
Dynamic inter-core scheduling
in Barrelfish

.

avoiding contention
with malleable domains

Georgios Varisteas, Mats Brorsson, Karl-Filip Faxén

November 25, 2011

2

Outline

● Introduction
● Scheduling & Programming models
● Malleability
● Future work

Georgios Varisteas 2011

3

Barrelfish: a multi-kernel OS

● message based

communication
● replication and

consistency
● heterogeneity

● assumes no shared-memory
● provides no system-wide resource

management

Georgios Varisteas 2011

4

Overall Goals

● Allow for shared memory based parallel
programming models

– OpenMP, Wool, Cilk++
– take advantage of the underlying hardware

architecture.
● … while exploiting the message passing

nature of Barrelfish
– scalability
– portability

Georgios Varisteas 2011

5

This project...

● Perform resource management in order to
increase throughput and minimize
contention in Barrelfish

– Inter-core scheduling
● system-wide load balancing

– Dynamic scheduling
● malleable resource allocation

– In a multiprogrammed context

Georgios Varisteas 2011

6

Motivation
● Current parallel programming models:

– focus on running in isolation
– minimal operating system support
– can be wasteful in a multiprogrammed context

● Many real-life applications:
– exhibit fluctuating parallelism throughout their

execution
– are not that parallel from the start

Georgios Varisteas 2011

7

Scheduling

● Split into two cooperating levels

● System level,
– aware of the global state and the availability of

diverse resources
● User level,

– aware of the parallelism in the application

Georgios Varisteas 2011

8

Georgios Varisteas 2011

9

System scheduler
● Accept feedback on process efficiency
● Modify the allotment of cores (domain) of

each process for maximum resource
utilization

● Distributed service
– multiple instances

overlook distinct segments
– processes can span

multiple segments

Georgios Varisteas 2011

10

User-level scheduler

● Integrated into the application run time
● Schedules a process' threads in its domain
● Provides feedback on per core efficiency, to

the system scheduler [1]
– metric: wasted cycles

“cycles spent while not having work”

Georgios Varisteas 2011

[1] Kunal Agrawal, Charles E. Leiserson, Yuxiong He, and Wen Jing Hsu. Adaptive work-stealing with
 parallelism feedback. ACM Transactions on Computer Systems, 26(3):1-32, September 2008.

11

● Capture average & worst thread efficiency
● Over a fixed interval classify on two criteria:

– inefficient or efficient: utilization of workers
– satisfied or deprived: system contention
– inefficient: overestimation, desire decreased
– efficient & satisfied: underestimation, desire

increased
– efficient & deprived: balanced, desire

unchanged
● Forward new desire and classification

User level scheduler, cont'd

Georgios Varisteas 2011

12

Shared memory programming
models (OpenMP, Wool, Cilk++)

● Focusing on the task-based paradigm
– work-stealing models scale easily

● Wool already ported
– application state in the stack

● Cilk++ requires a custom compiler
– application state in the heap

Georgios Varisteas 2011

13

● Over a fixed interval each instance will:
– increase allotment for its segment's “efficient

and satisfied” processes
– extra cores are either idle or taken from its

segment's “inefficient” processes
– if needed broadcast a request to other

scheduler instances
– result to time-sharing if not enough “inefficient”

processes exist
● Which worker to suspend?

System scheduler, cont'd

Georgios Varisteas 2011

14

Time sharing not always avoided

● Joining a task requires simultaneous
execution of the workers involved

● Phase-lock gang scheduling [1]
– Efficient gang scheduling for barrelfish

Georgios Varisteas 2011

[1] S. Peter et al., “Design principles for end-to-end multicore schedulers,” in Proceedings of the 2nd
USENIX conference on Hot topics in parallelism, 2010, p. 10.

15

Scalability and Portability?

Georgios Varisteas 2011

16

Malleable domains
● Load balance the system by modifying the

domain of each process
– unwanted worker-threads are suspended
– or new ones are added

● Worker-thread suspension tricky,
depends on the run-time in use

– lazy-suspension
– immediate-suspension

1) Continuation-passing-style: Shared memory is used instead of the CStack.

Georgios Varisteas 2011

17

Immediate suspension

Georgios Varisteas 2011

18

Lazy suspension

Georgios Varisteas 2011

19

Georgios Varisteas 2011

● Intelligently migrate
processes to avoid
contention

● Allot processing
resources according to
runtime's efficiency &
app's parallelism

20

Future Work

● Evaluation in comparison to other OSs
● Locality aware allotment of cores
● Use core attributes as criteria on

heterogeneous systems
● Handle the absence of shared-memory

support in the architecture

Georgios Varisteas 2011

21

THANK YOU

Q & A

Georgios Varisteas 2011

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

