-

set but haven’t yet been made 

globally visible 



The correctness concern in 

more detail 

L1@Core1: {Xold, Yold} TCommit@Core2: {Xnew, Ynew} 

INV(X) 
L1@Core1: {Yold} 

Core1:TRead(X)          Xnew 

Core1:TRead(Y)          Yold  
 

 

TCommit@Core1: {P, Q} INV(Y) 

L1@Core1: {} 

Core 1 commits an 

inconsistent computation 

 

Atomicity requires Core1 

to either see (Xold,Yold) 

or (Xnew,Ynew)  

but not (Xnew,Yold) 
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The EAZY-HTM Approach 

Every first TRead  or TWrite to a cache line 

communicates with the directory 

Ensures correctness but causes severe performance 

degradation 



Reason for performance 

degradation 

Most cache lines accessed in a typical transaction are not contended 

 

Excessive communication with the directory causes congestion 

The π-TM Approach 

Speed up the common case 

Do extra work only for contended lines 



The π-TM Approach 

Design changes 

Add π-bit to track contended lines 

Pessimitically Invalidate such lines on commit or abort  

Goals 

Speed up the common case 

Do extra work only for contended lines 

Other aspects 

No ad-hoc communication channel for TM 

TM info is piggy-backed on coherence messages  



Incorporating adaptability 

Lazy Detection and Resolution 

Commit scalability problems but works well when 

application scalability is the dominant limiting factor  

(high contention) 

Why? 

For short transactions with high contention, 

early conflict detection can increase 

transactional execution time  

We employ a global commit token (GCT) scheme in such scenarios 

Each thread decides locally whether to use π-mode or GCT-mode 

Both π-mode or GCT-mode transactions can coexist safely 

Most applications run in π-mode 



Estimating impact 

π-TM is implemented on top of this baseline 

Adaptability mechanisms are enabled 

Baseline 

Faithfully implement Eazy-HTM information flow 

However, we use the NoC for communication (no ad-hoc communication) 

Coherence requests carry TM info as well 

Other configurations evaluated 

EE: LogTM, an eager conflict resolution design 

LL-GCT:    Global commit token (transactions commit on at a time) 

LL-STCC:  A detailed scalable TCC implementation 



Performance 

16 threads on 16 cores, SIMICS+GEMS, STAMP applications 

Baseline 

Effect of 

adaptability Improved commit 

bandwidth 

Best overall 

performance 

4bars (L2R): 

π-TM 

EE(LogTM) 

LL-GCT 

STCC 



Conclusion 

π-TM achieves the following : 

 A fully decentralized scalable commit protocol 

 Only conflicting threads/transactions get affected 

 Low design cost 

 Performs the best among evaluated design points 


