Improving Planner Performance in Grid Worlds with
Macro Actions

Matthew Crosby' and Ronald P. A. Petrick?

Abstract. In this paper we explore a class of grid world planning
domains that models high-level multi-robot navigation in confined
spaces, and that gives rise to certain problem instances over which
some modern planning techniques perform surprisingly poorly. We
show that the inclusion of macro actions, inspired by techniques that
humans use to solve similar problems, allows planners to find solu-
tions in some cases where they would otherwise fail. We then show
that the pattern exploited to create the macro actions could poten-
tially be exploited in the majority of planning domains used in the
International Planning Competition.

1 INTRODUCTION

Current satisficing planners can find plans efficiently for a large set
of planning problems. However, due to their heuristic nature, and the
complexity of planning in the general case, there will always be cer-
tain problem instances on which they perform badly. In this paper,
we explore a class of grid world problems (see, e.g., [13] or the 1998
International Planning Competition) that are relevant to planning and
robotics, and have relatively simple solutions, but that are not easily
solved by modern planners. We show that the addition of macro ac-
tions, inspired by human problem solving methods, can significantly
improve the performance of existing planners on certain instances of
these problems. We also show that the patterns underlying the macro
actions for the grid world problem occur in a majority of the planning
problems used in the International Planning Competition.

Figure 2 presents three planning problems in which robots must
navigate a grid world. If we consider how humans typically view
such problems, the situations in Figure 2 (especially P1 and P2) ap-
pear to be of roughly similar difficulty. One might expect that being
able to solve one of these problems might suggest that the others
would be solvable in a somewhat similar manner and time frame.
However, from a practical planning point of view, the latter two prob-
lems are much harder to solve: P1 is solved in less than three seconds
by the planners we tested, while P2 and P3 are not solvable within
an hour. One reason for this poor performance on the latter problems
is that moving blindly towards the goal area is often a poor move,
which conflicts with modern heuristic planning techniques that use
the relaxed distance to the goal as a heuristic estimate.

One solution for P1 is to first move the robots A through E next
to their goal positions; the robots e through a can then move into
their goal positions, and finally A through E can be moved to their
goal positions. For P2, an example solution is to move all the robots
into the centre so that robots A through E are one cell to the right of

1 School of Informatics, University of Edinburgh, United Kingdom,
email: m. crosby@ed.ac.uk

2 School of Informatics, University of Edinburgh, United Kingdom,
email: rpetrick@inf.ed.ac.uk

(:action move

:parameters (?a - agent ?x - loc 2y - loc)
:precondition
(and (at ?a ?x) (free ?y) (connected ?x ?y))
reffect
(and (not (at ?a ?x)) (at ?a ?y)
(free ?x) (not (free ?y)))

Figure 1: The move action used in the planning problems.

their original locations, and robots a through e are one cell to the left.
From this position the robots can be moved one at a time into their
goal locations. P3 is a little trickier (especially for planning) as there
are two possible routes round the outside which are of equal value in
terms of getting towards the goal; however, in an ideal solution the
robots should all go in the same direction.

2 BACKGROUND AND METHODOLOGY

In describing the example solutions above, several move actions were
naturally concatenated together when they involved the same robot.
This simplifies the problem (and the solution description) because we
do not need to consider the places moved through by a single robot.
This observation has an important consequence in terms of our en-
coding of the move action in Figure 1: all (non-static) conditions can
be provided by a previous application of the action and a subsequent
application can remove any intermediate positive effects.

There are many methods from the literature that are closely related
to this observation. For instance, Nissim et al. [9] show how a mul-
tiagent decomposition-based method with tunnelling can be used to
improve search in optimal planning. Tunnelling can be used when it
can be shown that performing an action in an optimal plan can only
be correct if followed up by certain other actions; those actions can
then be automatically applied, refining the search space. While this
is not the case for our problems, a similar idea can be used to justify
combining move actions. A multiagent approach also has potential
in these domains. A minor variation of [4] showed some small im-
provements but not as much as the method presented in this paper.

Another approach is to use an external problem solver integrated
with the planner [5, 6, 10]. This approach could calculate available
combinations of move actions during planning. Building macro ac-
tions through action-sequence memorisation [3] or other methods [2]
also offers a potential solution. Finally, a planner like Macro-FF [1]
computes macros from previous plans based on other problem in-
stances (see also [12]) and then tries to use them to solve harder
problems in the same domain.

In our work, we are interested in automatically generating macro
actions for a given domain, rather than learning then from a train-
ing set of problems. Following our above observation, and as a first
step, we rewrote our example domains by adding a path predicate

P3

Figure 2: In this grid world problem the robots (represented by letters) must swap places with their counterparts (e.g., A with a). They can only
move to adjacent grid squares (not through walls) and cannot move through each other.

which represents a route between two separate grid-squares via three
intermediate steps. This path size was chosen because the standard
compilation of FF allows for predicates of maximum arity 5 (i.e.,
one for each location in the path). Using paths in this way means that
amove4 action can be included where a robot can move four squares
at once (provided all intermediate spaces are empty and not blocked
by walls). For example, we may have (path xlyl x2yl x2y2
x3y2 x3y3) thatcan be used to move a robot from x1y1 to x3y3
as long as all the intermediate places are free. A move8 action was
also included which combines two move4 actions.

A simple algorithm was written to pre-calculate all valid paths in
the domain (respecting walls) that did not repeat locations. The orig-
inal move action was left in the domain so that the robots could
also be moved just one space if required. This means that the macro
domain contained the actions move, move4, and move8 only. Ex-
tending this to a generalised moveN action based on an external path
calculator is left for future work.

3 EVALUATION

The results of our approach are presented in Table 1. In this initial
study, Macro-FF [8, 1] (m-FF in the table) was used because it con-
tains optimisations for use with similarly constructed macro actions.
Fast Downwards’ implementation of FF and LAMA [7] was also
used for comparison, in order to include a recent and strongly per-
forming planner with a different heuristic. The first three parts of
Table 1 correspond to problems P1-P3, while the last part presents
results on the visit-all domain from IPC11. The problems varied in
the number of robots in the domain. For P1 and P2, the number of
rows was varied so that it always was equal to the number of agents
plus one while the overall structure remained the same. For P3, only
the number of agents in the domain was changed.

From the results for P1 we can see that adding macro actions
causes some overhead for the planners, especially for m-FF. This is
because of the extra path information which is especially problem-
atic in the more open domains. The results for P2 show how macro
actions help solve previously unsolvable problems. The coverage on
the right hand side of the table is much greater than that on the left
hand side. Finally, the macro actions also help find solutions for P3
but this is still a much harder problem and unsolvable with ten robots.

In visit-all, the problem is to visit all the places on a grid world.
Our approach somewhat trivialises the visit-all domain because there
is only one robot so the intermediate locations do not need to be
stored to be checked. From the results we can see that this allows the
FF planners to easily solve problems that were previously too large.

By analysing the move action, we are also investigating the fol-
lowing properties that could potentially allow for the automatic gen-

Table 1: Time (in seconds) for running multiple planners over the
standard and macro versions of the problems. A ‘dash’ means that
the planner did not return a result within 10 minutes.

Standard Macro Actions
lama | fd-FF | m-FF lama fd-FF | m-FF
P1-3 0.03 0.01 0.63 0.03 0.02 0.28
P1-4 | 0.01 0.02 3.54 0.48 0.37 3.05
P1-5 0.16 0.07 2.37 0.47 0.85 | 64.78
P1-6 1.13 0.23 | 26.19 2.94 10.63 -
P2-3 2.40 0.53 0.06 9.10 0.36 0.10

P2-4 - — | 11.03 | 215.65 4.58 0.27
P2-5 - - - - 19.83 7.46
P2-6 — - — — | 366.36 | 32.16
P3-3 32 1.54 | 77.03 14.17 7.13 | 29.14
P3-4 - - - 46.04 | 370.27 | 35.59
P3-5 - - - - - -
P3-6 — - — — - —
V16 | 0.18 | 16.19 | 25.12 0.51 0.43 0.31
V20 | 0.58 - - 2.02 1.69 1.04
V24 | 1.05 - - 6.08 4.72 3.22

eration of macro actions: 1) all preconditions of a latter action are
either added by the previous action or compatible with the precon-
ditions of the first action in a sequence, and 2) all positive effects of
the first action are either removed by the end of the subsequent ac-
tion or do not appear in any subsequent action. We also checked the
much stronger property, where the first condition of each clause is
satisfied, and found that 62 of the 81 benchmark domains contain ac-
tion pairs that satisfy this condition. This lends evidence to our belief
that this approach is potentially applicable in many domains, though
there is still much work to be done to verify this claim. We believe
that progress can be made by analysing unground operators while
taking into account knowledge of the static predicates in the domain.

4 CONCLUSION AND FUTURE WORK

We have shown that by directly encoding macro actions in certain
types of grid world domains, planning problems can go from unsolv-
able to solvable in a few seconds. Moreover, these macro actions can
potentially be constructed whenever the concatenation of multiple
actions leads to a simplified overall result (i.e., some added effects
are then removed or vice versa). We intend to explore this space fur-
ther in future work, implementing an automated algorithm for gen-
erating macro actions that incorporates ideas from some of the other
approaches in the literature (e.g. [11]), and testing this approach over
a larger class of domains and related planners (e.g., Marvin [3]).

Acknowledgements: The research leading to these results has re-
ceived funding from the European Union’s Seventh Framework Pro-
gramme under grant agreement no. 610917 (STAMINA).

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(71
(8]

91

[10]

(1]

[12]

[13]

Adi Botea, Markus Enzenberger, Martin Miiller, and Jonathan Scha-
effer, ‘Macro-FF: Improving Al Planning with Automatically Learned
Macro-Operators’, Journal of Artificial Intelligence Research, 24, 581—
621, (2005).

Lukd§ Chrpa, Mauro Vallati, and Thomas Leo McCluskey, ‘MUM:
A Technique for Maximising the Utility of Macro-operators by Con-
strained Generation and Use’, in Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS), pp. 65-73,
(2014).

Andrew Coles and Amanda Smith, ‘Marvin: A Heuristic Search Plan-
ner with Online Macro-Action Learning’, Journal of Artificial Intelli-
gence Research, 28, 119-156, (2007).

Matt Crosby, Michael Rovatsos, and Ronald P. A. Petrick, ‘Auto-
mated Agent Decomposition for Classical Planning’, in Proceedings of
the International Conference on Automated Planning and Scheduling
(ICAPS), pp. 46-54, (2013).

Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebastian Triig,
Michael Brenner, and Bernhard Nebel, ‘Semantic Attachments for
Domain-Independent Planning Systems’, in Proceedings of the Inter-
national Conference on Automated Planning and Scheduling (ICAPS),
pp. 114-121, (2009).

Esra Erdem, Kadir Haspalamutgil, Can Palaz, Volkan Patoglu, and
Tansel Uras, ‘Combining High-Level Causal Reasoning with Low-
Level Geometric Reasoning and Motion Planning for Robotic Ma-
nipulation’, in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 45754581, (2011).

Malte Helmert, ‘The Fast Downward Planning System’, Journal of Ar-
tificial Intelligence Research, 26, 191-246, (2006).

Jorg Hoffmann and Bernhard Nebel, ‘The FF Planning System: Fast
Plan Generation Through Heuristic Search’, Journal of Artificial Intel-
ligence Research, 14, 253-302, (2001).

Raz Nissim, Udi Apsel, and Ronen Brafman, ‘Tunneling and
Decomposition-Based State Reduction for Optimal Planning’, in Pro-
ceedings of the European Conference on Artificial Intelligence (ECAI),
pp. 624-629, (2012).

Ronald P. A. Petrick and Andre Gaschler, ‘Extending Knowledge-Level
Contingent Planning for Robot Task Planning’, in ICAPS 2014 Work-
shop on Planning and Robotics (PlanRob), (2014).

Bram Ridder and Maria Fox, ‘Heuristic Evaluation Based on Lifted Re-
laxed Planning Graphs’, in Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS), pp. 244-252, (2014).
Earl D Sacerdoti, ‘Planning in a hierarchy of abstraction spaces’, In-
ternational Joint Conference on Artificial Intelligence, 3, 412-422,
(1973).

Craig Tovey and Sven Koenig, ‘Gridworlds as testbeds for planning
with incomplete information’, in Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), pp. 819-824, (2000).

