
High-level programming of
data-centric reconfigurable
dataflow systems

HLPP 2019, Linköping University,
Linköping, Sweden, 4 July 2019

Georgi Gaydadjiev, Director of Maxeler IoT-Labs BV, Delft
Honorary Visiting Professor at the Department of Computing, Imperial College London

Think Ångströms not nanometers

We should steer the movements of almost each individual electron to solve our specific problem

0.1 nm à 1 Å

14 nm à 140 Å

DNA

C-C

bond

1Å 10Å 102Å 103Å 104Å

glucose

hemoglobin

ribosome

…

cells

100s of Si atoms in 14nm

very few atoms

(e.g., 3nm / 30Å à 6 to 12 atoms)

light microscope

resolution

2

The Data Movement Challenge

3

Wires that carry the data (and instructions, if any) at all levels should be considered seriously

(Courtesy: NVIDIA and ITRS)

BUT

3

Moving data off-chip will cost ~200x more energy and is also much slower

4

Computing in Time:
Follow a recipe step by step
one at the time

Computing in Space:
Build a “recipe specific” factory with multiple
paths performed simultaneously

One result per clock cycle

Efficient, predictable, reliable “mass production” of huge data amounts

Build Computers for your Problem and Data

At each clock tick all data in processing move one stage ahead -> massive throughput

The Combined Control/DataFlow System

SYSTEM 1*
x86 cores

SYSTEM 2*
flexible memory

plus logic

Low Latency
Memory

High Throughput
MemoryGoal is to minimise and optimise data

movements in Control/DataFlow (C/DF)

Customized
Encoding

* System 1 and System 2 are based on D Kahneman,
“Thinking Fast Thinking Slow”, Nobel Prize in Economics, 2002

Customized
Computing

5

Utilization above 90%

1. Describe Conjugate Gradient
as dataflow graph

3. Stream data through the
Custom Accelerator

2. Compile dataflow structure and load to hardware

Create customized mega accelerators with massive inherent throughputs

Programming a Dataflow “mass production” Engine

6

From Equations to Dataflow Hardware

u
x

s

x

vd

x

F
ah

p
ah
TRuu

a
vu

ah
u

t
u

+
¶
F¶

-
¶

¶
-

¶
¶

-
¶
¶

-
¶
¶

-=
¶
¶

lls
s

jl
1ln

!

7

Real data flow graph as
generated by
MaxCompiler
4,866 nodes;

10,000s of stages/cycles

Full Customization in:
Space, Value and Time

(SVT)

88Mastering complex custom computing graphs using simple code

Maxeler’s DataFlow Engines (DFEs)

9

MaxRing
Interconnect

Dataflow Engine (DFE)LMEM
(Large Memory)

4-96GB

Reconfigurable
compute fabric

Dataflow cores &
FMEM (fast memory)

High bandwidth memory link

Link to main data network

MaxRing links

• Largest Reconfigurable Chip
• O(1k) multipliers
• O(100k) logic cells
• O(10MB) of on-chip SRAM
• O(10GB) of on-card DRAM*

• DFE-to-DFE interconnect

* working towards 128GB on a ¾, single slot PCIe card

9

Application Level Components

SLiC

MaxelerOS

Memory

CPU

DFE

M
em

ory

Kernels (MaxJ)
(instantiate the
arithmetic structure)

*+

+

Manager (MaxJ)
(arrange the data
orchestration)

Host application (C, Python, Matlab..)

10

PCI Express
or
Infiniband

10

The Computational Model (DFE sub-system)

11

• Spatial arithmetic chip “hardware” substrate with
– flexible arithmetic units and
– programmable interconnect
– (looks like FPGAs but is not limited to)

• Programmable Static Dataflow in 2D Hardware
• Systolic Execution at Kernel level
• Streaming Custom Computing at system level
• GALS* kernel-to-kernel comm.

* GALS – Globally Asynchronous Locally Synchronous

11

The Computational Model (SW suite)

12

• Complete compilation toolchain (MaxCompiler)
• Dedicated design methodology
• Integrated simulation and debug environment
• Fully integrated in Linux (CentOS)

– runtime system (MaxelerOS and SLiC)
– low level software support

12

Help designers focus on the data/algorithm and the system architecture for rapid development

[1] Nils Voss, Tobias Becker, Oskar Mencer, Georgi Gaydadjiev:

Rapid Development of Gzip with MaxJ. ARC 2017: 60-71

The Computational Model (Memory types)

13

• Only three explicit basic memory types
– Scalars (always exposed to the CPU)

– Fast Memory (FMEM): small and fast (on-chip)

– Large Memory (LMEM): large and slow (off-chip)

• There are, however, always exceptions, an example
– VU9P on MAX5 has BRAM and URAM on chip

– both constitute FMEM FPGA slices in the package

– correct placement is a key

– dedicated algorithms required [2]

13

[2] Nils Voss, Pablo Quintana, Oskar Mencer, Wayne Luk, Georgi Gaydadjiev:
Memory Mapping for Multi-die FPGAs. FCCM 2019: pp78-86

MaxRing
Interconnect

Dataflow Engine (DFE)LMEM
(Large Memory)

4-96GB

Reconfigurable
compute fabric

Dataflow cores &
FMEM (Fast Memory)

High bandwidth
memory link

Link to main data network
(e.g., PCIe, Infiniband)

MaxRing links

Multiple platforms, single DFE abstraction

+

{
Application and MaxJ

gen4 gen5

Performance Portable Migration

(MAX4 Intel based) (MAX5 Xilinx based)
14

Multiple scales of
computing

Important features for
optimization

complete system level Þ balance compute, storage
and IO

parallel node level Þ maximize utilization of
compute and interconnect

microarchitecture level Þ minimize data movement

arithmetic level Þ tradeoff range, precision
and accuracy
= discretize in Time, Space
and Value

bit level Þ encode and add
redundancy

transistor level => manipulate ‘0’ and ‘1’

and more, e.g., trade/hide Communication (Time) for/behind Computation (Space)

15

Optimizations at all levels

Flow
 / Tim

e

Space

15

MaxJ Basics: Programming generation of HW

• Example: x2 + 30
• where x is a long 1D vector

16

DFEVar x = io.input("x", dfeInt(11));

DFEVar result = x * x + 30;

io.output("y", result, dfeInt(11));
x

x

+
30

y

MaxJ Basics: What is a DFEVar?

• Connection between operators in the dataflow graph
• An edge of the dataflow graph
• Stream of data elements of a certain type and size

• (long vector)

• Physically it is a set of wires in the hardware
• It looks like a variable in MaxJ code
• BUT IS NOT A VARIABLE! (in traditional CS sense)

17

• You can use the full power of Java to write a program that
generates the dataflow graph

• Java variables can be used as constants in hardware
• int y; DFEVar x; x = x + y;

• Hardware variables can not be read in Java!
• Cannot do: int y; DFEVar x; y = x;

• Java conditionals and loops choose how to generate
hardware → not make run-time decisions

• Once you execute your Java program the generated graph is
what exist in your application (not the Java)

• We do not execute Java on the DFE!

MaxJ Basics: Java meta-programming

18

MaxJ: Moving Average of three numbers
Dataflow computing in hardware using a language you know

19

2
0

What about branches

20

x

+
1

y

-
1

>
10

class SimpleKernel extends Kernel {
SimpleKernel() {

DFEVar x = io.input(“x”, dfeInt(24));
DFEVar result = (x>10) ? x+1 : x-1;
io.output(“y”, result, dfeInt(25));

}
}

20

Just “take” both paths in Space?

Just turned 80 and
still going strong

• You describe a dataflow graph generation using Java syntax

• Objects in the MaxCompiler API are used to generate
hardware or configure the hardware/the build process

• Java API is crafted to ease the generation of massive
dataflow graphs
• Object Orientation possible and encouraged (e.g., using KernelLibs)

• You can write generic code which optimises itself on the fly

• You can write optimisation libraries, e.g., MaxPower

• Many normal Java libraries can be used, e.g., JUnit

MaxJ Basics: Java meta-programming

21

• The dataflow graph in a kernel is statically scheduled and will
be executed simultaneously in a parallel fashion

• Operations have inherent latencies
• If different data paths meet, they need to be balanced and delays

(FIFOs) are inserted

• The scheduler tries to minimise the costs of implementing those
delays in terms of FMEM

• You can add manual scheduling constraints with stream.offset()

MaxJ Intro: Scheduling

22

MaxJ Intro: Scheduling

23

DFEVar x = io.input(“x”, type);
DFEVar y;

y = (x + x) * x;

io.output(“y”, y, type);

x

+

y

x

1

MaxJ Intro: Scheduling

24

DFEVar x = io.input(“x”, type);
DFEVar y;

y = (x + x) * stream.offset(x, 1);

io.output(“y”, y, type);

x

+

y

x

MaxJ Intro: Working with loop counters

25

● How can we implement this in MaxJ?

for (int i = 0; i < N; i++) {
q[i] = p[i] + i;

}

● How about this?

DFEVar p = io.input(“p”, dfeInt(30));
DFEVar i = io.input(“i”, dfeInt(30));
DFEVar q = p + i;
io.output(“q”, q, dfeInt(31)); Yes…. But, now we need to create an array i

in software and stream it to the DFE as well
d

+

q

i

MaxJ Intro: Working with loop counters

26

● There is very little ‘information’ in the i stream.

○ Could produce it directly on the DFE itself

○ Some HW resources will be used to do so

DFEVar p = io.input(“p”, dfeInt(31));
DFEVar i = control.count.simpleCounter(32, N);
DFEVar q = p + i;
io.output(“q”, q, dfeInt(32));

● Counters can be used to generate sequences of numbers

● Complex counters can have strides, wrap points, triggers:

○ e.g., if (y==10) y=0; else if (en==1) y=y+2;

Half as many inputs

Less data transfer

d

+

q

cnt

• MaxCompiler – Java-driven dataflow compiler
• SLiC Interface – CPU integration
• MaxelerOS – optimized DFE <-> CPU link
• Seamless simulation environment

MaxJ Intro: Programming Components

27

• Allows you to see what lines of code are
• using what resources and focus optimization
• Separate reports for each kernel and for the manager

DFE Resource Usage Reporting

LUTs FFs BRAMs DSPs : MyKernel.java
727 871 1.0 2 : resources used by this file

0.24% 0.15% 0.09% 0.10% : % of available
71.41% 61.82% 100.00% 100.00% : % of total used
94.29% 97.21% 100.00% 100.00% : % of user resources

:
: public class MyKernel extends Kernel {
: public MyKernel (KernelParameters parameters) {
: super(parameters);

1 31 0.0 0 : DFEVar p = io.input("p", dfeFloat(8,24));
2 9 0.0 0 : DFEVar q = io.input("q", dfeUInt(8));

: DFEVar offset = io.scalarInput("offset", dfeUInt(8));
8 8 0.0 0 : DFEVar addr = offset + q;
18 40 1.0 0 : DFEVar v = mem.romMapped("table", addr,

: dfeFloat(8,24), 256);
139 145 0.0 2 : p = p * p;
401 541 0.0 0 : p = p + v;

: io.output("r", p, dfeFloat(8,24));
: }
: }

DSP Blocks

Block RAMs

IO Blocks

LUT/FFs

? ?

Different operations
use different
resources

28

• MaxCompiler gives detailed latency and area annotation
back to the programmer

• Evaluate precise effect of code
on latency and chip area

29

Optimization Feedback

12.8ns 6.4ns+ = 19.2ns (total compute latency)

29

FPGA HW vs Dataflow System Design

• DFEs currently use FPGAs
• Maxeler MAX4C, MAX4N, MAX5C
• Xilinx Alveo
• Amazon EC2 F1 instance
• (but any suitable coarser-grain technology will do)

• HPC FPGA development often focus on kernels
• e.g., accelerate Matrix Multiply, FFT, Convolution

• I/O and memory bottlenecks are often ignored
• Dataflow looks at the complete application

• Customise Dataflow
• Reduce Bandwidth requirements
• Balance the entire system
• Maximize Throughput

30

VHDL vs MaxJ example (HMS CERN)

• MaxJ code is just Software
• No need to keep track on exact bit

sizes, fixed point positions, etc
• Other kernels benefit even more

• Bitonic Sort is 500 VHDL lines versus
130 in MaxJ

31

System Example: Decelerate to Accelerate

CPU

DFE

Function1 – 5s

Function2 – 1s

CPU

Function1 – 1,000s

Function2 – 1s

10G data
transferred Transfer 5s

CPU

DFE

Function1 – 5s

Function2 – 2s

Final result only

CPU time 1,001s Option 1 time 11s Option 2 time 7s

Some observations
At Kernel level:
• Kernel 1 speedup 200x (!)
• Kernel 2 “speedup” 0.5x (!)

At System level:
• Option 1 (Kernel 1 only) speedup 91x
• Option 2 (Kernels 1 and 2) speedup 143x

But what about the required effort?

32

Easy it is not (and not really new)
Slotnick’s law (of effort):

“The parallel approach to computing does require that
some original thinking be done about numerical
analysis and data management in order to secure
efficient use.

In an environment which has represented the
absence of the need to think as the highest virtue this
is a decided disadvantage.”

Daniel Slotnick (1931-1985)
Chief Architect of Illiac IV

33

Turn brain power into performance

34

SIMULATE AND DEBUG

GENERATE DATAFLOWPROGRAMARCHITECTANALYSE

Used to build balanced real systems, however, not easy to learn/educate

Non Traditional Design Process

OK?many hours …Custom
HW

Global Weather Simulation with DFEs in China

⬥L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X.
Huang, Y. Zhang, and G. Yang, Accelerating
solvers for global atmospheric equations
through mixed-precision data flow engine,
published at FPL 2013

⬥Joint research with Imperial College and
Tsinghua University

⬥Simulating the atmosphere using the
shallow water equation

An order of magnitude improvement over the Linpack-driven supercomputer technology

Platform Speedup Energy
Efficiency

6 Core CPU 1x 1x

Tianhe-1A Node 23x 15x

Maxeler MPC-X 330x 145x

35

Open Research Questions

• How to compare against general purpose machines?
• How to validate results as “good enough”?
• How to forecast the required “Dan Slotnick’s Effort”?
• How to significantly decrease P&R times?
• How to create a much better silicon substrate?
• How to educate the think ➜ model ➜ program mindset?
• Tools, tools, tools, …
(we need the help of Parallel Programming experts, you)

All of the above while dealing with the growing impact of
Quantum Mechanical Effects on running software

36

Over 150 Maxeler University Program Members

37
37

Maxeler Applications Gallery

Dataflow Engine (DFE) Ecosystem

⬥ With over 150 universities in our university program, we
decided to create an app gallery to enable the community
to share applications, examples, demos, …

⬥ The App Gallery is complemented by a teaching program,
with the first successful course taught at Imperial College in
2014. see
http://cc.doc.ic.ac.uk/openspl16

⬥ Top 10 APPS:
➢ Correlation: in real-time, pairwise, on 6,000 streams
➢ 100% Guaranteed Packet Capture
➢ Webserver, cache and load balancing
➢ HESTON Option pricer
➢ N-body simulation
➢ Regex matching (e.g. for Security)
➢ Brain network simulation
➢ Quantum Chromo-Dynamics kernel
➢ Seismic Imaging
➢ Realtime Classification

Dataflow Apps and Analytics for Machine Learning http://appgallery.maxeler.com/

38

http://cc.doc.ic.ac.uk/openspl14

Some links with more information
Maxeler Multiscale Dataflow Computing:
https://www.maxeler.com/technology/dataflow-computing/

Computing in Space explained by Mike Flynn:
http://www.openspl.org/what-is-openspl/

Computing in Space Course at Imperial College:
http://cc.doc.ic.ac.uk/openspl16/

Exciting Applications for DFEs (and JDFEs):
http://appgallery.maxeler.com

Maxeler DFEs on AWS EC2 F1:
https://aws.amazon.com/marketplace/seller-profile?id=2780c6ec-d326-47fc-9ff6-
c66ab2ba202a

Maxeler and Xilinx Alveo collaboration:
https://www.xilinx.com/products/boards-and-kits/alveo.html

39

georgi@maxeler.com

https://www.maxeler.com/technology/dataflow-computing/
http://www.openspl.org/what-is-openspl/
http://cc.doc.ic.ac.uk/openspl14/
http://appgallery.maxeler.com/
https://aws.amazon.com/marketplace/seller-profile?id=2780c6ec-d326-47fc-9ff6-c66ab2ba202a
https://www.xilinx.com/products/boards-and-kits/alveo.html

Questions

4040

?

