
Find Out Why Reading This Paper is an
Opportunity of Type Opp0

1

Jasmin Grosinger and Federico Pecora and Alessandro Saffiotti 2

Abstract. Under what conditions should a cognitive robot act? How
do we define “opportunities” for robot action? How can we charac-
terize their properties? This paper offers an apparatus to frame the
discussion. Starting from a simple introductory example, we specify
an initial version of a formal framework of opportunity which relates
current and future states and beneficial courses of action in a cer-
tain time horizon. An opportunity reasoning algorithm is presented,
which opens up various new questions about the different types of
opportunity and how to interleave opportunity reasoning and action
execution. An implementation of this algorithm is tested in a simple
experiment including a real mobile robot in a smart home environ-
ment and a user.

1 INTRODUCTION

Reasoning on affecting change is central to proactive robot systems.
Most current techniques focus on how to affect change, but not why.
Consider the following example.

There is a physical object in our world, a banana, which can be
either fresh, ripe, overripe or rotten. The banana changes state over
time, from the first to the last. Maintaining a desirable world state
includes that physical objects in the world, the banana, are in states
that are desirable. It is desirable that the banana is fresh, ripe, or over-
ripe, while a rotten banana is undesirable. Also, the banana should
be eaten before it becomes rotten. Assume there is a human user who
can be in either of the states breakfast, reading, lunch or away and
there is a mobile robot capable of bringing the banana to the human
for consumption. Assume also that the robot possesses a model rep-
resenting the user’s and the banana’s states and how long it takes to
transition over them. How should the robot choose, among all possi-
ble intermediate states of the banana, when to act? Is it desirable that
the robot immediately takes action as soon there is a banana in the
world, no matter what the states of the banana and the user are?

The act of bringing the banana to the user for consumption
achieves a desired state from the banana’s perspective — but what
does this imply in terms of the world state? Not only should the ba-
nana be eaten in a favorable state, but the robot should not act intru-
sively against the user. For example, it would not be appropriate for
the robot to force-feed the sleeping user just because the banana will
soon be rotten! There are states in the world which are more suitable
for taking a specific action than others — they offer opportunities for
acting. For instance, the robot may offer the banana the next morning
for breakfast. Consuming the banana before it is rotten and not being

1 This work was funded by the EC Seventh Framework Programme
(FP7/2007-2013) grant agreement no. 288899 Robot-Era.

2 Centre for Applied Autonomous Sensor Systems (AASS), Örebro Univer-
sity, 70182 Örebro, Sweden, email: {jngr, fpa, asaffio}@aass.oru.se

intrusive towards the user are desirable, and thereby contribute to the
maintenance of a desirable world state.

How do the desirable states of the banana affect whether we clas-
sify a state of the user as being suitable for robot action? When the
banana is fresh, it is not necessary to act. This may even result in an
undesirable state of the user, therefore an undesirable world state. A
ripe banana increases the necessity to act (we can predict that it will
eventually become rotten), but we can afford to choose among few,
well tailored states that are suitable for taking action. An overripe
banana is closer to being rotten. This influences which states we now
classify as suitable for taking action: this is a larger set, and poten-
tially less perfectly tailored to acting.

For all the desirable states of the banana in this simple example,
the actions of the robot are always the same: bring the banana to the
user for consumption. The banana’s desirable states do not differ in
their influence on what the robot should do, rather when it should
act. If the banana becomes rotten, the user’s state has no influence on
which context the robot uses as a “trigger” to act. Also, the robot will
act differently: instead of bringing the banana to the user, the robot
will decide to dispose of it.

This paper presents a formal framework to capture the issues sug-
gested by the example illustrated above. It also presents an algo-
rithm that uses this framework in order to offer a first approach to
the problem of what action to select in which context. The proposed
approach opens numerous questions and future directions, suggest-
ing that the deliberation needed for managing goals — generating,
activating/suspending, adding/removing goals — and selecting and
scheduling actions is a rich pool of under-explored issues.

The next section introduces the formal framework. Section 3 gives
an algorithm for opportunity reasoning based on this framework.
Section 4 shows a simple example of this algorithm controlling a
real robot. The last two sections discuss related work and conclude.

2 FORMALIZING OPPORTUNITY

We consider a system Σ = 〈S,U, f〉, where S is a finite set of
states, U is a finite set of external inputs (the robot’s actions), and
f ⊆ S × U × S is a state transition relation. If there are multiple
robots, we let U be the Cartesian product of the individual action
sets, assuming for simplicity synchronous operation. The f relation
models the system’s dynamics: f(s, u, s′) holds iff Σ can go from
state s to s′ when the input u is applied. We assume discrete time,
and that at each time t the system is in one state st ∈ S.

The free-run behavior F k of Σ determines the set of states that can
be reached from s in k steps when applying the null input ⊥, and is
given by:



F 0(s) = {s}
F k(s) = {s′ ∈ S | ∃s′′ : F (s,⊥, s′′) ∧ s′ ∈ F k−1(s′′)}

We consider a set Des ⊆ S and a set Undes ⊆ S meant to rep-
resent the desirable and undesirable states in S. For instance, a state
in which the banana is rotten is in Undes, whereas any state in which
the banana is gone is in Des (whether because it was eaten, or dis-
posed of, or was never there). For the time being, we assume that Des
and Undes form a partition of S.

2.1 Action schemes
We want to capture the notion that Σ can be brought from some states
to other states by applying appropriate actions in the appropriate con-
text. We define an action scheme to be any partial function

α : P(S)→ P+(S),

where P+(S) is the powerset of S minus the empty set. An action
scheme α abstracts all details of action: α(S′) = S′′ only says that
there is a way to go from any state in S′ to some state in S′′. We
denote by dom(α) the domain where α is defined.

Figure 1. Graphical illustration of action schemes. The state space S is par-
titioned in the Des and Undes subsets. Each action scheme αi may change
the state from being undesirable to being desirable or vice-versa.

Figure 1 illustrates the above elements. Each action scheme can
be applied in some set of states and brings the system to other states.
For instance, scheme α1 can be applied to any state s′ ∈ S′1, and
when applied it will bring Σ to some new state s′′ ∈ S′′1 . At the
current time t the system is in the desirable state st, and if no action
is applied it will move in k steps to some state in the set F k(st),
which will be undesirable.

We now define what it means for an action scheme α to be benefi-
cial in a state s:

Bnf(α, s) iff ∃S′ ∈ dom(α) s.t. s ∈ S′ ∧ α(S′) ⊆ Des

In Figure 1, α1 is applicable in st since its domain is S′1 and st ∈ S′1.
However, it is not beneficial in st since it does not bring the system
into states which are all desirable, i.e., α1(S′1) = S′′1 and S′′1 6⊆ Des.
Scheme α2 would be beneficial in another state, but it is not applica-
ble in st. Scheme α3 is not beneficial in st, but it will become so in k
steps. In our banana example, the scheme αbring, which delivers a ba-
nana to the user, can be applied in any state swhere the user is having
breakfast and the banana is either ripe of overripe: these conditions
characterize dom(αbring). This scheme is beneficial in any such state

s, since the resulting states are desirable because the banana has been
eaten.

We can extend the notion of being beneficial to take a time horizon
k into account:

Bnf(α, s, k) iff ∃S′ ∈ dom(α) s.t. s ∈ S′ ∧ F k(α(S′)) ⊆ Des,

where F k(X) = ∪s∈XF k(s). Intuitively, a beneficial(k) scheme
is a way to bring the system (now) to a state that will be desirable
after k time steps. One may also define a durative version in which
all future states up to k are desirable, by suitably redefining F k(s).
Note that Bnf(α, s, 0) = Bnf(α, s).

2.2 Opportunities
We can use the above apparatus to characterize the different types of
opportunities for action discussed in our example. Let s ∈ S and let
k ∈ N be a finite time horizon. There are at least six properties that
determine whether α is an opportunity for acting in s:

Opp1(α, s, k) iff s ∈ Undes ∧
(
∃s′ ∈ F k(s) : Bnf(α, s′)

)
Opp2(α, s, k) iff s ∈ Undes ∧

(
∀s′ ∈ F k(s) : Bnf(α, s′)

)
Opp3(α, s, k) iff ∃s′ ∈ F k(s) :

(
s′ ∈ Undes ∧ Bnf(α, s′)

)
Opp4(α, s, k) iff ∀s′ ∈ F k(s) :

(
s′ ∈ Undes→ Bnf(α, s′)

)
Opp5(α, s, k) iff

(
∃s′ ∈ F k(s) : s′ ∈ Undes

)
∧ Bnf(α, s, k)

Opp6(α, s, k) iff
(
∀s′ ∈ F k(s) : s′ ∈ Undes

)
∧ Bnf(α, s, k)

The first two properties characterize schemes that can be applied in
the future in response to a current undesired situation. In particular,
Opp1(α, s, k) says that s is an undesirable state for Σ, and that if no
action is taken Σ may evolve in a state s′ in which action scheme
α is beneficial — that is, α can be applied in s′ to bring the system
into a desirable state. Opp2(α, s, k) is the same except that Σ will
evolve in a state in which α is beneficial. In Figure 1 above, α3 is
an opportunity of this type. The third and fourth properties charac-
terize schemes that can be applied in the future in response to either
a foreseen undesired situation. The last two properties characterize
schemes that can be applied now in order to prevent future undesired
situations. Note that for k = 0 all the above properties collapse to

Opp(α, s, 0) iff s ∈ Undes ∧ Bnf(α, s), (1)

that is, α can be used now to resolve a current threat. Henceforth, we
indicate this opportunity type with Opp0.

A few examples help to appreciate the differences among these
properties. Consider a system whose free run behavior goes through
the sequence of states s0 (user sleeping, ripe banana); s1 (user having
breakfast, overripe banana); and s2 (user at work, rotten banana).
Let the current state be s1 and let k = 1. Then, scheme αbring is an
opportunity of type Opp6 in s1 because, if applied now, it will avoid
reaching the undesired state s2. Scheme αdump (dump the banana into
the trash can) is Opp4 because it can be applied later, once we get
in undesired state s2, and bring the system back to a desired one.
Imagine now a GM banana which may take longer to become rotten,
i.e., F 1(s1) includes both s2 as above and s′2 in which the banana
is still overripe. Then, scheme αbring is Opp5 in s1, but not Opp6.
Finally, suppose in state s3 a garbage-bot will stop at the door; then,
the scheme αho (hand-over the banana to the garbage-bot) is Opp2 in
s2, since we need to wait until the garbage-bot passes by.



3 COMPUTING OPPORTUNITIES

A robot might use the above framework of opportunities to make
informed autonomous decisions about what actions to perform in
which situations. Instead of receiving goals from a human operator,
the robot can apply the opportunity framework to generate its own
goals, given a model of the desired and undesired states and a model
of the world dynamics. Endowing the robot with such a capability
requires identifying the computational tasks involved in the frame-
work. An opportunity reasoning algorithm first needs to determine
whether there exist one or more opportunities in a particular state.
The found opportunities then need to be evaluated, that is deciding
which ones among the several opportunities at a particular time to
select for execution. We then need to schedule when to execute the
opportunity, and when to re-evaluate the opportunities, i.e., how to
interleave oppourtunity execution and opportunity evaluation.

3.1 Assumptions

In order to avoid complexities which are, at this stage, not relevant,
we make here the standard assumptions of classical planning. These
are admittedly restrictive, and we shall explore their relaxation in
future versions of our framework. We consider a finite set of pred-
icates P = {p1, . . . , pn}. A state s is completely determined by
the predicates that are true in s (closed world assumption). In the
banana example, banana fresh, banana ripe, . . . user reading,
user breakfast, . . . are predicates. The set of all states S is parti-
tioned in the sets Des and Undes of desirable and undesirable states.
We also consider a finite set of action schemes A = 〈α1, . . . , αm〉.
For now, we take each action scheme to be a linear plan, i.e., a fi-
nite sequence of actions αi = 〈u1, ..., u|α|〉, where |α| denotes the
number of actions in the plan. We assume that actions are deter-
ministic, and hence the state transition function γ [6] has the form
γ : S × U → S.

The function γ can be extended in the obvious way to whole action
schemes: γ(s, α) is the ending state resulting from successively ap-
plying the actions in α starting from state s (note that action schemes
are also deterministic). We consider an abstract action-based plan-
ning model to encode the state transition behavior: we associate each
action scheme αi to a set of preconditions Pi ⊆ P , a set of add (posi-
tive) effectsE+

i ⊆ P , and a set of delete (negative) effectsE−i ⊆ P .
Using this model, the result of applying scheme αi can be written as
γ(s, αi) = (s \ E−i ) ∪ E+

i if Pi ⊆ s, and undefined otherwise.
In addition to classical planning assumptions, we also assume to

have complete knowledge of the time models of all entities that af-
fect the world state. In the banana example this means we know the
temporal evolution of the state of the banana and of the user, i.e., the
free-run behavior F .

Figure 2 shows an example assuming a time horizon of 1. State s0
constitutes of the user having breakfast and the banana being fresh.
It does not ential an opportunity for action, nor does s1, in which
the banana is ripe and the user is reading. In state s2 the user is still
reading, and the banana has turned overripe. Analyzing the free-run
behavior we can see that an undesirable state – the banana being
rotten – can be reached in one step from here. Therefore, there is
an opportunity of type Opp5 in state s2 to apply the action scheme
αbring, i.e.: Opp5(αbring, s2, 1) is true.

We assume that the robot system makes available a procedure
exec(α, s, Opp, numSteps) that is able to schedule the execution of
the first numSteps actions in α at a given (present or future) state s.
Execution of α means the sequential application of actions of α. The

Figure 2. State automaton for the banana (top) and user (bottom) compris-
ing the world states s0 to s3.

exec procedure might use knowledge of the type of opportunity Opp
being executed to inform scheduling decisions. For example, when
faced with bounded resources an αi of opportunity type Opp0 might
be executed, whereas an αj of type Opp3 might be delayed in favor
of another action of exec that consumes the same resource.

3.2 Algorithm
Algorithm 1 performs opportunity reasoning in state s. It first finds
what opportunities exist in s, that is, it categorizes each αi ∈ A into
opportunity types from a given set OppTypes — here, this is the set
{Opp0, . . . ,Opp6} defined above. The algorithm that does so, Al-
gorithm 2, checks increasingly long time horizons k up to an upper
boundK.3 It collects, through the use of the check opp functions, the
action schemes that constitute opportunities, together with the states
where they can be used, their opportunity types and their time hori-
zons. A different check opp function is implemented for each oppor-
tunity type. For example, algorithms 4 and 5 show the check opp for
Opp0 and Opp5, respectively. These are the opportunity types used in
the experiment in section 4. Note that these algorithms return a sin-
gleton state because of our deterministic assumption, but this need
not be true in the general case.

Data:
K ∈ N: max time horizon
<opp: a partial order relation over oppotunity types OppTypes
numSteps ∈ N+: number of steps to be executed

1 while true do
2 OppQueue← find opp (s,K)
3 〈α, s′,Opp, k〉 ← select (OppQueue, <opp)
4 if 〈α, s′,Opp, k〉 6= ⊥ then
5 exec (α, s′,Opp, numSteps)
6 end
7 end

Algorithm 1: opportunity reasoning(s,K,<opp, numSteps):-

The second step in Algorithm 1 is to select which one among
the found opportunities should be executed. Selecting an opportu-
nity (Algorithm 3) may depend on the specific action scheme, on
the type of opportunity, and on the time horizon by which this op-
portunity will have an effect. How to perform this selection is a key
question for opportunity reasoning, which our framework will hope-
fully help to explore. In this paper, we simply use a given strict partial

3 Algorithm 2 is slightly simplified for readability. The actual algorithm treats
k = 0 and Opp0 as special cases since all opportunity types collapse to
Opp0 when k = 0 (equation (1)).



1 forall the Oppi ∈ OppTypes do
2 forall the α ∈ A do
3 for k ← 0 to K do
4 S′ ← check opp (Oppi, α, s, k)
5 forall the s′ ∈ S′ do
6 push(〈α, s′,Oppi, k〉, OppQueue)
7 end
8 end
9 end

10 end
11 return OppQueue

Algorithm 2: find opp(s,K): OppQueue

order <opp over the set of opportunity types: we select the opportu-
nity whose type is highest according to <opp. We break ties using
the value of k: if there are two opportunities 〈αi, si,Oppi, ki〉 and
〈αj , sj ,Oppj , kj〉, such that Oppi and Oppj are not comparable ac-
cording to <opp, then we select the one with the lower k. If ki = kj
we select one randomly.

1 if OppQueue 6= ∅ then
2 sort(OppQueue, 3rd, <opp)

3 sort(OppQueue, 4th,≤)
4 return (first(OppQueue))
5 end
6 return ⊥

Algorithm 3: select(OppQueue, <opp): 〈α, s′,Oppi, k〉

Next, Algorithm 1 invokes execution of the selected opportunity,
indicating how many steps of its action plan should be executed be-
fore starting a new iteration of opportunity reasoning.

1 if s ∈ Undes ∧ Pα ⊆ s then
2 s′ ← γ(s, α)
3 if s′ ∈ Des then
4 return {s}
5 end
6 end
7 return ∅

Algorithm 4: check opp(Opp0, α, s, k):S′ ⊆ S

Concerning the partial order <opp over OppTypes, in our experi-
ments we use the one graphically represented in Figure 3. The mo-
tivation behind this choice is as follows. Opp0 is at the top because
the current state s is undesirable and Opp0 is an immediate way out
of it, i.e., it provides an α that is beneficial now. On the next level
there are Opp5 and Opp6 which as well provide an opportunity for
action that is beneficial now. The current state is not in Undes, but
some future states will be so it is beneficial to act now in order to
prevent this. Since there is no general way to assess whether Opp5 or
Opp6 is more appropriate for acting, the two are not ordered. On the
next level of opportunity types we put Opp1 and Opp2 — the current
state is undesirable but there is no action plan available that can help
escape from it now. However, there exists one for at least one reach-
able state in the future that brings the state in Des. The last level in
the opportunity type hierarchy contains Opp3,Opp4. The reason for
their low priority is that both the possible undesirability of a state and
the benefit of applying an action plan are placed in the future.

Finally, it is worth spending some words on the exec function —
the executive layer of the system that schedules actions, dispatches

1 if Pα ⊆ s then
2 s′ ← γ(s, α)

3 s′′ ∈ F k(s′)
4 if s′′ ∈ Des then
5 forall the s′′′ ∈ F k(s) do
6 if s′′′ ∈ Undes then
7 return {s}
8 end
9 end

10 end
11 end
12 return ∅

Algorithm 5: check opp(Opp5, α, s, k):S′ ⊆ S

Figure 3. Opportunity types - partial order.

them, and possibly also assesses their execution progress. Signifi-
cant work has been done in plan execution and monitoring [12], and
little attention has been devoted to the issue of determining how to
interleave action execution and opportunity reasoning. Specifically,
suppose the current state s is an opportunity of type Opp0 for plan α,
hence calling for the execution of α immediately. How many steps
(numSteps) should be executed before re-assessing whether there ex-
ist new opportunities? This is an interesting question, which we plan
to address in future work. For the purposes of this article, we assume
numSteps = |α|, that is, the system executes the whole plan α before
re-evaluating the opportunities.

4 A REAL-WORLD EXAMPLE
In the European FP7 project Robot-Era [15] we use robots integrated
in a smart environment to provide elderly people with services like
bringing them medications. Currently, users invoke the services by
means of a suitable interface, but in the future the Robot-Era sys-
tem should proactively decide if and when to provide each service.
The approach presented above is meant to provide a stepping stone
toward this goal. In this section, we show a simple example imple-
mented in the context of the Robot-Era system.

As actuator we use a Scitos G5 mobile robot extended with a
Kinova Jaco robot arm. The location of the user is determined by
pressure sensors under chairs on which the user may sit. As a com-
munication interface between opportunity reasoning, planning, ex-
ecutive layer, robot, and sensors, we use the PEIS middleware [16].
This middleware transparently connects heterogeneous robotic de-
vices providing a common interface amongst system components.
We assume to have complete knowledge of the time models of the
entities that comprise the overall world state – the banana and the
user – that is, the opportunity reasoning retrieves the hard-coded time
models from an internal storage.



Figure 4. Time 2: User reading, Banana ripe - No opportunity.

Figures 4, 5 ,6 show different states of the execution of a real ex-
periment with time horizon K = 1. The figures show that we use
a pill box representing the banana: this is meant to simplify object
grasping, and it reflects the fact that one of the real Robot-Era ser-
vices concerns bringing a pill box to the user. In the initial situation,
the user is having breakfast and the banana being in state fresh — this
situation, which persists for one time unit, does not offer an oppor-
tunity for acting. At the next time step (see Figure 4), the user is in
state reading while the banana has turned ripe. Again, no opportunity
for acting is inferred.

Figure 5. Time3: User reading, Banana overripe - opportunityOpp5: Robot
moves to the banana.

Figure 6. At time 3 the robot picks up the banana, brings it and hands it
over to the user following an opportunity of type Opp5.

At time three, the user is still reading, and the banana is now over-
ripe. The opportunity reasoning framework is aware of the time mod-
els of the banana and the user, thus inferring that in one time step

from now the banana will be rotten. Hence, the algorithm deduces an
opportunity of type Opp5 in this situation and issues the action plan
to bring the banana to the user in order to avoid the future undesir-
able state of a rotten banana. (Please refer to Section 2.2 for more
examples of inferring other opportunity types in different settings).
A given executive layer [4] takes care of planning and monitoring the
navigation of the robot to the banana, grasping it, navigating to the
user and handing it over. Figure 7 shows screen dump of the oppor-
tunity reasoning system at this time point, while figures 5 and 6 show
selected scenes from the real experiment.4

Figure 7. Time3: System screen dump - opportunity Opp5

Note that without reasoning about opportuninities the robot would
have had to explicitly be told what to do – bring the banana – and
when – a ripe banana can be brought when the user is in state break-
fast; an overripe banana can be served to a user in state lunch; the
robot should not intrude when the user is reading, but on the other
hand if the banana is anticipated to be rotten soon, this constraint can
be neglected. It is evident that modeling the problem of goal selection
from general principles, like desirability and opportunity, can reduce
the amount of ad-hoc programming needed for realizing a competent
robot. We believe that opportunity reasoning is a step in the direction
of realizing a general framework for this purpose.

5 RELATED WORK
In this paper we have focused on characterizing the problem of op-
portunity reasoning. Our starting point was a simple, yet revealing
example involving a robot and a rotting banana. The attentive reader
has certainly spotted that in our realization of this example (see Sec-
tion 4), the robot must be able to perform a wide range of cognitive
tasks, which include perceiving, planning and acting. Studies in cog-
nitive architectures, like ACT-R [1], BDI [14, 10] and SOAR [11],
lend support to the argument that diverse cognitive capabilities must
be studied jointly. However, while the BDI framework aims to cap-
ture intentions and desires of an agent in a formal theory, our notion
of opportunity is placed at a more global system level: instead of
capturing one single agent’s inner cognitive world, we use the no-
tion of opportunity to account for the whole world state, relating it
to beneficial courses of action within certain time horizons. Another
difference is that we are not concerned with implementing human-
like cognition, rather with realizing non-trivial cognitive capabilities
in robots. Similarly to cognitive architectures, the view proposed by

4 The complete video of the experiment is available at
http://www.youtube.com/watch?v=F_b6QKID8D4.

http://www.youtube.com/watch?v=F_b6QKID8D4


Ghallab et al. [7] defines the deliberative capabilities that enable a
robot to act appropriately, and points out that a model capturing mo-
tivation still is unexplored. Pollack et al. [13] find the need for a
wider range of reasoning than just plan generation – they call this
Active Planning Process Management – but implement only parts of
the challenges and do not offer an overall formal model to state the
problem. The view put forth in this paper agrees with these holis-
tic perspectives, and is inspired by both cognitive architectures and
“planning as acting” or “plan management”. However, we argue that
this specific problem deserves a formal definition, and we believe
that formal methods can be exploited to provide general solutions.

A problem that is related to our work as well is the issue of goal
management. Cox’s work [3] is similar to ours in that the author
aims to establish a system with the capability of Awareness — “...be-
ing able to comprehend when the world is in need of change and,
as a result, being able to form an independent goal to change it”.
A similar idea underlies the approach to goal generation proposed
by Galindo and Saffiotti [5]. However, again both approaches adopt
an agent’s perspective rather than the more global, system-centric
view of opportunity proposed here. Also, goals as formulated by
Cox are hard-coded (something we aim to avoid): goal generation
is achieved by inference from explanations of “anomalies” or “inter-
esting events” which are inserted in the system by hand. Hawes [8]
identifies the need to investigate questions related to selecting and
scheduling goals. The author suggests to address this problem with
the notion of urgency, which is so far undefined. We believe that this
idea could be accommodated and defined explicitly within the frame-
work of opportunity reasoning presented here, and we plan to study
this issue in future work.

Heintz et al. [9] deal with stream-based reasoning as an attempt
to integrate deliberative reasoning functionalities for rational goal-
directed behavior in autonomous agents. Their DyKnow system fo-
cuses on bridging the gap between incomplete metric sensor data of
the environment and crisp symbolic knowledge representing nominal
system behavior. While our work too addresses the integration of de-
liberation functionalities in autonomous robotic agents in sensorized
environments, our focus lies more in reasoning on which actions to
schedule depending on perceived or inferred context.

Beetz [2] uses the same term as we have in this paper — oppor-
tunity. However, the author’s purely reactive understanding of this
notion is fundamentally different from ours. Opportunity according
to Beetz supports the decision whether to interrupt the current exe-
cution of a plan to execute another task, or finish a previously inter-
rupted task. Also, no formal model of opportunity is established, and
different types of opportunities are not considered.

6 CONCLUSIONS

The need to include opportunity into action theory is increasingly
evident. Although tentative, the above formulation of opportunity
points to several under-addressed issues connected with acting in
robotic systems. Characterizing types of opportunities helps to dis-
cover and discriminate between qualitatively different contexts in
which robot action is called for. Of course, one could encode explicit
ad-hoc rules, for instance ’Bring me the banana if it is not rotten!’,
but that is not our aim. Instead, we investigato how decisions for act-
ing can be derived from first principles by recognizing “opportunities
for action”.

Future work will explore different ways to characterize priorities
between opportunity types. We will also investigate the open ques-
tion of how to interleave action execution and opportunity reasoning.

Our ambition is to develop an accurate formulation of opportunity
whose formal properties can be studied and which can be related to
the general problem of action selection. We believe it is necessary
to introduce degrees of desirability of states in order to account for
more fine-grained forms of opportunity. Furthermore, we aim to de-
fine urgency and utilize it in goal management, i.e., selecting and
scheduling of goals. Introducing a richer representation of state or
context may lead to re-formulations in the opportunity framework.
We aim to mount these extensions to our framework in a meta-level
system of interrelated participants to find the best trade-off decision
for acting.

Current techniques for planning, acting, context awareness and
other cognitive abilities that a robot should possess, are usually igno-
rant of the reason for affecting change. At least part of this reason is
opportunity. We believe that it is useful to characterize this formally,
if only to discover which existing techniques are applicable in a use-
ful and proactive robot system, which have to be adapted, and which
are missing entirely.

REFERENCES
[1] John R. Anderson, Daniel Bothell, Michael D. Byrne, Scott Douglass,

Christian Lebiere, and Yulin Qin, ‘An integrated theory of the mind.’,
Psychol Rev, 111(4), 1036–1060, (2004).

[2] Michael Beetz, ‘Towards comprehensive computational models for
plan-based control of autonomous robots’, in Mechanizing Mathemati-
cal Reasoning, 514–527, Springer, (2002).

[3] Michael T Cox, ‘Perpetual self-aware cognitive agents’, AI magazine,
28(1), 32, (2007).

[4] Maurizio Di Rocco, Federico Pecora, Subhash Sathyakeerthy, Jas-
min Grosinger, Alessandro Saffiotti, Manuele Bonaccorsi, Raffaele
Limosani, Alessandro Manzi, Filippo Cavallo, Paolo Dario, and Gi-
ancarlo Teti, ‘A planner for ambient assisted living: From high-level
reasoning to low-level robot execution and back’, in Proc of the AAAI
Spring Symposium on Qualitative Representations for Robots, pp. 10–
17, (2014).

[5] Cipriano Galindo and Alessandro Saffiotti, ‘Inferring robot goals from
violations of semantic knowledge’, Robotics and Autonomous Systems,
61(10), 1131–1143, (2013).

[6] Malik Ghallab, Dana Nau, and Paolo Traverso, Automated planning:
theory & practice, Elsevier, 2004.

[7] Malik Ghallab, Dana Nau, and Paolo Traverso, ‘The actor’s view of
automated planning and acting: A position paper’, Artif Intell, 208, 1–
17, (2014).

[8] Nick Hawes, ‘A survey of motivation frameworks for intelligent sys-
tems’, Artif Intell, 175(5), 1020–1036, (2011).

[9] Fredrik Heintz, Jonas Kvarnström, and Patrick Doherty, ‘Bridging the
sense-reasoning gap: Dyknow–stream-based middleware for knowl-
edge processing’, Advance Engineer Informatics, 24(1), 14–26, (2010).

[10] François Felix Ingrand, Michael P Georgeff, and Anand S Rao, ‘An
architecture for real-time reasoning and system control’, IEEE Expert,
7(6), 34–44, (1992).

[11] John E Laird, Allen Newell, and Paul S Rosenbloom, ‘Soar: An archi-
tecture for general intelligence’, Artif Intell, 33(1), 1–64, (1987).

[12] Ola Pettersson, ‘Execution monitoring in robotics : a survey’, Robotics
and Autonomous Systems, 53(2), 73–88, (2005).

[13] Martha E Pollack and John F Horty, ‘There’s more to life than mak-
ing plans: plan management in dynamic, multiagent environments’, AI
Magazine, 20(4), 71, (1999).

[14] Anand S. Rao and Michael P. Georgeff, ‘Modeling rational agents
within a BDI-architecture’, in Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reason-
ing, pp. 473–484. Morgan Kaufmann publishers Inc.: San Mateo, CA,
USA, (1991).

[15] Robot-Era. http://www.robot-era.eu. Accessed: 2014-05-30.
[16] Alessandro Saffiotti, Mathias Broxvall, Marco Gritti, Kevin LeBlanc,

Robert Lundh, Jayedur Rashid, BeomSu Seo, and Young-Jo Cho, ‘The
PEIS-ecology project: vision and results’, in Proc of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, IROS, pp.
2329–2335. IEEE, (2008).


	INTRODUCTION
	FORMALIZING OPPORTUNITY
	Action schemes
	Opportunities

	COMPUTING OPPORTUNITIES
	Assumptions
	Algorithm

	A REAL-WORLD EXAMPLE
	RELATED WORK
	CONCLUSIONS

