Dynamic inter-core scheduling
in Barrelfish

avoiding contention
with malleable domains

Georqgios Varisteas, Mats Brorsson, Karl-Filip Faxén

November 25, 2011

Outline

* |Introduction

» Scheduling & Programming models
» Malleability

* Future work

Georgios Varisteas 2011

Barrelfish: a multi-kernel OS

- message based

NIC Driver Web Server
communication ‘
Memory Server -
 replication and V*‘ﬁ;

| ConSiStency Monitor Monitor Monitor
User ‘v'

Kernel
| CPU driver

Core0
* assumes no shared-memory

= provides no system-wide resource
management

e

- heterogeneity @ 0@ T —

 —

Swedish
Institute of
Computer

Sciance

Georgios Varisteas 2011 Mﬁméd;earch nmmj 1

SICS

Overall Goals

Allow for shared memory based parallel
programming models

OpenMP, Wool, Cilk++

take advantage of the underlying hardware
architecture.

... While exploiting the message passing
nature of Barrelfish

scalability
portability

Georgios Varisteas 2011

This project...

Perform resource management in order to
iIncrease throughput and minimize
contention in Barrelfish

Inter-core scheduling
system-wide load balancing
Dynamic scheduling
malleable resource allocation
In a multiprogrammed context

Georgios Varisteas 2011

Motivation

Current parallel programming models:

focus on running in isolation
minimal operating system support
can be wasteful in a multiprogrammed context

Many real-life applications:

exhibit fluctuating parallelism throughout their
execution

are not that parallel from the start

—

Georgios Varisteas 2011

Scheduling

Split into two cooperating levels

System level,

aware of the global state and the availability of
diverse resources

User level,

aware of the parallelism in the application

Georgios Varisteas 2011

Runtime 1

Runtime 2

Runtime 1

Runtime 2

A

Georgios Varisteas 2011

Swedish
Institute of
Computer

Sciance

Microsoft

Research né,:

SICS

System scheduler

» Accept feedback on process efficiency

* Modify the allotment of cores (domain) of
each process for maximum resource
utilization

Section 1 Section 2

* Distributed service

- multiple instances

overlook distinct segmentSﬁi———
~ processes can span BEE
HEN
1

multiple segments

Secion 4

Georgios Varisteas 2011

User-level scheduler

Integrated into the app
Schedules a process' t

ication run time

nreads in its domain

Provides feedback on per core efficiency, to
the system scheduler

metric: wasted cycles
“cycles spent while not having work”™

Georgios Varisteas 2011

User level scheduler, cont'd

Capture average & worst thread efficiency

Over a fixed interval classify on two criteria:
inefficient or efficient. utilization of workers
satisfied or deprived: system contention
inefficient: overestimation, desire decreased

efficient & satisfied: underestimation, desire
increased

efficient & deprived: balanced, desire
unchanged

Forward new desire and classification 1

Georgios Varisteas 2011

/ o — e e e TR — E— — —_—

Shared memory programming
models (OpenMP, Wool, Cilk++) |

* Focusing on the task-based paradigm

- work-stealing models scale easily e

» Wool already ported
- application state in the stack
» Cilk++ requires a custom compiler

- application state in the heap

12

Georgios Varisteas 2011 Miﬁmg;earch nm;m; @ Compuier

System scheduler, cont'd

Over a fixed interval each instance will:

iIncrease allotment for its segment's “efficient
and satisfied’ processes

extra cores are either idle or taken from its
segment's “inefficient” processes

if needed broadcast a request to other
scheduler instances

result to time-sharing if not enough “inefficient”
processes exist

Which worker to suspend? 13

Georgios Varisteas 2011

Time sharing not always avoided

Joining a task requires simultaneous
execution of the workers involved

Phase-lock gang scheduling
Efficient gang scheduling for barrelfish

Georgios Varisteas 2011

)

Scalability and Portability?
l s |ntra-Core communication " *
I e Progess2 1

: Process 1 i : Task

5 Task Ul ek | [Task | [Tesk | :

o Task Task Task : | | Task | | Task || Task |:

: ' | | : Task i Task | :

: Worker
_ Worker Worker Worker : | Worker

User
1
]
]
]
1
1
]
]
1 a
. | Monitor
Monitor : !
Monitor |
]
User :
----------------------------- F e e e e e G G e -
Kernel |
]
_ ! CPU driver
CPU driver _ .
CPU driver I
]
]
]
]
I 15
]
Section1 ' Section 2
Georgios Varisteas 2011 Mﬁméd;earch Em; I%T”m”'::f SIGS

Malleable domains

Load balance the system by modifying the
domain of each process

unwanted worker-threads are suspended
or new ones are added

Worker-thread suspension tricky,
depends on the run-time in use

lazy-suspension
immediate-suspension

J
|

Georgios Varisteas 2011

| Immediate suspension |

runtime 1 runtime 2

runtime 1 runtime 2

17

Microsoft

Georgios Varisteas 2011 Research Em;

Swedish

Institute of

Computer .
Sciance

Lazy suspension

runtime 1

runtime 1

runtime 2

runtime 1

irunlime 2

runtime 2

runtime 1

18

Georgios Varisteas 2011

Microsoft

Research né;

Swedish

Institute of

Computer .
Sciance

i

E.f

Dl §
BEEN

P

|

(O I I 1
HEEEEEEE
B I

|

=

!Eﬂm

4

—
|
|

[]

Seciian 3 Spchion 4

* Intelligently migrate
processes to avoid
contention

* Allot processing
resources according to
runtime's efficiency &
app's parallelism

Georgios Varisteas 2011

Micros

Future Work

Evaluation in comparison to other OSs
Locality aware allotment of cores

Use core attributes as criteria on
heterogeneous systems

Handle the absence of shared-memory
support in the architecture

Georgios Varisteas 2011

THANK YOU

Q&A

21

Georgios Varisteas 2011 Mﬁ%';earch nmj n I%|SIGS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

