H'gh-'lé\iel programming of
.wdatahcé.htrlc reconfigurable

T
'l ‘|‘|

ow systems

‘l |
‘i;

. ||“ “ o
Georgl Gaydadjlev Dlrector cl)f Maxaler IoT Labs BV, Delft
Hono‘aiyi#sﬂmg Professgr;a; ﬂ]gi epartment of Computlng Imperial College London

1= = I 14 Sl 7
i L !
o 2 |

MAX E L E R| HLPP 2019, Linképing University,

T e cql ol 08 i e S Linképing, Sweden, 4 July 2019

MAXIMUM PERFORMANCE COMPUTING

gt b .
4 ,|_




Think Angstréoms not nanometers

We should steer the movements of almost each individual electron to solve our specific problem

0.1 nm
14 nm

10A  10% AA 10°A

9
9

th

TT

Cc-C , glucose
bondl

l
I

5

]

]
]
r—

MAXIMUM PERFORMANCE COMPUTING

cells %5

T ribosome

hemoglobin

light microscope

resolution

very few atoms
(e.g., 3nm/ 30A > 6 to 12 atoms)

100s of Si atoms in 14nm

Polysilicon gate __

14 nm Process
3sp tetrahedral bond . i
Silicon nanowire

Lo SEAY =
channel 4 AR

Silicon oxide film




| The Data Movement Challenge

= DFMA 0.01mm?2 10pJ/OP — 2GFLOPs

16nm chip, 10mm on a side, 200W

Processor Technology

[ I : Vdd (nominal)
' L DFMA energy
L 64b 8 KB SRAM Rd

| Wire energy (256 bits, 10mm)

A chip with 104 FPUs:
100mm?2

200W

20TFLOPS

Pack 50,000 of these in racks

1EFLOPS
10MW

<SANVIDIA.

40 nm

0.9V

50 pJ

14 pJ

310 pJ

64-bit DP
20pJ 256 pJ
256-bit buses

256-bit access
8 kB SRAM

Relative delay
A 4
1,000

100

10

1

0.1

1
250 180 130 90 65 45 32 22 15 10
Technology node (nm)

0.0

DRAM
16 nJ I )\,

Efficient
SOOI I off-chip link

wdie= 1mm “2X pitch”
wire wio repeaters

== 1mm "“2X pitch”
wire with repeaters
== Gate delay

» Transistors improve with scaling,
interconnects do not

» Even with repeaters, Imm wire
delay~50x gate delay at
22nm node

Source: ITRS

S NVIDIA

(Courtesy: NVIDIA and ITRS)

(f Moving data off-chip will cost ~200x more energy and is also much slower

3‘ Wires that carry the data (and instructions, if any) at all levels should be considered seriously

MAXIMUM PERFORMANCE COMPUTING



Computing in Time: Computing in Space:
Follow a recipe step by step Build a “recipe specific” factory with multiple
one at the time paths performed simultaneously

Efficient, predictable, reliable “mass production” of huge data amounts

At each clock tick all data in processing move one stage ahead -> massive throughput

MAXIMUM PERFORMANCE COMPUTING



The Combined Control/DataFlow System

Customized
Encoding

UtiIization above 90%

Goal is to minimise and optimise data
movements in Control/DataFlow (C/DF)

* System 1 and System 2 are based on D Kahneman,

MAXEILER “Thinking Fast Thinking Slow”, Nobel Prize in Economics, 2002




Programming a Dataflow “mass production” Engine

Create customized mega accelerators with massive inherent throughputs

2. Compile dataflow structure and load to hardware

B -3

- )

[E==g] [E=EsE]

(G=1Ap+0q)
f

|—|||||||||||

DDR4 RAM

DDR4 RAM

o

x) TTTITTTTTTT

=0 ﬁ

1. Describe Conjugate Gradient 3. Stream data through the
as dataflow graph Custom Accelerator

MAXIMUM PERFORMANCE COMPUTING




Vi Editer: meteo.c Gu _

Eile Edit View Terminal Tabs

E* Compute Virtual Temperature contribution®*/f

Help

u[i3dD] += zderx ;

for{int i30=0; i3D=MLAT*MLOM*MLEV; i3D++) {
float alps = log{ps[i20]]):
float alps_pl = log{ps[i2D + 1]):
float zdxlps = RD * 8.5F * (alps pl - alps):
float exrcp = exp{RCP * alps pl);
flogt tvirt =
float zderx =

ot

u ou

ah. 04 a dp

{1.8f + EP * qfiED + 1]1% t[i3D + 1] * exrcp * sigrcp[k]
- (twirt[i30] + twirt[i3D + HLAT])* zdxlps / (DX * hxt[j]):

asmenst

Er/clients/georgetown/meteo/MeteoKernelOpt.java - MaxIDE

(=)=

un  Window Help

ALL

e

MAXEISER

MAXIMUM PERFORMANCE COMPUTING

b Il OldMeteoKern
P [gyPowOfConsta
P [ PSTendencies
b fgmanager
g params
P sim

» . MeteokernelOpt.

P [J} MeteoKernelScal
(“test/src
=, JRE System Lib

axCompiler jar - /net

(a8 MaxBlox jar - /network

{3 MaxGenFD jar - /netwe| |

(5 application

| D

P [J)Logjava 84 2\

DFEVar z

DFEVar u

DFEVar tvirt =

* zdxlps *

floatType, NLAT_ req);

DFEVar alps = KernelMath.log(inputRange,

DFEVar exrcp = thePow.TuncEvalips,

derx = -

p = zderx;

P& @ |- 5l © e
x4

LUdLIYPE, NLAI_reqj;
B e

derivative of virtual temperature

T_ = mem. romMapped (“INV_HXT", lat_addr,

ps_mod,

DFEVar zdxlps_mod = RD * 0.5 * (stream.offset(alps,

PowOfConstant thePow = new PowOfConstant(RCP);

TloatType);

(L +EP *q) *t * exrcp * SIGRCP;

=8

floatType);

1) - alps);

(tvirt + stream.offset(tvirt, NLAT))
INV_DX * INV_HXT;

al

) l@aSVN Repo...

5= Outline &2 =8
AR W e

=53 com.maxeler.c:
P ‘= import declarat
< (&g MeteoKernelOp
FFRD_C : dout
FFFV_C . doub
#F ALFK_C - do
FFBETK_C - do
SFPHIG_C - dou| |
$FINV_DX_C -
FFPSBCM_C - ¢
FFPSP_C . doul
#FTBCM_C - de
#FU_C : double
#FQ_C . doubl
#FUBIG_C : doi

SF i o~

a

al D]

El Console| @ Javadoc 3

© com.maxeler

g getow

lib.PowOfC

Implementation of the power of costant function

Author:

Writable

Smart Insert | 433 : 15

|
dL- g =13

(]




Real data flow graph as
generated by
MaxCompiler
4,866 nodes;

10,000s of stages/cycles

Full Customization in:
Space, Value and Time z
(SVT)

......

MAXELLER Mastering complex custom computing graphs using simple code



Maxeler’s DataFlow Engines (DFEs)

* Largest Reconfigurable Chip

LMEM

4-96GB

High bandwidth memory link J1(—]'-()—()-IS—)—I—O-g-l—c—c—e-l-l-s—
O(10MB) of on-chip SRAM
Reconfigurable

compute fabric O(lOG B) Of Oon-Ccd rd DRAM*

Dataflow cores &

FMEM (fast memory) DFE-to-DFE interconnect

(Large Memory) O(1k) multipliers

Link to main data network

* working towards 128GB on a %, single slot PCle card

MAXIMUM PERFORMANCE COMPUTING



| Application Level Components

MAXIMUM PERFORMANCE COMPUTING

/ Host application (C, Python, Matlab..)

Kernels (MaxJ)
SLiC (instantiate the
arithmetic structure)

MaxelerOS
DFE

PCI Expressl m I

or

Infiniband
Manager (MaxJ)
(arrange the data
orchestration)

10



The Computational Model (DFE sub-system)

e Spatial arithmetic chip “hardware” substrate with
— flexible arithmetic units and

— programmable interconnect
— (looks like FPGAs but is not limited to)

* Programmable Static Dataflow in 2D Hardware
* Systolic Execution at Kernel level

e Streaming Custom Computing at system level
 GALS* kernel-to-kernel comm.

* GALS - Globally Asynchronous Locally Synchronous

MAXEISER 11




The Computational Model (SW suite)

 Complete compilation toolchain (MaxCompiler)
* Dedicated design methodology

* |ntegrated simulation and debug environment

* Fully integrated in Linux (CentOS)

— runtime system (MaxelerOS and SLiC)
— low level software support

Help designers focus on the data/algorithm and the system architecture for rapid development

[1] Nils Voss, Tobias Becker, Oskar Mencer, Georgi Gaydadjiev:
Rapid Development of Gzip with MaxJ. ARC 2017: 60-71

MAXEISER 12




The Computational Model (Memory types)

* Only three explicit basic memory types
— Scalars (always exposed to the CPU)
— Fast Memory (FMEM): small and fast (on-chip)
— Large Memory (LMEM): large and slow (off-chip)

* There are, however, always exceptions, an example
— VU9P on MAX5 has BRAM and URAM on chip
— both constitute FMEM FPGA slices in the package
— correct placement is a key

r
— dedicated algorithms required [2] & S

[2] Nils Voss, Pablo Quintana, Oskar Mencer, Wayne Luk, Georgi Gaydadjiev:
Memory Mapping for Multi-die FPGAs. FCCM 2019: pp78-86

MAXEISER 13




Multiple platforms, single DFE abstraction

Application and MaxJ

+ Performance Portable Migration

gend

LMEM

(Large Memory)
4-96GB

High bandwidth
memory link

Reconfigurable

compute fabric

MaxRing links
Dataflow cores &

FMEM (Fast Memory)

Amazon EC2 F1 Instances

Link to main data network
(e.g., PCle, Infiniband)

(MAX4 Intel based) (MAXS5 Xilinx based)
MAXELER 14




Optimizations at all levels
— Space Multiple scales of Important features for

SSHN computing optimization
A\Wx - complete system level = balance compute, storage
4
— and 10
parallel node level = maximize utilization of
compute and interconnect
microarchitecture level = minimize data movement
= J“ arithmetic level — tradeoff range, precision
=2 &\f/ and accuracy
= = discretize in Time, Space
% and Value
bit level = encode and add
redundancy
““‘/ transistor level => manipulate ‘0’ and ‘1’
(-] and more, e.g., trade/hide Communication (Time) for/behind Computation (Space)

MAXEISER 15




 MaxJ Basics: Programming generation of HW

- Example: x? + 30
- where x is a long 1D vector

DFEVar x = io.input("x", dfeln )) ;
DFEVar result = x * X 30;

=

io.output ("y", result, dfelInt(1ll)) ;\

30

MAXEISER 16




| MaxJ Basics: What is a DFEVar?

- Connection between operators in the dataflow graph
- An edge of the dataflow graph

- Stream of data elements of a certain type and size

* (long vector)
- Physically it is a set of wires in the hardware
- It looks like a variable in MaxJ code
- BUT IS NOT A VARIABLE! (in traditional CS sense)

MAXEISER 17




MaxJ Basics: Java meta-programming

* You can use the full power of Java to write a program that
generates the dataflow graph

» Java variables can be used as constants in hardware
* inty;, DFEVarx, x =x+vy;

* Hardware variables can not be read in Javal
* Cannot do: inty; DFEVar x; y = Xx;

 Java conditionals and loops choose how to generate
hardware - not make run-time decisions

- Once you execute your Java program the generated graph is

what exist in your application (not the Java)

We do not execute Java on the DFE!

MAXIMUM PERFORMANCE COMPUTING

18



MaxJ: Moving Average of three numbers

Dataflow computing in hardware using a language you know

MaxCompiler - MovingAverageSimpleKernel: Original kernel graph - MaxIDE

File Edit Navigate Search Project Run Window Help

P [3) MovingAverageSimple
~ % Run Rules
o & omtaton DFEVar x = io.input("x", dfeFloat(8, 24));
[2) Build Log
Final kernel graph

[+ original emelgraph _|

(i @ | A& @ O |tutorial-chap03-example... » Simulation & v e v =] ‘E‘Maxcomp...
[¢5 Project Explorer &3 = 0O | [1] *MovingAverageSimpleKernel.max;j £ MovingAverageSimpleKernel: Original kernel graph &2 =8
B % (]
v wuroriakchapos-eampiermoving ¢ gss MovingAveKernel extends Kernel {
P 5 CPU Code
¥ & Engine Code I
T ovinanversgesimple MovingAveKernel (KernelParameters parameters) { =~
P [5) MovingAverageSimple! S upe r ( pa ra met ers ) ; [x vru,._(y(k_mum |

stream.offset(x, -1);

DFEVar prev

&b Manager Graph

DFEVar next

D iy tutorial-chap03-example2-moving

stream.offset(x, 1);

DFEVar sum = prev + X + next;

DFEVar result

io.output("y",

= sum / 3;

result, dfeFloat(8, 24));

a m D] ]
& Console & [ simulated System Log X % Gx bE = rgv =0
y Simulation (tutorial-chap03 1-movi imple)

T B
0° MAXELER

MAXEISER 19

MAXIMUM PERFORMANCE COMPUTING



What about branches

“When you come to
a fork in the road, take it”

- Yogi Berra

Goalcast

Just turned 80 and
still going strong

| class SimpleKernel extends Kernel {

SimpleKernel () {
DFEVar x = io.input (“x”, dfeInt(24));

DFEVar result = (x>10) ? x+1 : x-1;
dfeInt (25)) ;

io.output (“y”, result,

Just “take” both paths in Space?

MAXEISER

[20] ¢ [ 1]

20



MaxJ Basics: Java meta-programming

* You describe a dataflow graph generation using Java syntax

* Objects in the MaxCompiler APl are used to generate
hardware or configure the hardware/the build process

» Java APl is crafted to ease the generation of massive
dataflow graphs

* Obiject Orientation possible and encouraged (e.g., using KernelLibs)
* You can write generic code which optimises itself on the fly
* You can write optimisation libraries, e.g., MaxPower

* Many normal Java libraries can be used, e.g., JUnit

MAXEISER 21



MaxJ Intro: Scheduling

* The dataflow graph in a kernel is statically scheduled and will
be executed simultaneously in a parallel fashion

- Operations have inherent latencies

MAXIMUM PERFORMANCE COMPUTING

If different data paths meet, they need to be balanced and delays
(FIFOs) are inserted

The scheduler tries to minimise the costs of implementing those
delays in terms of FMEM

You can add manual scheduling constraints with stream.offset ()

22



MaxJ Intro: Scheduling

MAXIMUM PERFORMANCE COMPUTING

DFEVar x = io.input(“x”,
DFEVar vy;

vy = (X + x) * x;

io.output (“y”, vy, type);

type) ;

23



MaxJ Intro: Scheduling

DFEVar x = io.input(“x”, type);
DFEVar v;

y = (x + x) * stream.offset(x, 1);

io.output (“y”, vy, type);

MAXIMUM PERFORMANCE COMPUTING




MaxJ Intro: Working with loop counters

e How can we implement this in MaxJ?

for (int i = 0; 1 < N; 1i++) {
qli] = pli] + 17

}

e How about this?

DFEVar p = io.input (“p”, dfeInt(30));
DFEVar i1 = io.input(“i”, dfeInt (30));
DFEVar g = p + 1i;

(“g”, q, dfeInt(31));

io.output Yes... But, now we need to create an array i

in software and stream it to the DFE as well

MAXELER 25




MaxJ Intro: Working with loop counters

e There s very little ‘information’ in the / stream.
o Could produce it directly on the DFE itself
o Some HW resources will be used to do so

@

DFEVar p = io.input (“p”, dfeInt(31));

DFEVar 1 control.count.simpleCounter (32, N);
DFEVar g
io.output

Half as many inputs

+ i
P Less data transfer

(“g”, q, dfeInt(32));

e Counters can be used to generate sequences of numbers
e Complex counters can have strides, wrap points, triggers:
o eg,lf(y==10) y=0, else if (en==1) y=y+2;

MAXELER 26




MaxJ Intro: Programming Components

- MaxCompiler — Java-driven dataflow compiler
 SLiC Interface — CPU integration

MaxelerOS — optimized DFE <-> CPU link

- Seamless simulation environment

MaxCompiler - MovingAverageWeighted_MovingAverageWeightedKernel_original.pxg - MaxIDE

File Edit Navigate Search Project Run Window Help

(i A © O ‘tutorial-chap03-example3... 7 Simulation ‘ =@ 4~ L=Re=] 4 raf
= [J] CpustreamKernel. max;j [J] MovingAverageWeightedKernel. maxj 3 MovingAverageWeighted_MovingAverageWeightedKernel_original.pxg 32 =8
= . . z BN A oA B Ig ‘)ﬂ .
a= DFEVar prevWeighted = prev*weightO; m— - =] [= =
DFEVar nextWeighted = next*weight2; T )
DFEVar xWelghted - x*weightl' MovingAverageWeightedMan, £lab & = & &
& = & =
DFEVar divisor = withinBounds ? constant.\ | ] [ D rJ :
Selected Node Properties l X i y — B2 B2
DFEVar sum = prevWeighted + xWeighted + n¢ | | yodemu B ‘ -3
DFEVar result = sum / divisor; >4 S
3
i a : hwFloat(8, 24) B ]
io.output("y", result, dfeFloat(8, 24)); [ | b:nwrloats, 24) £ ‘ 'al
(1] I I ) («F | l [+] ;
no MAXELER | & = &

MAXEILSER 27




DSP Blocks 10 Blocks

A |
: !
DFE Resource Usage Reporting |
|
» Allows you to see what lines of code are I ? I 2:
« using what resources and focus optimization :
« Separate reports for each kernel and for the manager :
LUT/FFs Block RAMs
LUTs FF's BRAMs DSPs : MyKernel.java
727 871 1.0 2 : resources used by this file Different operations
0.24% 0.15% 0.09% 0.10% : % of available :
ifferen
71.41% 61.82% 100.00% 100.00% : % of total used use different
94.29% 97.21% 100.00% 100.00% % of user resources resources
: public class MyKernel extends Kernel {
public MyKernel (KernelParameters parameters) {
: super (parameters) ;
1 31 0.0 0 : DFEVar p = io.input ("p", dfeFloat(8,24));
2 9 0.0 0 : DFEVar g = io.input("g", dfeUInt(8));
: DFEVar offset = io.scalarInput ("offset", dfeUInt(8));
8 8 0.0 0 : DFEVar addr = offset + qg;
18 40 1.0 0 : DFEVar v = mem.romMapped ("table", addr,
: dfeFloat (8,24), 256);
139 145 0.0 2 P =P * p;
401 541 0.0 0 : P =p + v;

io.output ("r", p, dfeFloat(8,24));

MAXEISER 28




Optimization Feedback

 MaxCompiler gives detailed latency and area annotation
back to the programmer

d.Buy = ask.Price == lowPrice & order_book.securityId === secld;
d.Sell = bid.Price == highPrice & order_book.securityld === secld;

d.Quantity = d.Buy 7?7 ask.Quantity : bid.Quantity;
d.Price = d.Buy 7 ask.Price : bid.Price;

12.8ns + | 6.4ns — | 19.2ns (total compute latency)

» Evaluate precise effect of code
on latency and chip area

MAXIMUM PERFORMANCE COMPUTING

29



| FPGA HW vs Dataflow System Design

DFEs currently use FPGAs

« Maxeler MAX4C, MAX4N, MAX5C
* Xilinx Alveo
* Amazon EC2 F1 instance

» (but any suitable coarser-grain technology will do)
HPC FPGA development often focus on kernels
* e.g., accelerate Matrix Multiply, FFT, Convolution

/0 and memory bottlenecks are often ignored

Dataflow looks at the complete application
* Customise Dataflow
* Reduce Bandwidth requirements
* Balance the entire system
* Maximize Throughput

MAXEISER 30



VHDL vs MaxJ example (HMS CERN)

class Jet extends KernelLib({
//.. constructors etc.
public static Jet add(Jet lJet, Jet rJet) {

DFEVar energy = lJet.energy() + rJet.energy();
DFEVar ecal = lJet.ecal() + rJet.ecal();
DFEVar valid = lJet.valid() & rJet.valid();

return new Jet(lJet.kernel(), energy, ecal,
valid);

* MaxJ code is just Software

* No need to keep track on exact bit
sizes, fixed point positions, etc

* Other kernels benefit even more

® Bitonic Sort is 500 VHDL lines versus
130 in MaxJ

MAXIMUM PERFORMANCE COMPUTING

ARCHITECTURE behavioral OF JetSum IS
SIGNAL jetTmp tJet := cEmptyJdet;
SIGNAL EnergyTmp , EcalTmp

STD IL.OGIC VECTOR( 21 DOWNTO 0 );

BEGIN
PROCESS (
BEGIN

IF( RISING_EDGE( clk ) ) THEN
IF( NOT jetInl.DataValid ) THEN
jetOut <= cEmptyJet;
ELSE
jetOut.Energy( 15 DOWNTO 0 ) <=
jetInl.Energy + jetIn2.Energy;

jetOut.Ecal( 15 DOWNTO 0 ) <=
jetInl.Ecal + jetIn2.Ecal;

jetOut.DatavValid <= TRUE;
END IF;
END IF;
END PROCESS;
END ARCHITECTURE behavioral;

clk )

31



System Example: Decelerate to Accelerate

CPU time 1,001s Option 1 time 11s Option 2 time 7s

DFE

Functionl — 5s

10G data
transferred

Function2 — 1s

Some observations
At Kernel level:

CPU Transfer 5s

Function2 — 1s

Function2 — 2s

Final result only

« Kernel 1 speedup 200x (1)

« Kernel 2 “speedup” 0.5x (1)

At System level:

* Option 1 (Kernel 1 only) speedup 91x
« Option 2 (Kernels 1 and 2) speedup 143x

But what about the required effort?

MAXEISER 32



Slotnick’s law (of effort):

“The parallel a’pproach to computing does require that
‘ some original thinking be done about numerical
W analysis and data management In order to secure
efficient use.

In an environment which has represented the
| absence of the need to think as the highest virtue this
¢ is a decided disadvantage.”

I Daniel Slotnick (1931-1985)
Chief Architect of llliac IV

Turn brain power into performance
MAXELEER




¥ Non Traditional Design Process

SelFconsistent Loop (50%)

Toop over k-points
POlhe ™

Davidson diagonalization Loop (2:10%)

77,247x326
(2.3GR)

1) *MovingaveragesimpleKemel maxj &2 # MovingAverageKemnel: Original kemel graph &2

class MovingAveKernel extends Kerne

MovingAveKernel(KernelParameter
super(parameters);

MiddleKernel

DFEVar x = io.input("x", dfe

DFEVar prev = stream.offset(
DFEVar next = stream.offset(
DFEVar sum = prev + X + next
DFEVar result = sum / 3;

AR

io.output("y", result, dfefl

i uatouu!oa Aa!:swaw

1 | | 1

Used to build balanced real systems, however, not easy to learn/educate

MAXELER

MAXIMUM PERFORMANCE COMPUTING

34




Global Weather Simulation with DFEs in China

An order of magnitude improvement over the Linpack-driven supercomputer technology

® . Gan, H. Fu, W. Luk, C. Yang, W. Xue, X.
Huang, Y. Zhang, and G. Yang, Accelerating

solvers for global atmospheric equations Patch

through mixed-precision data flow engine, 1H
published at FPL 2013 Pulch| Parch. | Puich | baich
® Joint research with Imperial College and AR SaaRaARaSaRARRTIRaRAAR

Tsinghua University ‘ disi

® Simulating the atmosphere using the = |
(a) The cubed-sphere mesh (b) The computational domain

shallow water equation

Fig. 1. Mesh and computational domain.

Energy
Platform Speedup E .
Imperial College
6 Core CPU 1x 1x
Tianhe-1A Node 23x 15x
Maxeler MPC-X 330x 145x W) ﬁl%f; F
smgnua 1111\’CI'SIQ'

MAXEISER 35




Open Research Questions

« How to compare against general purpose machines?

* How to validate results as “good enough™?

 How to forecast the required “Dan Slotnick’s Effort™?

« How to significantly decrease P&R times?

« How to create a much better silicon substrate?

« How to educate the think = model = program mindset?
 Tools, tools, tools, ...

(we need the help of Parallel Programming experts, you)

All of the above while dealing with the growing impact of
Quantum Mechanical Effects on running software

e

_liOADS? WHERE WE'RE GOING,
WE DON'T NEED ROADS

MAXEISER 36




Over 150 Maxeler University Program Members

N FO iti e &
KO REA S TL‘/}I\”VEESITB D Universitit Hamburg MAX-PLANCK-GESELLSCHAFT .

UNIVERSITY
DER FORSCHUNG | DER LEHRE | DER BILDUNG Manchester

- A “ (IT Metropolitan
o, n
ok 1 ey

The ese UmVelSlty Of Hong g Karlsruhe Institute of Technology

FﬁlEDRICH ALEXANDER

v
ERLANGEN NURNBERG

NANYANG &(‘ UNIVERSITAT PADERBORN
ﬁ TECHNOLOGICAL
UNIVERSITY

. NAGASAKI HERIOT
- DI i - [l Derkeley

BB = =¥ UNIVERSITY
GOETHE .g,} Universit i 4 :
T e/ y of Windsor CHALMERS ; : :
- f)ﬁ; « k A UNIVERSITAT thinking forward University of Kragujevac |1
- 6‘ FRANKFURT AM MAIN

x‘ UNIVERSITY OF

Qb THE HONG KONG
Qz POLYTECHNIC UNIVERSITY

FHEL T AS

LUDWIG-

WAIE = N[J Sl ‘¥ OXFORD
: a\&)é? “;E’ULHJNUU[M National University MAXIMILIANS-
srael Institute of Technology of Singapore I_IVIu UNIVERSITAT

[ ) =itxz  UIC AM

m  TECHNISCHE UNIVERSITAT
[ KAISERSLAUTERN

P TOHOKU UNIVERSITY UNIVERSITY
OF ILLINOQIS
AT CHICAGO

¥ I) l \' Tl "
0oy

"

The University of Manchester
Manchester

~>
Tsinghua University Buslness SChOOI UiO UniverSity Of OSIO

M| The University of Hong Kong m

AGH UNIVERSITY OF SCIENCE |_-I ['I.I —I.El.

) AND TECHNOLOGY f-ﬁ CHOSUN UNIVERSITY

TECHNICAL
UNIVERSITY
OF CRETE

4 Delft
TUDelft &

UCLA

MAXEISER 37

) Northeastern University




Maxeler Applications Gallery

Dataflow Apps and Analytics for Machine Learning http://appgallery.maxeler.com/
{4 @j\ v—' Pt Dataflow Engine (DFE) Ecosystem

¢ With over 150 universities in our university program, we
decided to create an app gallery to enable the community
to share applications, examples, demos, ...

¢ The App Gallery is complemented by a teaching program,
with the first successful course taught at Imperial College in
2014. see
http://cc.doc.ic.ac.uk/openspl16

¢ Top 10 APPS:

Correlation: in real-time, pairwise, on 6,000 streams
100% Guaranteed Packet Capture
Webserver, cache and load balancing
HESTON Option pricer

N-body simulation

Regex matching (e.g. for Security)
Brain network simulation

Quantum Chromo-Dynamics kernel
Seismic Imaging

Realtime Classification

YYVYYVYVYYVYYY

38



http://cc.doc.ic.ac.uk/openspl14

Some links with more information

Maxeler Multiscale Dataflow Computing:
https://www.maxeler.com/technology/dataflow-computing/

® A Filterby:

Computing in Space explained by Mike Flynn:
http://www.openspl.org/what-is-openspl/

Computing in Space Course at Imperial College:
http://cc.doc.ic.ac.uk/openspl16/

Exciting Applications for DFEs (and JDFEs):
http://appgallery.maxeler.com

Maxeler DFEs on AWS EC2 F1:
https://aws.amazon.com/marketplace/seller-profile?id=2780c6ec-d326-47fc-9ff6-
c66ab2ba202a

Maxeler and Xilinx Alveo collaboration:
https://www.xilinx.com/products/boards-and-kits/alveo.html

georgi@maxeler.com

MAXELER 39



https://www.maxeler.com/technology/dataflow-computing/
http://www.openspl.org/what-is-openspl/
http://cc.doc.ic.ac.uk/openspl14/
http://appgallery.maxeler.com/
https://aws.amazon.com/marketplace/seller-profile?id=2780c6ec-d326-47fc-9ff6-c66ab2ba202a
https://www.xilinx.com/products/boards-and-kits/alveo.html

Questions

MAXIMUM PERFORMANCE COMPUTING

40



