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Overall Goals

Allow for shared memory based parallel
programming models

OpenMP, Wool, Cilk++

take advantage of the underlying hardware
architecture.

... While exploiting the message passing
nature of Barrelfish

scalability
portability
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This project...

Perform resource management in order to
iIncrease throughput and minimize
contention in Barrelfish

Inter-core scheduling
system-wide load balancing
Dynamic scheduling
malleable resource allocation
In a multiprogrammed context
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Motivation

Current parallel programming models:

focus on running in isolation
minimal operating system support
can be wasteful in a multiprogrammed context

Many real-life applications:

exhibit fluctuating parallelism throughout their
execution

are not that parallel from the start

—
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Scheduling

Split into two cooperating levels

System level,

aware of the global state and the availability of
diverse resources

User level,

aware of the parallelism in the application
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System scheduler

» Accept feedback on process efficiency

* Modify the allotment of cores (domain) of
each process for maximum resource
utilization

Section 1 Section 2

* Distributed service

- multiple instances

overlook distinct segmentSﬁi———
~ processes can span BEE
HEN
1

multiple segments

Secion 4
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User-level scheduler

Integrated into the app
Schedules a process' t

ication run time

nreads in its domain

Provides feedback on per core efficiency, to
the system scheduler

metric: wasted cycles
“cycles spent while not having work”™
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User level scheduler, cont'd

Capture average & worst thread efficiency

Over a fixed interval classify on two criteria:
inefficient or efficient. utilization of workers
satisfied or deprived: system contention
inefficient: overestimation, desire decreased

efficient & satisfied: underestimation, desire
increased

efficient & deprived: balanced, desire
unchanged

Forward new desire and classification 1
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Shared memory programming
models (OpenMP, Wool, Cilk++) |

* Focusing on the task-based paradigm

- work-stealing models scale easily e

» Wool already ported
- application state in the stack
» Cilk++ requires a custom compiler

- application state in the heap

12
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System scheduler, cont'd

Over a fixed interval each instance will:

iIncrease allotment for its segment's “efficient
and satisfied’ processes

extra cores are either idle or taken from its
segment's “inefficient” processes

if needed broadcast a request to other
scheduler instances

result to time-sharing if not enough “inefficient”
processes exist

Which worker to suspend? 13
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Time sharing not always avoided

Joining a task requires simultaneous
execution of the workers involved

Phase-lock gang scheduling
Efficient gang scheduling for barrelfish
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Malleable domains

Load balance the system by modifying the
domain of each process

unwanted worker-threads are suspended
or new ones are added

Worker-thread suspension tricky,
depends on the run-time in use

lazy-suspension
immediate-suspension

J
|
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| Immediate suspension |

runtime 1 runtime 2

runtime 1 runtime 2
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Lazy suspension

runtime 1

runtime 1

runtime 2

runtime 1

irunlime 2

runtime 2

runtime 1
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* Intelligently migrate
processes to avoid
contention

* Allot processing
resources according to
runtime's efficiency &
app's parallelism
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Future Work

Evaluation in comparison to other OSs
Locality aware allotment of cores

Use core attributes as criteria on
heterogeneous systems

Handle the absence of shared-memory
support in the architecture
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THANK YOU

Q&A
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