Transparencies for the course TDDA41 Logic Programming, given at the Department of Computer and Information Science, Linköping University, Sweden.

©1998-2006, Ulf Nilsson (ulfni@ida.liu.se).

Printout: November 25, 2006

Introduction: Overview

- Goals of the course.
- What is logic programming?
- Why logic programming?

Goals of the course

- Logic as a specification AND programming language;
- Theoretical foundation of logic programming;
- Practice of Prolog and constraint programming;
- Relations to other areas:
 - Databases
 - Formal/natural languages
 - Combinatorial problems
- To program **DECLARATIVELY**.

Declarative vs imperative languages

	Imperative	Declarative
Paradigm	Describe HOW TO solve the problem	Describe WHAT the problem is
Program	A sequence of A set of state- commands ments	
Examples	C, Fortran, Ada, Java	Prolog, Pure Lisp, Haskell, ML
Advantages	Fast, special- ized programs	General, readable, correct(?) programs.

Declarative description A grandchild to x is a child of one of x's children.

Imperative description I To find a grandchild of x, first find a child of x. Then find a child of that child.

Imperative description II To find a grandchild of x, first find a parent-child pair and then check if the parent is a child of x.

Imperative description III To find a grandchild of x, compute the factorial of 123, then find a child of x. Then find a child of that child.

Compare ...

```
read(person);
for i := 1 to maxparent do
    if parent[i;1] = person then
        for j := 1 to maxparent do
            if parent[j;1] = parent[i;2] then
            write(parent[j;2]);
            fi
            od
            fi
            od
```

with ...

gc(X,Z) := c(X,Y), c(Y,Z).

Logic: Overview

- Syntax and semantics
- Vocabulary, terms and formulas
- Interpretations and models
- Logical consequence and equivalence
- Proofs/derivations
- Soundness and completeness

Predicate logic vocabulary

- Constants (17, george, tEX, ...)
- Functors (cons/2, +/2, father/1, ...)
- Predicate symbols
 (member/2, </2, father/1,...)
- Variables (*X*, *X*11, _, _123, *TeX*, ...)
- Logical connectives $(\land,\lor,\supset,\neg,\leftrightarrow)$
- Quantifiers (\forall, \exists)
- Auxiliary symbols (., (,), ...)

Example

 $A = \{volvo; owner/1; owns/2, happy/1\}$

8

Terms

Let A be a vocabulary.

The set of all *terms* over A is the least set such that

- every constant in A is a term;
- every variable is a term;
- if f/n is a functor in A and t_1, \ldots, t_n are terms over A then $f(t_1, \ldots, t_n)$ is a term.

Ground terms

A term that contains no variables is called a *ground* term.

(Well-formed) formulas

Let A be a vocabulary.

The set of all *formulas* over A is the least set such that:

- if p/n is a predicate symbol in A and t_1, \ldots, t_n are terms, then $p(t_1, \ldots, t_n)$ is a formula;
- if F and G are formulas, then $(F \land G), (F \lor G), (F \supset G), (F \leftrightarrow G)$ and $\neg F$ are formulas;
- if F is a formula and X a variable, then $\forall X \ F$ and $\exists X \ F$ are formulas.

Atoms

A formula of the form $p(t_1, \ldots, t_n)$ is called an *atomic formula* (atom).

Free occurrences of variables

An occurrence of X in a formula is said to be free iff the occurrence does not follow immediately after a quantifier, or in a formula immediately after $\forall X$ or $\exists X$.

Closed formulas

A formula that does not contain any free occurrences of variables is said to be *closed*.

Universal closure

Assume that $\{X_1, \ldots, X_n\}$ are the only free occurrences of variables in a formula F. The *universal closure* $\forall F$ of F is the closed formula $\forall X_1 \ldots \forall X_n F$.

The existential closure $\exists F$ is defined similarly.

Interpretations

Let A be a vocabulary.

An *interpretation* \Im of A consists of (1) a non-empty set D (often written $|\Im|$) of objects (the domain of \Im) and (2) a function that maps:

- every constant c in A on an element c_{\Im} in D;
- every functor f/n in A on a function $f_{\Im}: D^n \to D$;
- every predicate symbol p/n in A on a relation $p_{\Im} \subseteq D^n$.

Example

The vocabulary:

$$A = \{volvo; owner/1; owns/2, happy/1\}$$

Consider \Im where $|\Im| = \{0, 1, 2, ...\}$ and were:

•
$$volvo_{\Im} = 0$$

•
$$\operatorname{owner}_{\Im}(x) = x + 1$$

- $\operatorname{owns}_{\Im} = \operatorname{greater-than}$
- $happy_{\Im} = nonzero-property$

NOTE!

An interpretation defines how to interpret constants, functors and predicate symbols but it does not say what a variable denotes.

Valuation

A *valuation* is a function from variables to objects in the domain of an interpretation.

The interpretation of terms

Let \Im be an interpretation of a vocabulary A. Let σ be a valuation.

The interpretation $\sigma_{\Im}(t)$ of the term t is an object in \Im 's domain:

- if t is a constant c then $\sigma_{\Im}(t) = c_{\Im}$;
- if t is a variable X then $\sigma_{\Im}(t) = \sigma(X)$;
- if t is a term $f(t_1, \ldots, t_n)$ then $\sigma_{\Im}(t) = f_{\Im}(\sigma_{\Im}(t_1), \ldots, \sigma_{\Im}(t_n)).$

Example

Consider \Im where $|\Im| = \{0, 1, 2, ...\}$ and were:

- $volvo_\Im = 0$
- $\operatorname{owner}_{\Im}(x) = x + 1$

Then:

$$\sigma_{\Im}(\operatorname{owner}(\operatorname{owner}(\operatorname{volvo})))$$

$$= \operatorname{owner}_{\Im}(\sigma_{\Im}(\operatorname{owner}(\operatorname{volvo}))) + 1$$

$$= (\sigma_{\Im}(\operatorname{owner}(\operatorname{volvo})) + 1$$

$$= ((\sigma_{\Im}(\operatorname{volvo})) + 1) + 1$$

$$= ((\operatorname{volvo}_{\Im}) + 1) + 1$$

$$= (0 + 1) + 1$$

$$= 2$$

Example

Consider also $\sigma(X) = 3$. Then:

$$\sigma_{\Im}(\operatorname{owner}(X))$$

$$= \operatorname{owner}_{\Im}(\sigma_{\Im}(X))$$

$$= (\sigma_{\Im}(X)) + 1$$

$$= (\sigma(X)) + 1$$

$$= 3 + 1$$

$$= 4$$

The interpretation of formulas

The meaning of a formula is a truth-value— "true" or "false". Given an interpretation \Im and a valuation σ we write

 $\Im \models_{\sigma} F$ when F is true wrt \Im and σ . $\Im \not\models_{\sigma} F$ when F is false wrt \Im and σ .

- $\Im \models_{\sigma} p(t_1, \dots, t_n)$ iff $(\sigma_{\Im}(t_1), \dots, \sigma_{\Im}(t_n)) \in p_{\Im};$
- $\Im \models_{\sigma} \neg F$ iff $\Im \not\models_{\sigma} F$;
- $\Im \models_{\sigma} F \land G$ iff $\Im \models_{\sigma} F$ and $\Im \models_{\sigma} G$;
- $\Im \models_{\sigma} F \lor G$ iff $\Im \models_{\sigma} F$ and/or $\Im \models_{\sigma} G$;

The interpretation of formulas (cont'd.)

- $\Im \models_{\sigma} F \supset G$ iff $\Im \not\models_{\sigma} F$ and/or $\Im \models_{\sigma} G$;
- $\Im \models_{\sigma} F \leftrightarrow G$ iff $\Im \models_{\sigma} F$ exactly when $\Im \models_{\sigma} G$;
- $\Im \models_{\sigma} \forall XF$ iff $\Im \models_{\sigma[x \mapsto t]} F$ for every $t \in |\Im|;$
- $\Im \models_{\sigma} \exists XF \text{ iff } \Im \models_{\sigma[x \mapsto t]} F \text{ for some}$ $t \in |\Im|.$

Example

Consider \Im as before.

Then:

```
\Im \models owns(volvo, volvo) \supset happy(volvo)
iff
       \Im \not\models owns(volvo, volvo)
         or
       \Im \models happy(volvo)
iff
        \langle \sigma_{\Im}(\texttt{volvo}), \sigma_{\Im}(\texttt{volvo}) \rangle \not\in \texttt{owns}_{\Im}
         or
       \sigma_{\Im}(\texttt{volvo}) \in \texttt{happy}_{\Im}
iff
       \langle 0,0 \rangle \not\in \mathtt{owns}_{\Im} \text{ or } 0 \in \mathtt{happy}_{\Im}
iff
       0 \neq 0 or 0 \neq 0
iff
       true
```

Models

Let F be a closed formula. Let P be a set of closed formulas.

An interpretation \Im is a *model* of *F* iff $\Im \models F$.

An interpretation \Im is a model of P iff \Im is a model of every formula in P.

Satisfiability

F (resp. P) is *satisfiable* iff F (resp. P) have at least one model. (Otherwise F/P is unsatisfiable.)

Example

③ (defined as before) is a model of: owns(owner(volvo),volvo)

and:

 $\forall \texttt{X}(\texttt{owns}(\texttt{X},\texttt{volvo}) \supset \texttt{happy}(\texttt{X}))$

Logical consequence

F is a logical consequence of P ($P \models F$) iff F is true in all of P's models (Mod(P) \subseteq Mod(F)).

Theorem

 $P \models F$ iff $P \cup \{\neg F\}$ is unsatisfiable.

Logical equivalence

Let $F, G, \forall XH(X)$ be formulas.

F and G are logically equivalent ($F \equiv G$) iff $\Im \models_{\sigma} F$ exactly when $\Im \models_{\sigma} G$.

$$F \supset G \equiv \neg F \lor G$$

$$F \supset G \equiv \neg G \supset \neg F$$

$$F \leftrightarrow G \equiv (F \supset G) \land (G \supset F)$$

$$\neg (F \land G) \equiv \neg F \lor \neg G$$

$$\neg (F \lor G) \equiv \neg F \land \neg G$$

$$\neg \forall XH(X) \equiv \exists X \neg H(X)$$

$$\neg \exists XH(X) \equiv \forall X \neg H(X)$$

In addition, if X does not occur free in F.

$$\forall X(F \lor H(X)) \equiv F \lor \forall XH(X)$$

Proofs (derivations)

A proof (derivation) is a sequence of formulas where each formula in the sequence is either a so-called *premise* or is obtained from previous formulas in the sequence by means of a collection of *derivation rules*.

Natural deductions

$$\frac{F \qquad F \supset G}{G} \qquad \frac{\forall XF(X)}{F(t)} \qquad \frac{F \qquad G}{F \land G}$$

Example

- 1. owns(owner(volvo), volvo)P2. $\forall X(owns(X, volvo) \supset happy(X))$ P
- ∀X(owns(X,volvo) ⊃ happy(X))
 owns(owner(volvo),volvo) ⊃ happy(owner(volvo)))
- 4. happy(owner(volvo))

Proofs

Let P be a set of closed formulas (premises) Let F be a closed formula.

We write $P \vdash F$ when *there is* a derivation of F from the premises P.

Soundness and completeness

If $P \vdash F$ then $P \models F$. (soundness)

If $P \models F$ then $P \vdash F$. (completeness)

Definite Programs: Overview

- Definite programs:
 - Rules;
 - Facts;
 - Goals.
- Herbrand-interpretations;
- Herbrand-models;
- Fixpoint-semantics.

Clauses

A clause is a formula:

 $\forall (A_1 \lor \ldots \lor A_m \lor \neg A_{m+1} \lor \ldots \lor \neg A_{m+n})$ where $A_1, \ldots, A_m, A_{m+1}, \ldots, A_{m+n}$ are atoms and $m, n \ge 0$.

$$\forall (A_1 \lor \ldots \lor A_m \lor \neg A_{m+1} \lor \ldots \lor \neg A_{m+n}) \\ \equiv \\ \forall ((A_1 \lor \ldots \lor A_m) \lor \neg (A_{m+1} \land \ldots \land A_{m+n})) \\ \equiv \\ \forall ((A_1 \lor \ldots \lor A_m) \leftarrow (A_{m+1} \land \ldots \land A_{m+n}))$$

Definite clauses

A definite clause is a clause where $m \leq$ 1:

Rules

A rule is a clause where m = 1 and n > 0: $\forall (A_1 \leftarrow A_2 \land \ldots \land A_{m+n})$

Facts

A fact is a clause where m = 1 and n = 0: $\forall (A_1)$

(Definite) goals

A goal is a clause where m = 0 and $n \ge 0$:

$$\forall (\neg (A_1 \land \ldots \land A_{m+n}))$$

A goal where m = n = 0 is called the empty goal.

Notation

Rules:
$$A_1 \leftarrow A_2, \dots, A_{n+1}$$
. $n > 0$ Facts: A_1 . $n > 0$ Goals: $\leftarrow A_1, \dots, A_n$. $n > 0$ \Box $n = 0$

Logic Programming Anatomy

head	neck	body
A_0	\leftarrow	A_1,\ldots,A_n

Logic programs

A definite program is a finite set of rules and facts.

A definite program P is used to answer "existential questions" (queries) such as:

"are there any odd integers?"

The query can be answered "yes" if e.g:

 $P \models \exists X \ odd(X)$

This is equivalent to proving that:

 $P \cup \{\neg \exists X \ odd(X)\}$

is unsatisfiable (has no models).

Resolution

Note that $\neg \exists (A_1 \land \ldots \land A_n)$ is equivalent to $\forall \neg (A_1 \land \ldots \land A_n)$. That is, a goal.

Resolution is used to prove that a set of clauses is unsatisfiable. As a side-effect resolution produces "witnesses" (variable bindings). See chapter 3.

Herbrand interpretations

Let ${\cal P}$ be a logic program based on the vocabulary ${\cal A}$

Herbrand universe

The Herbrand universe of P (A really) is the set of all ground terms that can be built using constants and functors in P (A). Denoted U_P (U_A).

Herbrand base

The Herbrand base of P(A) is the set of all ground atoms that can be built using U_P and the predicate symbols of P(A). Denoted $B_P(B_A)$.

Example

Vocabulary:

 $A = \{volvo; owner/1; owns/2, happy/1\}$

Herbrand universe:

 $U_A = \{ volvo, owner(volvo), owner(owner(volvo)), \ldots \}$

Herbrand base:

 $B_A = \{ \texttt{happy}(s) \mid s \in U_A \} \cup \{ \texttt{owns}(s, t) \mid s, t \in U_A \}$

Herbrand interpretations

A Herbrand interpretation of P is an interpretation \Im where $|\Im| = U_P$ and where:

- $c_{\Im} = c$ for every constant c;
- $f_{\Im}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$ for every functor f/n;
- p_{\Im} is a subset of $\underbrace{U_P \times \cdots \times U_P}_{n}$ for every predicate symbol p/n.

That is, the interpretation of a ground term is the term itself!

Observation I

Since all ground terms are interpreted as themselves, it is sufficient to specify the interpretation of the predicate symbols when describing a Herbrand interpretation; in other words, to specify a Herbrand interpretation \Im it is sufficient to specify, for each predicate symbol, the set:

 $\{\langle t_1, \ldots, t_n \rangle \in U_P^n \mid p(t_1, \ldots, t_n) \text{ is true in } \Im\}$ Observation II

Instead of describing a Herbrand interpretation \Im as a family of sets we usually describe \Im as a single set of all ground atoms that are true in \Im .

$$\Im = \{p(t_1, \ldots, t_n) \mid p(t_1, \ldots, t_n) \text{ is true in } \Im\}$$

Example

Alternative I

$$owns_{\Im} = \{ \langle owner(volvo), volvo \rangle, \ldots \}$$

happy_{\Im} = $\{ \langle owner(volvo) \rangle, \ldots \}$

Alternative II

Ground instances of P

Let C be a definite clause of the form

 $A_0 \leftarrow A_1, \ldots, A_n \quad (n \ge 0)$

(C is considered to be a fact if n = 0.)

By a ground instance of C we mean the same clause with all variables replaced by ground terms (several occurrences of the same variable are replaced by the same term):

By ground(C) we mean the set of all ground instances of C.

If P is a definite program then

 $ground(P) = \{C' \mid \exists C \in P \text{ s.t. } C' \in ground(C)\}$

Why Herbrand Interpretations?

For an arbitrary interpretation \Im :

$$\Im \models_{\sigma} \forall X(happy(X) \leftarrow owns(X, volvo))$$

iff
$$\Im \models_{\sigma[X \mapsto a]} happy(X) \leftarrow owns(X, volvo)$$

for all $a \in |\Im|$

For a Herbrand interpretation \Im :

$$\Im \models_{\sigma} \forall X(happy(X) \leftarrow owns(X, volvo))$$

iff
$$\Im \models_{\sigma} happy(t) \leftarrow owns(t, volvo)$$

for any $t \in U_P$

No need to worry about valuations!!!

Herbrand models

A Herbrand model of F (resp. P) is a Herbrand interpretation which is a model of F(resp. all formulas in P).

Observation

A ground atom A is true in a Herbrand interpretation \Im iff $A \in \Im$.

Theorem

Let P be a set of definite clauses (facts/rules/goals) and M be an arbitrary model of P. Then:

$$\Im := \{ A \in B_P \mid M \models A \}$$

is a Herbrand model of P.

Theorem

Let $\{M_1, M_2, \ldots\}$ be a non-empty set of Herbrand models of P. Then also $\Im := \bigcap \{M_1, M_2, \ldots\}$ is a Herbrand model of P.

The Least Herbrand model

The intersection of all Herbrand models of P is called the least Herbrand model of P and is denoted M_P .

Theorem

$$M_P = \{A \in B_P \mid P \models A\}$$

"Construction" of M_P

Observation

In order for \Im to be a model of P it is required that:

- If A is a ground instance of a fact then $A \in \Im$, and
- If A ← A₁,..., A_n is a ground instance of a clause in P and {A₁,..., A_n} ⊆ ℑ then A ∈ ℑ.

Immediate consequence operator

$$T_P(x) := \{A \in B_P \mid A \leftarrow A_1, \dots, A_n \in ground(P) and \{A_1, \dots, A_n\} \subseteq x\}$$

Theorem

$$M_P = T_P^n(\emptyset) \quad \text{when } n \to \infty$$

Example

gp(X,Y) :- p(X,Z), p(Z,Y).
p(X,Y) :- f(X,Y).
p(X,Y) :- m(X,Y).
f(adam,bill).
f(adam,carol).
f(bill,eve).

m(carol,david).

Example

- $\Im_0 = \emptyset$
- $\Im_1 = T_P(\emptyset) = \{f(a, b), f(a, c), f(b, e), m(c, d)\}$ [$f(a, b) \in \Im_1$ since $(f(a, b) \leftarrow) \in ground(P)$ and $\emptyset \subseteq \emptyset$.]
- $\Im_2 = T_P(\Im_1) = T_P^2(\emptyset) =$ $\{p(a,b), p(a,c), p(b,e), p(c,d)\} \cup \Im_1$ $[p(a,b) \in \Im_2 \text{ since } (p(a,b) \leftarrow f(a,b)) \in ground(P)$ and $\{f(a,b)\} \subseteq \Im_1$.
- $\Im_3 = T_P(\Im_2) = T_P^3(\emptyset) = \{gp(a,d), gp(a,e)\} \cup \Im_2$ [$gp(a,d) \in \Im_3$ since ($gp(a,d) \leftarrow p(a,c), p(c,d)$) $\in ground(P)$ and { $p(a,c), p(c,d)\} \subseteq \Im_2$.]
- $\mathfrak{F}_4 = T_P(\mathfrak{F}_3) = T_P^4(\emptyset) = \mathfrak{F}_3$

SLD-Resolution: Overview

- Substitutions;
- Unification;
- SLD-derivations;
- Soundness and completeness.

Substitutions

A substitution is a finite set $\{X_1/t_1, \ldots, X_n/t_n\}$ where:

- every t_i is a term;
- every X_i is a variable distinct from t_i ;
- if $i \neq j$ then $X_i \neq X_j$.

The empty substitution $\{\}$ is denoted ϵ .

Let θ be a substitution $\{X_1/t_1, \ldots, X_n/t_n\}$.

Domain and Range

The domain $Dom(\theta)$ of θ is $\{X_1, \ldots, X_n\}$ and the range $Range(\theta)$ is the set of all variables occurring in t_1, \ldots, t_n .

Application

Let *E* be a term or formula. The application $E\theta$ of θ to *E* is the term/formula obtained from *E* by simultaneously replacing all occurrences of X_i by t_i .

 $E\theta$ is called an *instance* of E.

Composition

Let $\theta := \{X_1/s_1, \dots, X_m/s_m\}$ and $\sigma := \{Y_1/t_1, \dots, Y_n/t_n\}$ be substitutions. The composition $\theta\sigma$ of θ and σ is the substitution obtained from

$$\{X_1/s_1\sigma,\ldots,X_m/s_m\sigma,Y_1/t_1,\ldots,Y_n/t_n\}$$

by removing all $X_i/s_i\sigma$ where $X_i = s_i\sigma$ and all Y_i/t_i where $Y_i \in Dom(\theta)$.

More general substitution

A substitution θ is more general than σ ($\sigma \leq \theta$) iff there exists a substitution ω such that $\theta \omega = \sigma$.

Theorem

Let θ, σ and γ be substitutions and E a term/formula. Then

- $(\theta\sigma)\gamma = \theta(\sigma\gamma);$
- $E(\theta\sigma) = (E\theta)\sigma;$
- $\epsilon\theta = \theta\epsilon = \theta$.

Unification

A structure is a term or an atomic formula.

Unifier

A unifier of two structures s and t is a substitution θ such that $s\theta = t\theta$.

Most general unifier (mgu)

A unifier θ of s and t is called a most general unifier of s and t iff $\sigma \leq \theta$ for every unifier σ of s and t. NB: Two unifiable structures have at least one mgu (usually infinitely many).

Solved form

A set of equation $\{s_1 \doteq t_1, \ldots, s_n \doteq t_n\}$ is in solved form iff s_1, \ldots, s_n are distinct variables none of which occur in t_1, \ldots, t_n .

Solution

A substitution θ is a solution to a set of equations $\{s_1 \doteq t_1, \ldots, s_n \doteq t_n\}$ iff θ is a unifier of s_i and t_i $(1 \le i \le n)$.

Theorem

If $\{X_1 \doteq t_1, \ldots, X_n \doteq t_n\}$ is in solved form then $\{X_1/t_1, \ldots, X_n/t_n\}$ is an mgu of X_i and t_i $(1 \le i \le n)$. select an arbitrary $s \doteq t \in E$; **case** $s \doteq t$ **of** $f(s_1, \ldots, s_n) \doteq f(t_1, \ldots, t_n)$ where $n \ge 0 \Rightarrow$ replace equation by $s_1 \doteq t_1, \ldots, s_n \doteq t_n$; $f(s_1, \ldots, s_m) \doteq g(t_1, \ldots, t_n)$ where $f/m \ne g/n \Rightarrow$ halt with \perp ; $X \doteq X \Rightarrow$ remove the equation; $t \doteq X$ where t is not a variable \Rightarrow replace equation by $X \doteq t$;

 $X \doteq t$ where $X \neq t$ and X has more than one occurrence in $E \Rightarrow$

if X is a proper subterm of t then halt with \perp

else

replace all other occurrences

of X by t;

esac

Theorem

The algorithm always terminates. If s and t are unifiable then the algorithm returns a solved form whose mgu is an mgu of s and t. Otherwise the algorithm returns \perp .

Renaming

A substitution $\theta := \{X_1/Y_1, \ldots, X_n/Y_n\}$ where Y_1, \ldots, Y_n is a permutation of X_1, \ldots, X_n is called a renaming. The substitution $\{Y_1/X_1, \ldots, Y_n/X_n\}$ is called the inverse of θ (denoted θ^{-1}).

Theorem

Let θ and σ be mgu's of s and t. Then there exists a renaming γ such that $\theta \gamma = \sigma$ (and $\sigma \gamma^{-1} = \theta$).

Theorem

If θ is an mgu of s and t and σ a renaming, then $\theta\sigma$ is also an mgu of s and t.

In practice

The previous algorithm is worst-case exponential in the size of the structures. Take for instance

 $g(X_1,\ldots,X_n) = g(f(X_0,X_0),\ldots,f(X_{n-1},X_{n-1})).$

The reason is the *occurs check* (i.e. checking if X is a proper subterm of t).

There are also polynomial algorithms, but most Prolog implementations use the exponential algorithm, and simply drop the occurs check.

This rarely makes a difference, but does make Prolog unsound!!!

SLD-resolution rule

Let $H \leftarrow B_1, \ldots, B_n$ be a program clause renamed apart from $\leftarrow A_1, \ldots, A_i, \ldots, A_m$, and let θ be an mgu of A_i and H. Then:

 $\frac{\leftarrow A_1, \ldots, A_i, \ldots, A_m \qquad H \leftarrow B_1, \ldots, B_n}{\leftarrow (A_1, \ldots, A_{i-1}, B_1, \ldots, B_n, A_{i+1}, \ldots, A_m)\theta}$

SLD-derivation

Let G_0 be a goal. An SLD-derivation of G_0 is a finite/infinite sequence:

$$G_0 \stackrel{C_0}{\leadsto} G_1 \cdots G_{n-1} \stackrel{C_{n-1}}{\leadsto} G_n \cdots$$

of goals and (renamed) program clauses such that:

$$\frac{G_i \quad C_i}{G_{i+1}}$$

gp(X,Y) :- p(X,Z), p(Z,Y).
p(X,Y) :- f(X,Y).
p(X,Y) :- m(X,Y).

f(adam,tom).
f(adam,mary).
f(tom,david).

m(mary,anne).

inv(0,1).
inv(1,0).

and(0,0,0).
and(0,1,0).
and(1,0,0).
and(1,1,1).

nand(X,Y,Z) := and(X,Y,W), inv(W,Z).

Computation rule

A computation rule \Re is a (partial) function that given a goal returns an atom in that goal.

SLD-refutation

An SLD-refutation of G_0 is a finite SLD-derivation

$$G_0 \stackrel{C_0}{\leadsto} G_1 \cdots G_{n-1} \stackrel{C_{n-1}}{\leadsto} G_n$$

where $G_n = \Box$.

Failed derivation

A finite SLD-derivation

$$G_0 \stackrel{C_0}{\leadsto} G_1 \cdots G_{n-1} \stackrel{C_{n-1}}{\leadsto} G_n$$

is said to be failed if the selected atom in G_n does not unify with any program clause head.

Complete SLD-derivation

An SLD-derivation is complete if it is a refutation, a failed or infinite derivation.

Let

$$G_0 \stackrel{C_0}{\leadsto} G_1 \cdots G_{n-1} \stackrel{C_{n-1}}{\leadsto} G_n$$

be an SLD-derivation

Computed substitution

If θ_i is mgu *i* of the derivation then

 $\theta_1 \theta_2 \dots \theta_n$

is called the computed substitution in the derivation.

Computed answer-substitution

The computed answer-substitution in a refutation of G_0 is the computed substitution of the refutation restricted to the variables occurring in G_0 .

Let P be a logic program; Let \Re be a computation rule

SLD-tree

The SLD-tree of a goal G_0 is a tree where

- the root of the tree is G_0 ;
- if G_i is a node in the tree then G_i has a child G_{i+1} (connected via a branch labelled "C_i") iff there exists an SLD-derivation

$$G_0 \stackrel{C_0}{\leadsto} G_1 \cdots G_i \stackrel{C_i}{\leadsto} G_{i+1}$$

with the computation rule \Re .

Soundness and completeness

Theorem (soundness)

Let *P* be a logic program, \Re a computation rule and θ an \Re -computed answer-substitution of the goal $\leftarrow A_1, \ldots, A_n$. Then $\forall ((A_1 \land \ldots \land A_n)\theta)$ is a logical consequence of *P*.

Theorem (completeness)

Let *P* be a logic program and \Re a computation rule. If $\forall (A_1 \land \ldots \land A_n) \sigma$ is a logical consequence of *P* then there is a refutation of $\leftarrow A_1, \ldots, A_n$ with \Re -computed answer-substitution θ such that $(A_1 \land \ldots \land A_n) \sigma$ is an instance of $(A_1 \land \ldots \land A_n) \theta$.

Example

% leq(X,Y) - X is less than or equal to Y
leq(0, Y).
leq(s(X), s(Y)) :- leq(X, Y).

:- leq(0, N).

yes

That is $P \models \forall N \ leq(0, N)$.

Note that it is impossible to obtain e.g. the answer N = s(0). However, we get a more general answer.

Negation: Overview

- Closed World Assumption;
- Negation as Failure;
- Completion;
- SLDNF-resolution (part I);
- General (alt. normal) logic programs;
- Stratified logic programs;
- SLDNF-resolution (part II).

Program:

parent(a,b).
parent(a,c).
parent(c,d).

female(a).
female(d).

mother(X) :- parent(X,Y), female(X).

Least Herbrand model:

parent(a,b).
parent(a,c).
parent(c,d).
female(a).
female(d).
mother(a).

Program:

```
edge(a,b).
edge(a,c).
edge(b,d).
edge(c,d).
path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).
```

Least Herbrand model:

```
edge(a,b).
edge(a,c).
edge(b,d).
edge(c,d).
path(a,b).
path(a,c).
path(b,d).
path(c,d).
path(a,d).
```

Closed World Assumption

Background Definite programs can only be used to describe positive knowledge; it is not possible to describe objects that are *not* related.

Solution I Closed world assumption:

$$\frac{P \not\models A}{\neg A}$$

Problem $P \not\models A$ is undecidable.

Negation as (finite) Failure

Solution II An SLD-tree is finitely failed iff it is finite and does not contain any refutations.

Observation If $\leftarrow A$ has a finitely failed SLD-tree then $P \not\models A$. (Follows from the soundness and completeness of SLD-resolution.)

The NAF rule

Problem The NAF rule is not sound.

Completion

Thesis The program contains information that is not written out explicitly. The *completed program* is the program obtained after addition of the missing information.

Observation $\{a \leftarrow b, a \leftarrow c\} \equiv \{a \leftarrow b \lor c\}.$

Principle An implication $a \leftarrow b$ is replaced by an equivalence $a \leftrightarrow b$.

Let Y_1, \ldots, Y_i be all variables in $p(t_1, \ldots, t_m) \leftarrow A_1, \ldots, A_n$.

Step 1 Replace the clause by

$$p(X_1, \dots, X_m) \leftarrow \\ \exists Y_1 \dots Y_i (X_1 \doteq t_1, \dots, X_m \doteq t_m, A_1, \dots, A_n)$$

Step 2 Take all clauses

$$p(X_1, \dots, X_m) \leftarrow E_1$$

$$\vdots$$

$$p(X_1, \dots, X_m) \leftarrow E_j$$

that define $\ensuremath{p/m}$ and replace by

$$p(X_1, \dots, X_m) \leftarrow E_1 \lor \dots \lor E_j \quad (j > 0)$$

$$p(X_1, \dots, X_m) \leftarrow \Box \qquad (j = 0)$$

Step 3 Replace all implications with equivalences.

Step 4 Add the "free equality axioms":

$$X \doteq X$$

$$X \doteq Y \rightarrow Y \doteq X$$

$$X \doteq Y \wedge Y \doteq Z \rightarrow X \doteq Z$$

$$X_1 \doteq Y_1 \wedge \ldots \wedge X_m \doteq Y_m \rightarrow$$

$$f(X_1, \ldots, X_m) \doteq f(Y_1, \ldots, Y_m)$$

$$X_1 \doteq Y_1 \wedge \ldots \wedge X_m \doteq Y_m \rightarrow$$

$$(p(X_1, \ldots, X_m) \rightarrow p(Y_1, \ldots, Y_m))$$

$$f(X_1, \ldots, X_m) \neq g(Y_1, \ldots, Y_m) \text{ if } f/m \neq g/n$$

$$f(X_1, \ldots, X_m) \doteq f(Y_1, \ldots, Y_m) \rightarrow$$

$$X_1 \doteq Y_1 \wedge \ldots \wedge X_m \doteq Y_m$$

$$f(\ldots X \ldots) \neq X$$

Soundness of "Negation as Failure"

Theorem Let *P* be a definite program. If $\leftarrow A$ has a finitely failed SLD-tree then $comp(P) \models \forall \neg A.$

Completeness of "Negation as Failure"

Theorem Let *P* be a definite program. If $comp(P) \models \forall \neg A$ then there exists a finitely failed SLD-tree of $\leftarrow A$.

SLDNF-resolution for definite programs

A general goal is an expression

 $\leftarrow L_1,\ldots,L_n.$

where each L_i is an atom (positive literal) or a negated atom (negative literal).

Combine SLD-resolution and "Negation as Failure"

Given a general goal — if the selected literal is positive then the next goal is obtained in the usual way. If the selected literal is negative ($\neg A$) and $\leftarrow A$ has a finitely failed SLD-tree then the next goal is obtained by removing $\neg A$ from the goal.

Soundness of SLDNF

Theorem Let P be a definite program and $\leftarrow L_1, \ldots, L_n$ a general goal. If $\leftarrow L_1, \ldots, L_n$ has an SLDNF-refutation with computed answer-substitution θ then $\forall (L_1 \land \cdots \land L_n) \theta$ is a logical consequence of comp(P).

No completeness!!!

General (or normal) programs

A general clause is a clause of the form

 $A \leftarrow L_1, \ldots, L_n$ $(n \ge 0)$

where L_1, \ldots, L_n are positive/negative literals.

Completion

Completion of a general program is obtained in the same way as for definite programs. (Negative literals are handled like positive literals.)

Stratified programs

Problem Completion of a general program can be inconsistent (unsatisfiable).

Limitation A stratified program is a general program where "no relation is defined in terms of its own complement". That is, no predicate symbol depends on its own negation.

Stratified programs

A general program P is stratified iff there exists a partitioning P_1, \ldots, P_n of P such that

- if $p(\ldots) \leftarrow \ldots, q(\ldots), \ldots \in P_i$ then $DEF(q) \subseteq P_1 \cup \ldots \cup P_i.$
- if $p(\ldots) \leftarrow \ldots, \neg q(\ldots), \ldots \in P_i$ then $DEF(q) \subseteq P_1 \cup \ldots \cup P_{i-1}.$

Theorem Completion of a stratified program is always consistent.

SLDNF-resolution for general programs

Let P be a general program, G_0 a general goal and \Re a computation rule. The *SLDNF-forest* of G_0 is the least forest (modulo renaming) such that

- 1. G_0 is a root of one tree.
- 2. if G is a node and $\Re(G) = A$ then G has a child G' for each clause C such that G' is obtained from G and C. If there is no such clause, G has a single child **FF**;
- 3. if G is a node of the form $\leftarrow L_1, \ldots, L_{i-1}, \neg A, L_{i+1}, \ldots, L_{i+j}$ and $\Re(G) = \neg A$, then

Cont'd

- the forest contains a tree with the root
 ← A;
- if the tree with the root ← A has a leaf □ with the *empty* computed answer-substitution, then G has a child FF.
- if the tree with root $\leftarrow A$ is finite and all leaves are **FF**, then *G* has a single child $\leftarrow L_1, \ldots, L_{i-1}, L_{i+1}, \ldots, L_{i+j}$.

Soundness of SLDNF-resolution

Let P be a general program, $\leftarrow L_1, \ldots, L_n$ a general goal and \Re a computation rule. If θ is a computed answer-substitution in an SLDNF-refutation of $\leftarrow L_1, \ldots, L_n$ then $\forall ((L_1 \land \ldots \land L_n)\theta)$ is a logical consequence of comp(P).

```
father(X) :-
    parent(X,Y),
    \+ mother(X,Y).
```

```
disjoint([],X).
disjoint([X|Xs],Ys) :-
    \+ member(X,Ys),
    disjoint(Xs,Ys).
```

```
founding(X) :-
    on(Y,X),
    on_ground(X).
```

```
on_ground(X) :-
    \+ off_ground(X).
```

```
off_ground(X) :-
    on(X,Y).
```

on(c,b). on(b,a). incompatible(X,Y) : \+ likes(X,Y).
incompatible(X,Y) : \+ likes(Y,X).

likes(X,Y) : harmless(Y).
likes(X,Y) : eats(X,Y).

harmless(rabbit).

eats(python,rabbit).

```
father(X,Y) :-
    parent(X,Y),
    \+ mother(X,Y).
```

```
parent(a,b).
parent(c,b).
```

mother(a,b).

```
parent(a,b).
parent(c,b).
```

on(a,b).

%------| ?- \+ on_top(b).

 $| ?- \+ on_top(X).$

Logic and Grammars: Overview

- Context free languages;
- Context sensitive languages;
- Definite Clause Grammars (DCGs);
- DCGs and Prolog.

Context free languages

- A context free grammar is a triple $\langle N, T, P \rangle$ where:
 - N is a finite set of *non-terminals*;
 - T is a finite set of *terminals* (and $N \cap T = \emptyset$);
 - $P \subseteq N \times (N \cup T)^*$ is a finite set of *production rules*.
- Examples of production rules:

$$\begin{array}{lll} \langle expr \rangle & \to & \langle expr \rangle + \langle expr \rangle \\ \langle sent \rangle & \to & \langle np \rangle \langle vp \rangle \end{array}$$

Derivations

• Let $\alpha, \beta, \gamma \in (N \cup T)^*$. We say that $\alpha A \gamma$ directly derives $\alpha \beta \gamma$ iff $A \to \beta \in P$. Denoted

$$\alpha A \gamma \Rightarrow \alpha \beta \gamma$$

• We say that α_1 derives α_n iff there exists a sequence $\alpha_1 \Rightarrow \alpha_2, \alpha_2 \Rightarrow \alpha_3, \dots, \alpha_{n-1} \Rightarrow \alpha_n$. Denoted

$$\alpha_1 \stackrel{*}{\Rightarrow} \alpha_n$$

• A terminal string $\alpha \in T^*$ is in the language of A iff $A \stackrel{*}{\Rightarrow} \alpha$.

Example: Context free grammar

$$egin{aligned} & \langle sent
angle
ightarrow \langle np
angle
ightarrow extsf{the} & \langle np
angle \ & \langle np
angle
ightarrow extsf{the} & \langle n
angle \ & \langle vp
angle
ightarrow extsf{the} & \langle nn
angle \ & \langle nn
angle
ightarrow extsf{the} extsf{the} & \langle nn
angle \ & \langle nn
angle
ightarrow extsf{the} extsf{the} & \langle nn
angle \ & \forall \$$

Naive implementation

 $sent(Z) \leftarrow append(X, Y, Z), np(X), vp(Y).$ $np([the|X]) \leftarrow n(X).$ vp([runs]). n([engine]).n([rabbit]).

append([], Xs, Xs). $append([X|Xs], Ys, [X|Zs]) \leftarrow$ append(Xs, Ys, Zs).

Usage of "Difference Lists"

 Assume that "-/2" denotes a partial function which given two strings x₁...x_{m-1}x_m...x_n and x_m...x_n returns the string x₁...x_{m-1}.

• Example

Two Alternatives

$$sent(X_0-X_2) \leftarrow np(X_0-X_1), vp(X_1-X_2).$$

$$np(X_0-X_2) \leftarrow 'C'(X_0, the, X_1), n(X_1-X_2).$$

$$vp(X_0-X_1) \leftarrow 'C'(X_0, runs, X_1).$$

$$n(X_0-X_1) \leftarrow 'C'(X_0, engine, X_1).$$

$$n(X_0-X_1) \leftarrow 'C'(X_0, rabbits, X_1).$$

$$'C'([X|Y], X, Y).$$

$$sent(X_0-X_2) \leftarrow np(X_0-X_1), vp(X_1-X_2).$$

$$np([the|X_1]-X_2) \leftarrow n(X_1-X_2).$$

$$vp([runs|X_1]-X_1).$$

$$n([engine|X_1]-X_1).$$

$$n([rabbit|X_1]-X_1).$$

100

Partial deduction

grandparent(X,Y) : parent(X,Z), parent(Z,Y).

parent(X,Y) : father(X,Y).
parent(X,Y) : mother(X,Y).

%-----

```
grandparent(X,Y) :-
    father(X,Z), parent(Z,Y).
grandparent(X,Y) :-
    mother(X,Z), parent(Z,Y).
```

```
parent(X,Y) :-
   father(X,Y).
parent(X,Y) :-
   mother(X,Y).
```

101

Context sensitive languages

• Some languages cannot be described by context free grammars. For instance

$$ABC = \{a^{n}b^{n}c^{n} \mid n \ge 0\}$$

= $\{\epsilon, abc, aabbcc, aaabbbccc, \ldots\}$

• The language *ABC* can be expressed in Prolog

$$abc(X_0-X_3) \leftarrow a(N, X_0-X_1), \\ b(N, X_1-X_2), \\ c(N, X_2-X_3). \\ a(0, X_0-X_0). \\ a(s(N), [a|X_1]-X_2) \leftarrow a(N, X_1-X_2). \\ b(0, X_0-X_0). \\ b(s(N), [b|X_1]-X_2) \leftarrow b(N, X_1-X_2). \\ c(0, X_0-X_0). \\ c(s(N), [c|X_1]-X_2) \leftarrow c(N, X_1-X_2). \\ c(s(N), [c|X_1]-X_1) \leftarrow c(N, X_1-X_2). \\ c(s(N),$$

Definite Clause Grammars (DCGs)

- A Definite Clause Grammar is a triple $\langle N, T, P \rangle$ where
 - N is a finite/infinite set of atoms;
 - T is a finite/infinite set of terms (and $N \cap T = \emptyset$);
 - $P \subseteq N \times (N \cup T)^*$ is a finite set of production rules.

Derivations

• Let $\alpha, \beta, \gamma \in (N \cup T)^*$. We say that $\alpha A \gamma$ directly derives $(\alpha \beta \gamma) \theta$ iff $A' \to \beta \in P$ and $mgu(A, A') = \theta$. Denoted

$$\alpha A \gamma \Rightarrow (\alpha \beta \gamma) \theta$$

• We say that α_1 derives α_n (denoted $\alpha_1 \stackrel{*}{\Rightarrow} \alpha_n$) iff there exists a sequence

$$\alpha_1 \Rightarrow \alpha_2, \alpha_2 \Rightarrow \alpha_3, \dots, \alpha_{n-1} \Rightarrow \alpha_n$$

• A terminal string $\alpha \in T^*$ is in the language of A iff $A \stackrel{*}{\Rightarrow} \alpha$.

Example of DCG

sent(s(X,Y)) --> np(X, N)\ vp(Y, N).
np(john, singular(3)) --> [john].
np(they,plural(3)) --> [they].
vp(run,plural(X)) --> [run].
vp(runs,singular(3)) --> [runs].

Semantical (context sensitive) constraints

The following DCG describes the language $\{a^{2n}b^{2n}c^{2n} \mid n \geq 0\}$

abc \rightarrow a(N), b(N), c(N), even(N).

a(0) --> []. a(s(N)) --> [a], a(N).

• • •

even(0) --> [].
even(s(s(N))) --> even(N).

106

Note

- The language of even(X) contains only the string ε!!!
- This may be emphasized by writing

abc --> a(N), b(N), c(N), {even(N)}.

 \bullet and by defining even/1 as a logic program

$$even(0).$$

 $even(s(s(X))) \leftarrow even(X).$

DCGs and Prolog

- Every production rule in a DCG can be compiled into a Prolog clause;
- The resulting Prolog program can be used as a (top-down) parser for the language (cf. "recursive descent");

Compilation

• Assume that X_0, \ldots, X_m are distinct variables that do not occur in

$$p(t_1,\ldots,t_n) \rightarrow T_1,\ldots,T_m$$

• The Prolog program will then contain a clause

$$p(t_1,\ldots,t_n,X_0,X_m) \leftarrow T'_1,\ldots,T'_m.$$

where each T'_i , $(1 \le i \le m)$, is of the form

$$q(t_1, \dots, t_n, X_{i-1}, X_i) \text{ if } T_i = q(t_1, \dots, t_n)$$

$$C'(X_{i-1}, t, X_i) \text{ if } T_i = [t]$$

$$T, X_{i-1} = X_i \text{ if } T_i = \{T\}$$

$$X_{i-1} = X_i \text{ if } T_i = []$$

109

Example

```
sent --> np, vp.
np --> [the], n.
vp --> [runs].
n --> [boy].
```

% Translates into...

```
sent(S0,S2) :- np(S0,S1), vp(S1,S2).
np(S0,S2) :- 'C'(S0,the,S1), n(S1,S2).
vp(S0,S1) :- 'C'(S0,runs,S1).
n(S0,S1) :- 'C'(S0,boy,S1).
```

'C'([X|Xs],X,Xs).

Summary

- Logic programming can be used to define
 - (Regular languages);
 - Context free languages;
 - Context sensitive languages;
 - (Recursively enumerable languages).
- Definite Clause Grammars (DCGs);
- Compilation of DCGs into Prolog.

Examples

```
% Membership in a ordered binary tree
member(X, node(Left, X, Right)).
member(X, node(Left, Y, Right)) :-
X < Y,
member(X, Left).
member(X, node(Left, Y, Right)) :-
X > Y,
member(X, Right).
```

% Property of being a father father(X) :-parent(X, Y), male(X).

```
113
```

General

- Prolog constructs the SLD(NF)-tree by a depth-first search in combination with backtracking.
- By means of cut (!) the user can prohibit the Prolog engine from exploring certain branches in the tree.
- Cut (!) may only occur in the righthand sides of clauses and can be viewed as a regular (nullary) atom.

Principles

- Two principal uses
 - Prune infinite and failed branches (green cut);
 - Prune refutations (red cut).
- Acceptable "red cut":
 - Prune multiple occurrences of the same answer.

The Golden Rule

First write a correct program without cuts. Then add cuts in approprate places to improve the efficiency.

Constraint logic programming

- Constraints
- Operations on constraints
- Constraint Logic Programming
 - Language
 - Operational semantics
 - Examples

Constraint

Given a set of variables, a *constraint* is a restriction on the possible values of the variables.

Example

Variables: X, Y.

Constraint I: $X^2 + Y^2 \le 4$

Constraint II: $Y \ge 2 - 2 \cdot X$

Solution

The constraint $X^2 + Y^2 \le 4$ has a set of solutions – variable assignments when the constraint is true, e.g:

$$\{X \mapsto 2, Y \mapsto 0\}$$
$$\{X \mapsto 0, Y \mapsto 2\}$$
$$\{X \mapsto 1, Y \mapsto 1\}$$

A mapping from variables to values is called a *valuation*. A valuation where the constraint is true is called a *solution*.

Domain of a constraint

Whether a constraint has a solution or not depends on the values that the variables can take.

The constraint $X^2 = 2$ has a real solution, but not an integer or a rational solution.

The set of all possible values of the variables is called the *domain* of the constraint.

Conjunctive constraints

The conjunction of the primitive constraints $X^2 + Y^2 \le 4$ and $Y \ge 2 - 2 \cdot X$ is a new (conjunctive) constraint:

Sets of primitive constraints represent conjunctive constraints.

Properties of constraints

A constraint is said to be *satisfiable* iff it has at least one solution.

A constraint C_1 *implies* a constraint C_2 (written $C_1 \models C_2$) iff every solution of C_1 is also a solution of C_2 .

Two constraints are *equivalent* if they have the same set of solutions.

Optimal solutions

A solution σ of a set of constraints S is maximal subject to an expression E if $\sigma(E)$ is greater than $\sigma'(E)$ for any solution σ' of S.

Example

The solution $\{X \mapsto 1.6, Y \mapsto -1.2\}$ is a maximal solution of

subject to -Y.

Constraint Logic Programming

sorted([]).
sorted([X]).
sorted([Fst,Snd|Rst]) : Fst =< Snd, sorted([Snd|Rst]).</pre>

:- sorted([X1,X2,X3]).

ARITHMETIC ERROR!!!!

Language

- Functors and predicate symbols divided into:
 - Uninterpreted symbols (Herbrand terms/atoms);
 - Interpreted symbols (constraints).
- Special *solvers* handle constraints;
- SLD(NF)-resolution is used for Herbrand atoms;

Language (cont'd.)

• A clause is an expression

 $A_0 \leftarrow C_1, \ldots, C_m, A_1, \ldots, A_n$

where

- A_0, \ldots, A_n are Herbrand atoms;

- C_1, \ldots, C_m are constraints.

• A goal is an expression

$$\leftarrow C_1, \ldots, C_m, A_1, \ldots, A_n$$

CLP(X): A Family of Languages

CLP(R) Linear equations over reals

- CLP(Q) Linear equations over rationals
- CLP(B) Booleans
- CLP(FD) Finite domains

Example CLP(R)

```
mortgage(Loan,Years,AInt,Bal,APay) :-
    { Years>0,
      Years <= 1.
      Bal=Loan*(1+Years*AInt)-APay }.
mortgage(Loan,Years,AInt,Bal,APay) :-
    { Years>1,
      NewLoan = Loan*(1+AInt)-APay,
      Years1 = Years-1 },
    mortgage(NewLoan,Years1,AInt,Bal,APay).
?- mortgage(120000,10,0.1,0,AnnPay).
AnnPay=19529.4
?- mortgage(Loan, 10, 0.1, 0, 19529.4).
Loan=120000
```

```
?- mortgage(Loan,10,0.1,0,AnnPay).
Loan=6.14457*AnnPay
```

Resolution with constraints

A state is a pair (G; S) where G is a goal, and S is a constraint store. Given a program P a derivation is a sequence of states:

- $(\leftarrow A, B; S) \Rightarrow (\leftarrow A = A', B', B; S)$ if $A' \leftarrow B' \in P$
- $(\leftarrow C, G; S) \Rightarrow (\leftarrow G; \{C\} \cup S)$
- $(G; S) \Rightarrow fail \text{ if } sat(S) = false;$
- $(G; S) \Rightarrow (G; S')$ if S and S' are equivalent.
- $(G; \{X = t\} \cup S) \Rightarrow (G; S)\{X/t\}$

129

Example: Arithmetic

:- res(ser(r(10),r(20)),X).

res(r(X),Y) : {X=Y}.
res(cell(X),Y) : {Y=0}.
res(ser(X1,X2),R) : {R=R1+R2}, res(X1,R1), res(X2,R2).
res(par(X1,X2),R) : {1/R=1/R1+1/R2}, res(X1,R1), res(X2,R2).

Modeling with Boolean constraints

Boolean operations

+	Disjunktion	*	Conjunction
=<	Implikation	=:=	Equivalence
#	Exclusive or	~	Negation

MOS transistors

nmos(S,G,D) :- sat(S * G =:= D * G).
pmos(S,G,D) :- sat(S * ~G =:= D * ~G).

Design of XOR-gate

circuit(X,Y,Z) : pmos(X,Y,Z),
 pmos(1,X,T),
 nmos(T,X,0),
 nmos(T,Y,Z),
 nmos(Y,T,Z),
 pmos(Y,X,Z).

Verification of correctness

?- circuit(X,Y,Z), taut(Z =:= X#Y, 1).
yes

CLP with Finite Domains

- Constraints and constraint problems
- Primitive constraints
- CLP(FD)
- Optimization
- Global constraints

Example

- A, B and C live in different houses
- C lives left of B
- B has two neighbors

Constraint problem

- A *constraint problem* consists of a finite set of *problem variables*,
- Each variable takes its value from a given domain
- Constraints are *relations* that restrict the values that can be assigned to the problem variables

Mathematical reformulation

- $A, B, C \in \{1, 2, 3\}$
- $A \neq B$, $A \neq C$ and $B \neq C$
- C < B
- (A < B < C) or (C < B < A)

137

Example

Two problem variables X and Y with the integer domains 5..10 and 1..7. One constraint (relation) X < Y:

New domains imposed by the constraint: X in 5..6 Y in 6..7

138

Operations on constraints

- **Satisfiability:** Does a given set of constraint have at least one solution?
- Entailment: Is every solution of a set S of constraints also a solution of a constraint C (denoted $S \models C$)?
- Equality: Do two sets of constraints have the same set of solutions?
- **Optimality:** Find the best solution (given some criterion of optimality)
- Simplification: Given a set S of constraints, find a simpler set of constraints S' equivalent to S.

Primitive Finite Domain constraints

| ?- X in 3..8. X in 3..8 | ?- X in 3..8, Y in 1..4, Z #= X+Y. X in 3..8, Y in 1..4, Z in 4..12 | ?- X in 5..10, Y in 1..7, X #< Y. X in 5..6, Y in 6..7

Domains vs solutions

Note that domains are not identical to solutions:

?- X in 5..10, Y in 1..7, X #< Y.

Produces the domains:

X in 5..6. Y in 6..7.

But the domains *contain* all solutions:

X = 5, Y = 6X = 5, Y = 7X = 6, Y = 7

More examples

| ?- X in 0..9, Y in 0..1, X #< Y. X = 0, Y = 1| ?- X in 4..6, Y in 1..3, X #< Y. no | ?- X in 1..12, Y in 1..12, X #= 2*Y. X in 2..12, Y in 1..6 | ?- X in 1..2, Y in 1..2, Z in 1..2, X # = Y, X # = Z, Y # = Z.X in 1..2, Y in 1..2, Z in 1..2

Parallel declaration of domains

| ?- domain([X,Y,Z], 0, 9).

142

Labeling

Domains approximate solutions...

| ?- X in 1..2, Y in 1..3, X #< Y.
X in 1..2,
Y in 2..3</pre>

Systematically assign values to a variable from its domain.

143

CLP(X)

A logic program is a set of rules

$$A_0 :- A_1, \ldots, A_n$$

or facts

A_0

where A_0, A_1, \ldots, A_n are atomic formulas; i.e. formulas of the form $p(t_1, \ldots, t_n)$.

Note: A constraint is an atomic formula!

A constraint logic program is a logic program where some of A_1, \ldots, A_n may be (some pre-defined) constraints over some algebraic structure X.

CLP(X)

- CLP(R), reals
- CLP(Q), rational numbers
- CLP(B), Boolean values
- CLP(FD), finite domains
- CLP(Sets), sets

CLP(FD)

```
1. queens(N, L) :-
       length(L, N),
2.
       domain(L, 1, N),
3.
4. safe(L),
   labeling([], L).
5.
6. safe([]).
7. safe([X|Xs]) :-
8.
       safe_between(X, Xs, 1),
9.
       safe(Xs).
10. safe_between(X, [], M).
11. safe_between(X, [Y|Ys], M) :-
12.
      no_attack(X, Y, M),
13. M1 is M+1,
14. safe_between(X, Ys, M1).
15. no_attack(X, Y, N) :-
       X \# = Y, X = Y, X = Y, X = Y.
16.
```

General Strategy

- 1. solution(L) :-
- 2. create_variables(L),
- 3. constrain_variables(L),
- 4. solve_constraints(L).

Optimization

| ?- X in 1..9, Y in 4..6, Z #= X-Y, labeling([maximize(Z)],[X,Y]).

Global Constraints

all_different([X_1, \ldots, X_n])

smm([S,E,N,D,M,O,R,Y]) :-1. domain([S,E,N,D,M,O,R,Y], 0, 9), 2. S #> 0, M #> 0, 3. all_different([S,E,N,D,M,O,R,Y]), 4. 5. sum(S,E,N,D,M,O,R,Y),labeling([], [S,E,N,D,M,O,R,Y]). 6. sum(S, E, N, D, M, O, R, Y) :-7. 8. 1000*S+100*E+10*N+D 9. +1000*M+100*0+10*R+E 10. #= 10000*M+1000*0+100*N+10*E+Y.

cumulative(Ss,Ds,Rs,L)

| ?- domain([S1,S2,S3],0,4),
 S1 #< S3,
 cumulative([S1,S2,S3],[3,4,2],[2,1,3],3),
 labeling([],[S1,S2,S3]).</pre>

Resource allocation

```
1. shower(S, Done) :-
       D = [5,3,8,2,7,3,9,3,3,5,7],
 2.
       R = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
3.
       length(D, N),
4.
   length(S, N),
5.
   domain(S, 0, 100),
6.
7.
    Done in 0..100,
   ready(S, D, Done),
8.
       cumulative(S, D, R, 3),
9.
       labeling([minimize(Done)], [Done|S]).
10.
11. ready([], [], _).
12. ready([S|Ss], [D|Ds], Done) :-
       Done #>= S+D,
13.
```

14. ready(Ss, Ds, Done).

 $element(X, [X_1, \ldots, X_n], Y)$

| ?- element(X, [1,2,3,5], Y).

| ?- X in 2..3, element(X, [1, X, 4, 5], Y).

$circuit([X_1,\ldots,X_n])$

Traveling Salesman

	X_1	X_2	X_3	X_4	X_5	X_{6}	X_7
X_1	_	4	8	10	7	14	15
X_2	4	—	7	7	10	12	5
X_{3}	8	7		4	6	8	10
X_{4}	10	7	4		2	5	8
X_{5}	7	10	6	2		6	7
X_{6}	14	12	8	5	6		5
<i>X</i> ₇	15	5	10	8	7	5	—

Traveling Salesman (cont'd)

```
1. tsp(Cities, Cost) :-
```

- 2. Cities = [X1,X2,X3,X4,X5,X6,X7],
- 3. element(X1,[0, 4, 8,10, 7,14,15],C1),
- 4. element(X2, [4, 0, 7, 7, 10, 12, 5], C2),
- 5. element(X3,[8, 7, 0, 4, 6, 8,10],C3),
- 6. element(X4,[10, 7, 4, 0, 2, 5, 8],C4),
- 7. element(X5, [7,10, 6, 2, 0, 6, 7], C5),
- 8. element(X6, [14, 12, 8, 5, 6, 0, 5], C6),
- 9. element(X7,[15, 5,10, 8, 7, 5, 0],C7),
- 10. Cost #= C1+C2+C3+C4+C5+C6+C7,
- 11. circuit(Cities),
- 12. labeling([minimize(Cost)], Cities).

Deductive Databases: Overview

- Top-down evaluation;
- Relational databases;
- Bottom-up evaluation;
- "Magic templates"

Logic programs as Databases

- Powerful language for representation of relational data.
 - Explicit data
 - Views
 - Queries
 - Integrity constraints
- How to compute answers to database queries?
- Does not address issues such as concurrency control, updates, crashes etc.

Top-down \Rightarrow **Recomputation**

path(X,Y) :- edge(X,Y).
path(X,Z) :- edge(X,Y), path(Y,Z).
edge(a,b).
edge(b,c).
edge(a,c).
...

Top-down \Rightarrow **Infinite computations**

path(X,Y) :- edge(X,Y).
path(X,Z) :- path(X,Y), edge(Y,Z).

edge(a,b).
edge(b,a).
edge(b,c).

Properties: Top-down

- Advantages:
 - Efficient handling of search space;
 - Goal-directed (Backward-chaining);
- Disadvantages:
 - Termination;
 - Recomputations;

How to compute database queries?

Example:

Father	-	Mother			
X	Y		Х	Y	
tom	mary		mary	billy	
john	tom		kate	tom	
:	•		•	:	

New derived relations using relational algebra:

$$P := F(X, Y) \cup M(X, Y)$$
$$GP := \pi_{X,Z}(P(X, Y) \bowtie P(Y, Z))$$

Bottom-up evaluation (Cf. T_P)

$$S_P(X) = \{A_0\theta \mid A_0 \leftarrow A_1, \dots, A_n \in P \text{ and} \\ A'_1, \dots, A'_n \in X \text{ and} \\ mgu\{A_1 = A'_1, \dots, A_n = A'_n\} = \theta\}$$

Naive evaluation

fun naive(P)begin x := facts(P);repeat y := x; $x := S_P(y);$ until x = y;return x;end

Bottom-up evaluation (cont'd.)

$$\Delta S_P(X, \Delta X) =$$

$$\{A_0\theta \mid A_0 \leftarrow A_1, \dots, A_n \in P \text{ and} \\ A'_1, \dots, A'_n \in X, \exists A'_i \in \Delta X \text{ and} \\ mgu\{A_1 = A'_1, \dots, A_n = A'_n\} = \theta\}$$

Semi-naive evaluation

fun seminaive(P) begin $\Delta x := facts(P);$ $x := \Delta x;$ repeat $\Delta x := \Delta S_P(x, \Delta x) \setminus x;$ $x := x \cup \Delta x;$ until $\Delta x = \emptyset;$ return x; end

Properties: Bottom-up

- Advantages:
 - Termination;
 - Re-use of already computed results;
- Disadvantages:
 - Not goal-directed;
 - Termination;

Magic Templates

Let magic(P) be the least program such that if $A_0 \leftarrow A_1, \ldots, A_n \in P$ then:

- $A_0 \leftarrow call(A_0), A_1, \ldots, A_n \in magic(P)$
- $call(A_i) \leftarrow call(A_0), A_1, \dots, A_{i-1} \in magic(P)$

In addition $call(A) \in magic(P)$ if $\leftarrow A$.

Compute naive(magic(P)).

Example

```
%-----ORIGINAL PROGRAM------
p(X,Y) := e(X,Y).
p(X,Z) := p(X,Y), e(Y,Z).
e(a,b).
e(b,a).
e(b,c).
:- p(a,X).
%-----MAGIC PROGRAM------
p(X,Y) := call(p(X,Y)), e(X,Y).
p(X,Z) := call(p(X,Z)), p(X,Y), e(Y,Z).
e(a,b) := call(e(a,b)).
e(b,a) := call(e(b,a)).
e(b,c) := call(e(b,c)).
%
call(e(X,Y)) :- call(p(X,Y)).
call(p(X,Y)) := call(p(X,Z)).
call(e(Y,Z)) := call(p(X,Z)), p(X,Y).
%
call(p(a,X)).
```

Bottom-up with Magic Templates

- Advantages:
 - Termination;
 - Re-use of results;
 - Goal-directed;
- Disadvantages:
 - Sometimes slower than Prolog (when Prolog terminates);

Logic programming with Equations

- What is equality?
- *E*-unification.
- Logic programs with Equations
- SLDE-resolution

What is equality?

We sometimes want to express that two terms should be interpreted as the same object.

Example

Let Γ be:

 $person(X) \leftarrow female(X).$ female(queen). silvia \doteq queen.

Then $\Gamma \models person(silvia)$.

Equations

An equation is an atom $s \doteq t$ where s and t are terms.

The predicate \doteq is *always* interpreted as the identity relation.

That is, $\Im \models_{\sigma} s \doteq t$ iff $\sigma_{\Im}(s) = \sigma_{\Im}(t)$.

Example

$$X + 0 \doteq X.$$

$$X + s(Y) \doteq s(X + Y).$$

$$1 \doteq s(0).$$

$$2 \doteq 1 + 1.$$

$$3 \doteq 2 + 1.$$

:

Equality theory

 $E \vdash s \doteq t$: " $s \doteq t$ is derived from E"

$$\{\dots, s \doteq t, \dots\} \vdash s \doteq t$$

$$E \vdash s \doteq s$$

$$\frac{E \vdash s \doteq t}{E \vdash s\sigma \doteq t\sigma}$$

$$\frac{E \vdash s \doteq t}{E \vdash t \doteq s}$$

$$\frac{E \vdash r \doteq s}{E \vdash t \doteq s}$$

$$\frac{E \vdash r \doteq s}{E \vdash r \doteq t}$$

$$\frac{E \vdash s_1 \doteq t_1 \cdots E \vdash s_n \doteq t_n}{E \vdash f(s_1, \dots, s_n) \doteq f(t_1, \dots, t_n)}$$

 $s \equiv_E t \text{ iff } E \vdash s \doteq t$

Theorem

The relation \equiv_E is an equality relation.

Theorem

 $E \models s \doteq t \text{ iff } s \equiv_E t \text{ (iff } E \vdash s \doteq t)$.

E-unification

Two terms s and t are E-unifiable iff $s\theta \equiv_E t\theta$. The substitution θ is called an E-unifier.

Problem

- *E*-unification is undecidable;
- In general there is no single "most general unifier" but only "complete sets of *E*-unifiers";
- This set may be infinite.

Unification...

... can be carried out using e.g. *narrowing*.

Logic programs with Equations

Programs consist of two components

- A set of definite clauses that do not include the predicate symbol $\doteq/2$;
- A set of equations;

Observation

Herbrand interpretations are uninteresting!

Patch

Consider interpretations whose domain consists of sets (equivalence classes) of ground terms.

Every equivalence class consists of "equivalent term".

Interpretations with domain U_P / \equiv_E are of special interest.

Let \Im be an interpretation where $|\Im| = U_P/_{\equiv_E}$:

That is, $\overline{s} = \{t \in U_P \mid E \vdash s \doteq t\}.$

Theorem

$$\Im \models s \doteq t \quad \text{iff} \quad \overline{s} = \overline{t} \\ \text{iff} \quad s \equiv_E t \\ \text{iff} \quad E \models s \doteq t \end{cases}$$

NB: Herbrand interpretations as a special case!

The Least Model

Every program P, E has a least model $M_{P,E}$:

 $P, E \models p(t_1, \ldots, t_n) \text{ iff } \overline{p(t_1, \ldots, t_n)} \in M_{P,E}$

Fixed point semantics

$$T_{P,E}(x) := \{ \overline{A} \mid A \leftarrow B_1, \dots, B_n \in ground(P) \\ \wedge \overline{B_1}, \dots, \overline{B_n} \in x \}$$

SLDE-Resolution

Given a goal

$$\leftarrow A_1, \ldots, A_{i-1}, A_i, A_{i+1}, \ldots, A_n$$

with selected literal A_i . If

- $H \leftarrow B_1, \ldots, B_m$ is a renamed program clause
- H and A_i have a non-empty set Θ of *E*-unifiers

• $\theta \in \Theta$

then

 $\leftarrow (A_1, \ldots, A_{i-1}, B_1, \ldots, B_m, A_{i+1}, \ldots, A_n)\theta$

is a new goal.

Theorem [Soundness]

If $\leftarrow A_1, \ldots, A_n$ has a computed answer substitution θ then $P, E \models \forall (A_1 \land \cdots \land A_n) \theta$.

Theorem [Completeness]

Similar to SLD-resolution.