
Using Thread-Level Speculation to Improve the 
Performance of JavaScript Execution in Web 

Applications 

Jan Kasper Martinsen, Håkan Grahn, Anders 
Isberg

jkm@bth.se, hgr@bth.se,

Anders.Isberg@sonyericsson.com

mailto:jkm@bth.se
mailto:hgr@bth.se
mailto:Anders.Isberg@sonyericsson.com


Motivation!

Web Applications are very popular!

●Facebook, Google maps, Twitter, Google mail

●Web Application multimedia:

● HTML5, WebGL, WebCL

●JavaScript (client side logic) of Web Applications



Motivation! (..more)

●Multicore, everywhere

●Challenging to program!

●Improve performance?

●Program correctness?

●JavaScript a sequential language

●Abstract away from the underlying hardware

●How to utilize from JavaScript / Web Applications



Web workers

●Message passing

●The complexity remains!

●Increased performance or used to improve the user 
experience?



Our approach Thread-Level Speculation

●When we encounter a JavaScript function, we execute it 
as a thread

●If there will be a conflict between threads we need to 
rollback to an earlier point of time to ensure program 
correctness

●We can speculate on loops, but previous research has 
shown that loops are rare in Web Applications



Our implementation

●Modified the Squirrelfish interpreter (in Webkit)

●Nested speculation

●Each time we modify a global variable or an id, we check 
if writes or reads are in conflict with previous reads and 
writes

●Each time we speculate on a function, we save the state 
of execution before that point

●If there will be a conflict, we rollback to the points before 
the function was speculated (and do not speculate on 
previous misspeculations)



Experimental methodology

We selected 15 Web Application from the Alexa list, and 
selected them both based on their functionality and 
popularity

We compare the execution speed with the sequential and 
thread-level speculation enabled interpreter

Experiments were performed on a dual quad-core Linux 
computer



Experiments shows significant speedups for many Web 
Applications

Thread-Level Speculation performance



No. Speculations

•MSN : 12012

•Amazon : 10768

•YouTube : 7349

•Facebook : 968 



Function depth (i.e, what is the largest 
number of nesten function speculations)

●MSN : 24

●Amazon : 23

●YouTube : 13

●Facebook : 22

●Wordpress : 99 



Rollbacks

●MSN : 137

●Amazon : 267

●YouTube : 25

●Facebook : 51 



Rollbacks / speculations

●MSN : 0.011

●Amazon : 0.025

●Youtube : 0.003

●Facebook : 0.052

●Wikipedia : 0 (no rollbacks!)



Memory usage at each rollback

MSN : 20.1 MB 

Amazon : 14.1 MB

YouTube : 17.1 MB

Facebook : 7.1 MB

BBC : 33.0 MB



Average search depth from deletion upon 
rollbacks

●MSN : 5.85

●Amazon : 8.0

●YouTube : 5.44

●Facebook : 9.16



Max number of active threads:

●MSN : 191

●Amazon : 83

●YouTube : 407

●Facebook : 27



Conclusion

●A large number of threads is required for a high 
performance

●Rollbacks are potentially less problematic than memory 
requirements

●Large number of speculation does not mean improved 
performance

●Some of the concept of JavaScript interesting in Thread-
Level Speculation context



Thanks for listening!

My Licentiate seminar 14.12.2011

You are hereby invited!!!

http://www.bth.se/com/jkm

http://www.bth.se/com/jkm

	Slide 1
	Slide 2
	Slide 7
	Slide 8
	Slide 5
	Slide 9
	Slide 11
	Slide 12
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 15

