
Improving Commit Scalability

in

Lazy Hardware Transactional Memory

Anurag Negi*, Rubén Titos-Gil^,

Manuel E. Acacio^, Jose M. Garcia^, Per Stenström*

*Chalmers University of Technology, Sweden

^Universidad de Murcia, Spain

Fourth Swedish Workshop on Multicore Computing (MCC)

at Linköping University, 2011

Outline

The importance of HTM

The key challenges

An approach to finding solutions

Prior work and associated

inefficiencies

The π-TM approach

Where does HTM fit in the big picture?

HTM: Economy and Performance

Performance

Productivity Economy

FGLocks
HTM

STM

HTM Challenges

• Manage design complexity

•Utilize existing mechanisms

better

•Minimize changes required

• Improve performance

• Go lazy !!

• Yet avoid bulk

communication !!!

Managing complexity

Managing design complexity by

utilize existing mechanisms

better

Use coherence protocol to

detect conflicts early

and

track these at cache line

granularity

Managing design complexity by

minimizing changes

No ad-hoc communcation

hardware for TM

and

Piggy-back TM information on

coherence messages

Improving performance

Improving performance by going

lazy

Optimisitically run past

conflicts

Minimize abort overhead

Utilize MLP better

Improving performance by

avoiding bulk commuication

Lightweight commits using point-

to-point messaging only

between affected cores

Scalability of lazy commits

Naïve: One at a time … the entire address space is one giant bank

Better: Split address space into banks … lock all required banks prior to

committing updates … ensure progress guarantees

Ideal: Ensure conflicting transactions re-execute and prevent

re-executions/new transactions from reading locations not yet updated

Prior Work

EAZY-HTM[Micro2009]

• Detect early – Resolve late

• Ad-hoc communication channel for

TM

• Relies on directory communication

for correctness

The correctness concern

Prevent other cores from

accessing lines that are part of a

committing transaction’s write-

set but haven’t yet been made

globally visible

The correctness concern in

more detail

L1@Core1: {Xold, Yold} TCommit@Core2: {Xnew, Ynew}

INV(X)
L1@Core1: {Yold}

Core1:TRead(X) Xnew

Core1:TRead(Y) Yold

TCommit@Core1: {P, Q} INV(Y)

L1@Core1: {}

Core 1 commits an

inconsistent computation

Atomicity requires Core1

to either see (Xold,Yold)

or (Xnew,Ynew)

but not (Xnew,Yold)

D

E

L

A

Y

The EAZY-HTM Approach

Every first TRead or TWrite to a cache line

communicates with the directory

Ensures correctness but causes severe performance

degradation

Reason for performance

degradation

Most cache lines accessed in a typical transaction are not contended

Excessive communication with the directory causes congestion

The π-TM Approach

Speed up the common case

Do extra work only for contended lines

The π-TM Approach

Design changes

Add π-bit to track contended lines

Pessimitically Invalidate such lines on commit or abort

Goals

Speed up the common case

Do extra work only for contended lines

Other aspects

No ad-hoc communication channel for TM

TM info is piggy-backed on coherence messages

Incorporating adaptability

Lazy Detection and Resolution

Commit scalability problems but works well when

application scalability is the dominant limiting factor

(high contention)

Why?

For short transactions with high contention,

early conflict detection can increase

transactional execution time

We employ a global commit token (GCT) scheme in such scenarios

Each thread decides locally whether to use π-mode or GCT-mode

Both π-mode or GCT-mode transactions can coexist safely

Most applications run in π-mode

Estimating impact

π-TM is implemented on top of this baseline

Adaptability mechanisms are enabled

Baseline

Faithfully implement Eazy-HTM information flow

However, we use the NoC for communication (no ad-hoc communication)

Coherence requests carry TM info as well

Other configurations evaluated

EE: LogTM, an eager conflict resolution design

LL-GCT: Global commit token (transactions commit on at a time)

LL-STCC: A detailed scalable TCC implementation

Performance

16 threads on 16 cores, SIMICS+GEMS, STAMP applications

Baseline

Effect of

adaptability Improved commit

bandwidth

Best overall

performance

4bars (L2R):

π-TM

EE(LogTM)

LL-GCT

STCC

Conclusion

π-TM achieves the following :

 A fully decentralized scalable commit protocol

 Only conflicting threads/transactions get affected

 Low design cost

 Performs the best among evaluated design points

