Transparencies for the course TDDA41 Logic Programming, given at the Department of Computer and Information Science, Linköping University, Sweden.

©1998-2006, Ulf Nilsson (ulfni@ida.liu.se).

Printout: November 25, 2006

Introduction: Overview

- Goals of the course.
- What is logic programming?
- Why logic programming?

Goals of the course

- Logic as a specification AND programming language;
- Theoretical foundation of logic programming;
- Practice of Prolog and constraint programming;
- Relations to other areas:
- Databases
- Formal/natural languages
- Combinatorial problems
- To program DECLARATIVELY.

Declarative vs imperative languages

	Imperative	Declarative
Paradigm	Describe HOW TO solve the problem	Describe WHAT the problem is
Program	A sequence of commands	A set of state- ments
Examples	C, Fortran,	
Ada, Java	Prolog, Pure Lisp, Haskell, ML	
Advantages	Fast, special- ized programs	General, readable, correct(?) programs.

Declarative description A grandchild to x is a child of one of x 's children.

Imperative description I To find a grandchild of x, first find a child of x. Then find a child of that child.

Imperative description II To find a grandchild of \times, first find a parent-child pair and then check if the parent is a child of x.

Imperative description III To find a grandchild of x, compute the factorial of 123 , then find a child of x. Then find a child of that child.

Compare ...

```
read(person);
for i := 1 to maxparent do
    if parent[i;1] = person then
        for \(j\) := 1 to maxparent do
            if parent[j;1] = parent[i;2] then
                write(parent[j;2]);
            fi
        od
            fi
od
```

with . . . $\mathrm{gc}(\mathrm{X}, \mathrm{Z}):-\mathrm{c}(\mathrm{X}, \mathrm{Y}), \mathrm{c}(\mathrm{Y}, \mathrm{Z})$.

Logic: Overview

- Syntax and semantics
- Vocabulary, terms and formulas
- Interpretations and models
- Logical consequence and equivalence
- Proofs/derivations
- Soundness and completeness

Predicate logic vocabulary

- Constants (17, george, $t E X, \ldots$)
- Functors (cons $/ 2,+/ 2$, father $/ 1, \ldots$)
- Predicate symbols
(member/2, $</ 2$, father $/ 1, \ldots$)
- Variables ($X, X 11, \ldots, _123, T e X, \ldots$)
- Logical connectives ($\wedge, \vee, \supset, \neg, \leftrightarrow)$
- Quantifiers (\forall, \exists)
- Auxiliary symbols (., (,),...)

Example

$$
A=\{\text { volvo; owner } / 1 ; \text { owns } / 2, \text { happy } / 1\}
$$

Terms

Let A be a vocabulary.

The set of all terms over A is the least set such that

- every constant in A is a term;
- every variable is a term;
- if f / n is a functor in A and t_{1}, \ldots, t_{n} are terms over \mathbf{A} then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.

Ground terms

A term that contains no variables is called a ground term.

(Well-formed) formulas

Let A be a vocabulary.

The set of all formulas over A is the least set such that:

- if p / n is a predicate symbol in A and t_{1}, \ldots, t_{n} are terms, then $p\left(t_{1}, \ldots, t_{n}\right)$ is a formula;
- if F and G are formulas, then $(F \wedge G),(F \vee G),(F \supset G),(F \leftrightarrow G)$ and $\neg F$ are formulas;
- if F is a formula and X a variable, then $\forall X F$ and $\exists X F$ are formulas.

Atoms

A formula of the form $p\left(t_{1}, \ldots, t_{n}\right)$ is called an atomic formula (atom).

Free occurrences of variables

An occurrence of X in a formula is said to be free iff the occurrence does not follow immediately after a quantifier, or in a formula immediately after $\forall X$ or $\exists X$.

Closed formulas

A formula that does not contain any free occurrences of variables is said to be closed.

Universal closure

Assume that $\left\{X_{1}, \ldots, X_{n}\right\}$ are the only free occurrences of variables in a formula F. The universal closure $\forall F$ of F is the closed formula $\forall X_{1} \ldots \forall X_{n} F$.

The existential closure $\exists F$ is defined similarly.

Interpretations

Let A be a vocabulary.

An interpretation \Im of A consists of (1) a non-empty set D (often written $|\Im|$) of objects (the domain of \Im) and (2) a function that maps:

- every constant c in A on an element c_{\Im} in D;
- every functor f / n in A on a function $f_{\Im}: D^{n} \rightarrow D$;
- every predicate symbol p / n in A on a relation $p_{\Im} \subseteq D^{n}$.

Example

The vocabulary:

$$
A=\{\text { volvo; owner } / 1 ; \text { owns } / 2, \text { happy } / 1\}
$$

Consider \Im where $|\Im|=\{0,1,2, \ldots\}$ and were:

- $\operatorname{volvors}^{\text {s }}=0$
- owner $_{\Im}(x)=x+1$
- owns ${ }_{\Im}=$ greater-than
- happy $_{\Im}=$ nonzero-property

NOTE!

An interpretation defines how to interpret constants, functors and predicate symbols but it does not say what a variable denotes.

Valuation

A valuation is a function from variables to objects in the domain of an interpretation.

The interpretation of terms

Let \Im be an interpretation of a vocabulary A. Let σ be a valuation.

The interpretation $\sigma_{\Im}(t)$ of the term t is an object in $\Im ' s$ domain:

- if t is a constant c then $\sigma_{\Im}(t)=c_{\Im}$;
- if t is a variable X then $\sigma_{\Im}(t)=\sigma(X)$;
- if t is a term $f\left(t_{1}, \ldots, t_{n}\right)$ then $\sigma_{\Im}(t)=f_{\Im}\left(\sigma_{\Im}\left(t_{1}\right), \ldots, \sigma_{\Im}\left(t_{n}\right)\right)$.

Example

Consider \Im where $|\Im|=\{0,1,2, \ldots\}$ and were:

- $\operatorname{volvos}_{\Im}=0$
- owner $_{\Im}(x)=x+1$

Then:

$$
\begin{aligned}
& \left.\sigma_{\Im}\left(\operatorname{owner}^{(o w n e r}(\mathrm{volvo})\right)\right) \\
= & \operatorname{owner}_{\Im}\left(\sigma_{\Im}(\mathrm{owner}(\mathrm{volvo}))\right) \\
= & \left(\sigma _ { \Im } \left(\operatorname{owner}^{(\mathrm{volvo})))+1}\right.\right. \\
= & \left(\operatorname{owner}_{\Im}\left(\sigma_{\Im}(\mathrm{volvo})\right)\right)+1 \\
= & \left(\left(\sigma_{\Im}\left(\operatorname{volvo}_{\mathrm{vo}}\right)\right)+1\right)+1 \\
= & \left(\left(\operatorname{volvo}_{\Im}\right)+1\right)+1 \\
= & (0+1)+1 \\
= & 2
\end{aligned}
$$

Example

Consider also $\sigma(\mathrm{X})=3$. Then:

$$
\begin{aligned}
& \sigma_{\Im}(\operatorname{owner}(\mathrm{X})) \\
= & \text { owner }_{\Im}\left(\sigma_{\Im}(\mathrm{X})\right) \\
= & \left(\sigma_{\Im}(\mathrm{X})\right)+1 \\
= & (\sigma(\mathrm{X}))+1 \\
= & 3+1 \\
= & 4
\end{aligned}
$$

The interpretation of formulas

The meaning of a formula is a truth-value-"true" or "false". Given an interpretation \Im and a valuation σ we write
$\Im \models_{\sigma} F$ when F is true wrt \Im and σ.
$\Im \not \vDash_{\sigma} F$ when F is false wrt \Im and σ.

- $\Im \models_{\sigma} p\left(t_{1}, \ldots, t_{n}\right)$ iff
$\left(\sigma_{\Im}\left(t_{1}\right), \ldots, \sigma_{\Im}\left(t_{n}\right)\right) \in p_{\Im} ;$
- $\Im \models_{\sigma} \neg F$ iff $\Im \not \models_{\sigma} F$;
- $\Im \models_{\sigma} F \wedge G$ iff $\Im \models_{\sigma} F$ and $\Im \models_{\sigma} G$;
- $\Im \models_{\sigma} F \vee G$ iff $\Im \models_{\sigma} F$ and/or $\Im \models_{\sigma} G$;

The interpretation of formulas (cont'd.)

- $\Im \models_{\sigma} F \supset G$ iff $\Im \not \vDash_{\sigma} F$ and/or $\Im \models_{\sigma} G$;
- $\Im \models_{\sigma} F \leftrightarrow G$ iff $\Im \models_{\sigma} F$ exactly when $\Im \vDash{ }_{\sigma} G$;
- $\Im \models_{\sigma} \forall X F$ iff $\Im \models_{\sigma[x \mapsto t]} F$ for every $t \in|\Im| ;$
- $\Im \neq{ }_{\sigma} \exists X F$ iff $\Im \models_{\sigma[x \mapsto t]} F$ for some $t \in|\Im|$.

Example

Consider \Im as before.
Then:

$$
\Im \models \text { owns(volvo, volvo) } \supset \text { happy(volvo) }
$$

iff

$$
\begin{aligned}
& \Im \not \models \text { owns(volvo, volvo) } \\
& \text { or } \\
& \Im \models \text { happy(volvo) }
\end{aligned}
$$

iff

$$
\begin{aligned}
& \left\langle\sigma_{\Im}(\text { volvo }), \sigma_{\Im}(\text { volvo })\right\rangle \notin \text { owns }_{\Im} \\
& \text { or } \\
& \sigma_{\Im}(\text { volvo }) \in \text { happy }_{\Im}
\end{aligned}
$$

iff

$$
\langle 0,0\rangle \notin \text { owns }_{\Im} \text { or } 0 \in \text { happy }_{\Im}
$$

iff
$0 \ngtr 0$ or $0 \neq 0$
iff
true

Models

Let F be a closed formula.
Let P be a set of closed formulas.

An interpretation \Im is a model of F iff $\Im \models F$.

An interpretation \Im is a model of P iff \Im is a model of every formula in P.

Satisfiability

F (resp. P) is satisfiable iff F (resp. P) have at least one model. (Otherwise F / P is unsatisfiable.)

Example

\Im (defined as before) is a model of: owns(owner(volvo), volvo)
and:

$$
\forall X(o w n s(X, \text { volvo) } \supset \text { happy }(X))
$$

Logical consequence

F is a logical consequence of $P(P \models F)$ iff F is true in all of P 's models
$(\operatorname{Mod}(P) \subseteq \operatorname{Mod}(F))$.

Theorem

$P \vDash F$ iff $P \cup\{\neg F\}$ is unsatisfiable.

Logical equivalence

Let $F, G, \forall X H(X)$ be formulas.
F and G are logically equivalent ($F \equiv G$) iff $\Im \models_{\sigma} F$ exactly when $\Im \models_{\sigma} G$.

$$
\begin{aligned}
F \supset G & \equiv \neg F \vee G \\
F \supset G & \equiv \neg G \supset \neg F \\
F \leftrightarrow G & \equiv(F \supset G) \wedge(G \supset F) \\
\neg(F \wedge G) & \equiv \neg F \vee \neg G \\
\neg(F \vee G) & \equiv \neg F \wedge \neg G \\
\neg \forall X H(X) & \equiv \exists X \neg H(X) \\
\neg \exists X H(X) & \equiv \forall X \neg H(X)
\end{aligned}
$$

In addition, if X does not occur free in F.

$$
\forall X(F \vee H(X)) \equiv F \vee \forall X H(X)
$$

Proofs (derivations)

A proof (derivation) is a sequence of formulas where each formula in the sequence is either a so-called premise or is obtained from previous formulas in the sequence by means of a collection of derivation rules.

Natural deductions

Example

1. owns(owner(volvo), volvo) P
2. $\forall \mathrm{X}(\mathrm{owns}(\mathrm{X}, \mathrm{volvo}) \supset \operatorname{happy}(\mathrm{X})) \quad P$
3. owns(owner(volvo), volvo) D happy(owner(volvo)))
4. happy(owner(volvo))

Proofs

Let P be a set of closed formulas (premises) Let F be a closed formula.

We write $P \vdash F$ when there is a derivation of F from the premises P.

Soundness and completeness

If $P \vdash F$ then $P \models F$. (soundness)

If $P \vDash F$ then $P \vdash F$. (completeness)

Definite Programs: Overview

- Definite programs:
- Rules;
- Facts;
- Goals.
- Herbrand-interpretations;
- Herbrand-models;
- Fixpoint-semantics.

Clauses

A clause is a formula:

$$
\forall\left(A_{1} \vee \ldots \vee A_{m} \vee \neg A_{m+1} \vee \ldots \vee \neg A_{m+n}\right)
$$

where $A_{1}, \ldots, A_{m}, A_{m+1}, \ldots, A_{m+n}$ are atoms and $m, n \geq 0$.

$$
\begin{aligned}
\forall\left(A_{1} \vee \ldots \vee A_{m} \vee\right. & \left.\neg A_{m+1} \vee \ldots \vee \neg A_{m+n}\right) \\
& \equiv \\
\forall\left(\left(A_{1} \vee \ldots \vee A_{m}\right) \vee\right. & \left.\neg\left(A_{m+1} \wedge \ldots \wedge A_{m+n}\right)\right) \\
& \equiv \\
\forall\left(\left(A_{1} \vee \ldots \vee A_{m}\right)\right. & \left.\leftarrow\left(A_{m+1} \wedge \ldots \wedge A_{m+n}\right)\right)
\end{aligned}
$$

Definite clauses

A definite clause is a clause where $m \leq 1$:

Rules

A rule is a clause where $m=1$ and $n>0$:

$$
\forall\left(A_{1} \leftarrow A_{2} \wedge \ldots \wedge A_{m+n}\right)
$$

Facts

A fact is a clause where $m=1$ and $n=0$:
$\forall\left(A_{1}\right)$

(Definite) goals

A goal is a clause where $m=0$ and $n \geq 0$:

$$
\forall\left(\neg\left(A_{1} \wedge \ldots \wedge A_{m+n}\right)\right)
$$

A goal where $m=n=0$ is called the empty goal.

Notation

Rules: $\quad A_{1} \leftarrow A_{2}, \ldots, A_{n+1} . \quad n>0$
Facts: A_{1}.
Goals: $\leftarrow A_{1}, \ldots, A_{n}$.

$$
\begin{aligned}
& n>0 \\
& n=0
\end{aligned}
$$

Logic Programming Anatomy

$$
\begin{array}{ccc}
\text { head } & \text { neck } & \text { body } \\
A_{0} & \leftarrow & A_{1}, \ldots, A_{n}
\end{array}
$$

Logic programs

A definite program is a finite set of rules and facts.

A definite program P is used to answer
"existential questions" (queries) such as:
"are there any odd integers?"

The query can be answered "yes" if e.g:

$$
P \models \exists X \operatorname{odd}(X)
$$

This is equivalent to proving that:

$$
P \cup\{\neg \exists X \operatorname{odd}(X)\}
$$

is unsatisfiable (has no models).

Resolution

Note that $\neg \exists\left(A_{1} \wedge \ldots \wedge A_{n}\right)$ is equivalent to $\forall \neg\left(A_{1} \wedge \ldots \wedge A_{n}\right)$. That is, a goal.

Resolution is used to prove that a set of clauses is unsatisfiable. As a side-effect resolution produces "witnesses" (variable bindings). See chapter 3.

Herbrand interpretations

Let P be a logic program based on the vocabulary A

Herbrand universe

The Herbrand universe of P (A really) is the set of all ground terms that can be built using constants and functors in $P(A)$. Denoted $U_{P}\left(U_{A}\right)$.

Herbrand base

The Herbrand base of $P(A)$ is the set of all ground atoms that can be built using U_{P} and the predicate symbols of $P(A)$. Denoted B_{P} $\left(B_{A}\right)$.

Example

Vocabulary:

$$
A=\{\text { volvo; owner } / 1 ; \text { owns } / 2, \text { happy } / 1\}
$$

Herbrand universe:

$$
U_{A}=\{\text { volvo, owner(volvo), owner(owner(volvo)), ... }\}
$$

Herbrand base:

$$
B_{A}=\left\{\operatorname{happy}(s) \mid s \in U_{A}\right\} \cup\left\{o w n s(s, t) \mid s, t \in U_{A}\right\}
$$

Herbrand interpretations

A Herbrand interpretation of P is an interpretation \Im where $|\Im|=U_{P}$ and where:

- $c_{\Im}=c$ for every constant c;
- $f_{\Im}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$ for every functor f / n;
- p_{\Im} is a subset of $\underbrace{U_{P} \times \cdots \times U_{P}}_{n}$ for every predicate symbol p / n.

That is, the interpretation of a ground term is the term itself!

Observation I

Since all ground terms are interpreted as themselves, it is sufficient to specify the interpretation of the predicate symbols when describing a Herbrand interpretation; in other words, to specify a Herbrand interpretation \Im it is sufficient to specify, for each predicate symbol, the set:

$$
\left\{\left\langle t_{1}, \ldots, t_{n}\right\rangle \in U_{P}^{n} \mid p\left(t_{1}, \ldots, t_{n}\right) \text { is true in } \Im\right\}
$$

Observation II

Instead of describing a Herbrand interpretation \Im as a family of sets we usually describe \Im as a single set of all ground atoms that are true in \Im.

$$
\Im=\left\{p\left(t_{1}, \ldots, t_{n}\right) \mid p\left(t_{1}, \ldots, t_{n}\right) \text { is true in } \Im\right\}
$$

Example

Alternative I

$$
\begin{aligned}
\text { owns }_{\Im} & =\{\langle\text { owner(volvo) }, \text { volvo }\rangle, \ldots\} \\
\text { happy }_{\Im} & =\{\langle\text { owner(volvo) }\rangle, \ldots\}
\end{aligned}
$$

Alternative II

$$
\begin{aligned}
\Im= & \{o w n s(o w n e r(\text { volvo }), \text { volvo }), \ldots, \\
& \text { happy(owner(volvo)) }, \ldots\}
\end{aligned}
$$

Ground instances of P

Let C be a definite clause of the form

$$
A_{0} \leftarrow A_{1}, \ldots, A_{n} \quad(n \geq 0)
$$

(C is considered to be a fact if $n=0$.)

By a ground instance of C we mean the same clause with all variables replaced by ground terms (several occurrences of the same variable are replaced by the same term):

By ground (C) we mean the set of all ground instances of C.

If P is a definite program then
$\operatorname{ground}(P)=\left\{C^{\prime} \mid \exists C \in P\right.$ s.t. $\left.C^{\prime} \in \operatorname{ground}(C)\right\}$

Why Herbrand Interpretations?

For an arbitrary interpretation \Im :

$$
\begin{gathered}
\Im \models_{\sigma} \forall X(\operatorname{happy}(X) \leftarrow \operatorname{iff}) \\
\Im \operatorname{lowns}(X, \text { volvo })) \\
{ }_{\sigma[X \mapsto a]} \operatorname{happy}(X) \leftarrow \operatorname{owns}(X, \text { volvo }) \\
\text { for all } a \in|\Im|
\end{gathered}
$$

For a Herbrand interpretation \Im :

$$
\begin{gathered}
\Im \models_{\sigma} \forall X(\operatorname{happy}(X) \leftarrow \operatorname{iff}) \\
\left.\Im \operatorname{lowns}^{(}(X, \text { volvo })\right) \\
\text { happy }(t) \leftarrow \text { owns }(t, \text { volvo }) \\
\text { for any } t \in U_{P}
\end{gathered}
$$

No need to worry about valuations!!!

Herbrand models

A Herbrand model of F (resp. P) is a Herbrand interpretation which is a model of F (resp. all formulas in P).

Observation

A ground atom A is true in a Herbrand interpretation \Im iff $A \in \Im$.

Theorem

Let P be a set of definite clauses
(facts/rules/goals) and M be an arbitrary model of P. Then:

$$
\Im:=\left\{A \in B_{P} \mid M \models A\right\}
$$

is a Herbrand model of P.

Theorem

Let $\left\{M_{1}, M_{2}, \ldots\right\}$ be a non-empty set of Herbrand models of P. Then also $\Im:=\cap\left\{M_{1}, M_{2}, \ldots\right\}$ is a Herbrand model of P.

The Least Herbrand model

The intersection of all Herbrand models of P is called the least Herbrand model of P and is denoted M_{P}.

Theorem

$$
M_{P}=\left\{A \in B_{P}|P|=A\right\}
$$

"Construction" of M_{P}

Observation
In order for \Im to be a model of P it is required that:

- If A is a ground instance of a fact then $A \in \Im$, and
- If $A \leftarrow A_{1}, \ldots, A_{n}$ is a ground instance of a clause in P and $\left\{A_{1}, \ldots, A_{n}\right\} \subseteq \Im$ then $A \in \Im$.

Immediate consequence operator

$$
\begin{aligned}
T_{P}(x):= & \\
\left\{A \in B_{P} \quad \mid\right. & A \leftarrow A_{1}, \ldots, A_{n} \in \operatorname{ground}(P) \\
& \text { and } \left.\left\{A_{1}, \ldots, A_{n}\right\} \subseteq x\right\}
\end{aligned}
$$

Theorem

$$
M_{P}=T_{P}^{n}(\emptyset) \quad \text { when } n \rightarrow \infty
$$

Example

$g p(X, Y):-p(X, Z), p(Z, Y)$.
$p(X, Y):-f(X, Y)$.
$p(X, Y):-m(X, Y)$.
f(adam,bill).
f(adam, carol).
f(bill,eve).
m(carol,david).

Example

- $\Im_{0}=\emptyset$
- $\Im_{1}=T_{P}(\emptyset)=\{f(a, b), f(a, c), f(b, e), m(c, d)\}$
$\left[f(a, b) \in \Im_{1}\right.$ since $(f(a, b) \leftarrow) \in \operatorname{ground}(P)$ and $\emptyset \subseteq \emptyset$.
- $\Im_{2}=T_{P}\left(\Im_{1}\right)=T_{P}^{2}(\emptyset)=$ $\{p(a, b), p(a, c), p(b, e), p(c, d)\} \cup \Im_{1}$
$\left[p(a, b) \in \Im_{2}\right.$ since $(p(a, b) \leftarrow f(a, b)) \in \operatorname{ground}(P)$ and $\{f(a, b)\} \subseteq \Im_{1}$.]
- $\Im_{3}=T_{P}\left(\Im_{2}\right)=T_{P}^{3}(\emptyset)=\{g p(a, d), g p(a, e)\} \cup \Im_{2}$
$\left[g p(a, d) \in \Im_{3}\right.$ since
$(g p(a, d) \leftarrow p(a, c), p(c, d)) \in \operatorname{ground}(P)$ and $\left.\{p(a, c), p(c, d)\} \subseteq \Im_{2}.\right]$
- $\Im_{4}=T_{P}\left(\Im_{3}\right)=T_{P}^{4}(\emptyset)=\Im_{3}$

SLD-Resolution: Overview

- Substitutions;
- Unification;
- SLD-derivations;
- Soundness and completeness.

Substitutions

A substitution is a finite set
$\left\{X_{1} / t_{1}, \ldots, X_{n} / t_{n}\right\}$ where:

- every t_{i} is a term;
- every X_{i} is a variable distinct from t_{i};
- if $i \neq j$ then $X_{i} \neq X_{j}$.

The empty substitution $\}$ is denoted ϵ.

Let θ be a substitution $\left\{X_{1} / t_{1}, \ldots, X_{n} / t_{n}\right\}$.

Domain and Range

The domain $\operatorname{Dom}(\theta)$ of θ is $\left\{X_{1}, \ldots, X_{n}\right\}$ and the range $\operatorname{Range}(\theta)$ is the set of all variables occurring in t_{1}, \ldots, t_{n}.

Application

Let E be a term or formula. The application $E \theta$ of θ to E is the term/formula obtained from E by simultaneously replacing all occurrences of X_{i} by t_{i}.
$E \theta$ is called an instance of E.

Composition

Let $\theta:=\left\{X_{1} / s_{1}, \ldots, X_{m} / s_{m}\right\}$ and $\sigma:=\left\{Y_{1} / t_{1}, \ldots, Y_{n} / t_{n}\right\}$ be substitutions. The composition $\theta \sigma$ of θ and σ is the substitution obtained from

$$
\left\{X_{1} / s_{1} \sigma, \ldots, X_{m} / s_{m} \sigma, Y_{1} / t_{1}, \ldots, Y_{n} / t_{n}\right\}
$$

by removing all $X_{i} / s_{i} \sigma$ where $X_{i}=s_{i} \sigma$ and all Y_{i} / t_{i} where $Y_{i} \in \operatorname{Dom}(\theta)$.

More general substitution

A substitution θ is more general than σ ($\sigma \preceq \theta$) iff there exists a substitution ω such that $\theta \omega=\sigma$.

Theorem

Let θ, σ and γ be substitutions and E a term/formula. Then

- $(\theta \sigma) \gamma=\theta(\sigma \gamma)$;
- $E(\theta \sigma)=(E \theta) \sigma$;
- $\epsilon \theta=\theta \epsilon=\theta$.

Unification

A structure is a term or an atomic formula.

Unifier

A unifier of two structures s and t is a substitution θ such that $s \theta=t \theta$.

Most general unifier (mgu)

A unifier θ of s and t is called a most general unifier of s and t iff $\sigma \preceq \theta$ for every unifier σ of s and t. NB: Two unifiable structures have at least one mgu (usually infinitely many).

Solved form

A set of equation $\left\{s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}\right\}$ is in solved form iff s_{1}, \ldots, s_{n} are distinct variables none of which occur in t_{1}, \ldots, t_{n}.

Solution

A substitution θ is a solution to a set of equations $\left\{s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}\right\}$ iff θ is a unifier of s_{i} and $t_{i}(1 \leq i \leq n)$.

Theorem

If $\left\{X_{1} \doteq t_{1}, \ldots, X_{n} \doteq t_{n}\right\}$ is in solved form then $\left\{X_{1} / t_{1}, \ldots, X_{n} / t_{n}\right\}$ is an mgu of X_{i} and $t_{i}(1 \leq i \leq n)$.
select an arbitrary $s \doteq t \in E$;
case $s \doteq t$ of
$f\left(s_{1}, \ldots, s_{n}\right) \doteq f\left(t_{1}, \ldots, t_{n}\right)$
where $n \geq 0 \Rightarrow$
replace equation by $s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}$;
$f\left(s_{1}, \ldots, s_{m}\right) \doteq g\left(t_{1}, \ldots, t_{n}\right)$
where $f / m \neq g / n \Rightarrow$
halt with \perp;
$X \doteq X \Rightarrow$
remove the equation;
$t \doteq X$ where t is not a variable \Rightarrow
replace equation by $X \doteq t$;
$X \doteq t$ where $X \neq t$ and X has more than
one occurrence in $E \Rightarrow$
if X is a proper subterm of t then halt with \perp
else

$$
\begin{aligned}
& \text { replace all other occurrences } \\
& \text { of } X \text { by } t \text {; }
\end{aligned}
$$

esac

Theorem

The algorithm always terminates. If s and t are unifiable then the algorithm returns a solved form whose mgu is an mgu of s and t. Otherwise the algorithm returns \perp.

Renaming

A substitution $\theta:=\left\{X_{1} / Y_{1}, \ldots, X_{n} / Y_{n}\right\}$ where Y_{1}, \ldots, Y_{n} is a permutation of X_{1}, \ldots, X_{n} is called a renaming. The substitution
$\left\{Y_{1} / X_{1}, \ldots, Y_{n} / X_{n}\right\}$ is called the inverse of θ (denoted θ^{-1}).

Theorem

Let θ and σ be mgu's of s and t. Then there exists a renaming γ such that $\theta \gamma=\sigma$ (and $\sigma \gamma^{-1}=\theta$).

Theorem

If θ is an mgu of s and t and σ a renaming, then $\theta \sigma$ is also an mgu of s and t.

In practice

The previous algorithm is worst-case exponential in the size of the structures.
Take for instance
$g\left(X_{1}, \ldots, X_{n}\right)=g\left(f\left(X_{0}, X_{0}\right), \ldots, f\left(X_{n-1}, X_{n-1}\right)\right)$.
The reason is the occurs check (i.e. checking if X is a proper subterm of t).

There are also polynomial algorithms, but most Prolog implementations use the exponential algorithm, and simply drop the occurs check.

This rarely makes a difference, but does make Prolog unsound!!!

SLD-resolution rule

Let $H \leftarrow B_{1}, \ldots, B_{n}$ be a program clause renamed apart from $\leftarrow A_{1}, \ldots, A_{i}, \ldots, A_{m}$, and let θ be an mgu of A_{i} and H. Then:

$$
\frac{\leftarrow A_{1}, \ldots, A_{i}, \ldots, A_{m} \quad H \leftarrow B_{1}, \ldots, B_{n}}{\leftarrow\left(A_{1}, \ldots, A_{i-1}, B_{1}, \ldots, B_{n}, A_{i+1}, \ldots, A_{m}\right) \theta}
$$

SLD-derivation

Let G_{0} be a goal. An SLD-derivation of G_{0} is a finite/infinite sequence:

$$
G_{0} \stackrel{C_{0}}{\sim} G_{1} \cdots G_{n-1} \stackrel{C_{n-1}}{\sim} G_{n} \cdots
$$

of goals and (renamed) program clauses such that:

$$
\frac{G_{i} \quad C_{i}}{G_{i+1}}
$$

$g p(X, Y):-p(X, Z), p(Z, Y)$.
$p(X, Y):-f(X, Y)$.
$p(X, Y):-m(X, Y)$.
f(adam,tom).
f(adam, mary).
f(tom, david).
m(mary, anne).

$$
\begin{aligned}
& \operatorname{inv}(0,1) . \\
& \operatorname{inv}(1,0) .
\end{aligned}
$$

```
and(0,0,0).
and (0,1,0).
and(1,0,0).
and (1, 1, 1).
```

$\operatorname{nand}(X, Y, Z):-\operatorname{and}(X, Y, W), \operatorname{inv}(W, Z)$.

Computation rule

A computation rule \Re is a (partial) function that given a goal returns an atom in that goal.

SLD-refutation

An SLD-refutation of G_{0} is a finite SLD-derivation

$$
G_{0} \stackrel{C_{0}}{\sim} G_{1} \cdots G_{n-1} \stackrel{C_{n-1}}{\sim} G_{n}
$$

where $G_{n}=\square$.

Failed derivation

A finite SLD-derivation

$$
G_{0} \stackrel{C_{0}}{\sim} G_{1} \cdots G_{n-1} \stackrel{C_{n-1}}{\sim} G_{n}
$$

is said to be failed if the selected atom in G_{n} does not unify with any program clause head.

Complete SLD-derivation

An SLD-derivation is complete if it is a refutation, a failed or infinite derivation.

Let

$$
G_{0} \stackrel{C_{0}}{\sim} G_{1} \cdots G_{n-1} \stackrel{C_{n-1}}{\sim} G_{n}
$$

be an SLD-derivation

Computed substitution

If θ_{i} is mgu i of the derivation then

$$
\theta_{1} \theta_{2} \ldots \theta_{n}
$$

is called the computed substitution in the derivation.

Computed answer-substitution

The computed answer-substitution in a refutation of G_{0} is the computed substitution of the refutation restricted to the variables occurring in G_{0}.

Let P be a logic program;
Let \Re be a computation rule

SLD-tree

The SLD-tree of a goal G_{0} is a tree where

- the root of the tree is G_{0};
- if G_{i} is a node in the tree then G_{i} has a child G_{i+1} (connected via a branch labelled " C_{i} ") iff there exists an SLD-derivation

$$
G_{0} \stackrel{C_{0}}{\sim} G_{1} \cdots G_{i} \stackrel{C_{i}}{\sim} G_{i+1}
$$

with the computation rule \Re.

Soundness and completeness

Theorem (soundness)

Let P be a logic program, \Re a computation rule and θ an \Re-computed answer-substitution of the goal $\leftarrow A_{1}, \ldots, A_{n}$. Then $\forall\left(\left(A_{1} \wedge \ldots \wedge A_{n}\right) \theta\right)$ is a logical consequence of P.

Theorem (completeness)

Let P be a logic program and \Re a computation rule. If $\forall\left(A_{1} \wedge \ldots \wedge A_{n}\right) \sigma$ is a logical consequence of P then there is a refutation of $\leftarrow A_{1}, \ldots, A_{n}$ with \Re-computed answer-substitution θ such that $\left(A_{1} \wedge \ldots \wedge A_{n}\right) \sigma$ is an instance of $\left(A_{1} \wedge \ldots \wedge A_{n}\right) \theta$.

Example

$\%$ leq(X, Y) - X is less than or equal to Y leq($0, Y$).
$\operatorname{leq}(s(X), s(Y)):-\operatorname{leq}(X, Y)$.
:- leq(0, N).
yes

That is $P \models \forall N \operatorname{leq}(0, N)$.

Note that it is impossible to obtain e.g. the answer $N=s(0))$. However, we get a more general answer.

Negation: Overview

- Closed World Assumption;
- Negation as Failure;
- Completion;
- SLDNF-resolution (part I);
- General (alt. normal) logic programs;
- Stratified logic programs;
- SLDNF-resolution (part II).

Program:

> parent (a, b).
> parent (a, c).
> parent (c, d).
female(a).
female(d).
mother(X) :- parent(X,Y), female(X).

Least Herbrand model:

parent (a,b).
parent (a, c).
parent(c,d).
female(a).
female(d).
mother (a).

Program:

> edge (a, b).
> edge (a, c).
> edge (b, d).
> edge,$d)$.
path (X, Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

Least Herbrand model:

$$
\begin{aligned}
& \operatorname{edge}(a, b) . \\
& \operatorname{edge}(a, c) . \\
& \operatorname{edge}(b, d) . \\
& \operatorname{edge}(c, d) . \\
& \operatorname{path}(a, b) . \\
& \operatorname{path}(a, c) . \\
& \operatorname{path}(b, d) . \\
& \operatorname{path}(c, d) . \\
& \operatorname{path}(a, d) .
\end{aligned}
$$

Closed World Assumption

Background Definite programs can only be used to describe positive knowledge; it is not possible to describe objects that are not related.

Solution I Closed world assumption:

$$
\frac{P \not \vDash A}{\neg A}
$$

Problem $P \not \vDash A$ is undecidable.

Negation as (finite) Failure

Solution II An SLD-tree is finitely failed iff it is finite and does not contain any refutations.

Observation If $\leftarrow A$ has a finitely failed SLD-tree then $P \not \vDash A$. (Follows from the soundness and completeness of
SLD-resolution.)

The NAF rule

$\frac{\leftarrow A \text { has a finitely failed SLD-tree }}{\neg A}$

Problem The NAF rule is not sound.

Completion

Thesis The program contains information that is not written out explicitly. The completed program is the program obtained after addition of the missing information.

Observation $\{a \leftarrow b, a \leftarrow c\} \equiv\{a \leftarrow b \vee c\}$.
Principle An implication $a \leftarrow b$ is replaced by an equivalence $a \leftrightarrow b$.

Let Y_{1}, \ldots, Y_{i} be all variables in $p\left(t_{1}, \ldots, t_{m}\right) \leftarrow A_{1}, \ldots, A_{n}$.

Step 1 Replace the clause by

$$
\begin{aligned}
& p\left(X_{1}, \ldots, X_{m}\right) \leftarrow \\
& \quad \exists Y_{1} \ldots Y_{i}\left(X_{1} \doteq t_{1}, \ldots, X_{m} \doteq t_{m}, A_{1}, \ldots, A_{n}\right)
\end{aligned}
$$

Step 2 Take all clauses

$$
\begin{gathered}
p\left(X_{1}, \ldots, X_{m}\right) \leftarrow E_{1} \\
\vdots \\
p\left(X_{1}, \ldots, X_{m}\right) \leftarrow E_{j}
\end{gathered}
$$

that define p / m and replace by

$$
\begin{array}{ll}
p\left(X_{1}, \ldots, X_{m}\right) \leftarrow E_{1} \vee \ldots \vee E_{j} & (j>0) \\
p\left(X_{1}, \ldots, X_{m}\right) \leftarrow \square & (j=0)
\end{array}
$$

Step 3 Replace all implications with equivalences.

Step 4 Add the "free equality axioms":

$$
\begin{aligned}
& X \doteq X \\
& X \doteq Y \rightarrow Y \doteq X \\
& X \doteq Y \wedge Y \doteq Z \rightarrow X \doteq Z \\
& X_{1} \doteq Y_{1} \wedge \ldots \wedge X_{m} \doteq Y_{m} \rightarrow \\
& \quad \quad\left(X_{1}, \ldots, X_{m}\right) \doteq f\left(Y_{1}, \ldots, Y_{m}\right) \\
& X_{1} \doteq Y_{1} \wedge \ldots \wedge X_{m} \doteq Y_{m} \rightarrow \\
& \quad\left(p\left(X_{1}, \ldots, X_{m}\right) \rightarrow p\left(Y_{1}, \ldots, Y_{m}\right)\right) \\
& f\left(X_{1}, \ldots, X_{m}\right) \neq g\left(Y_{1}, \ldots, Y_{n}\right) \text { if } f / m \neq g / n \\
& f\left(X_{1}, \ldots, X_{m}\right) \doteq f\left(Y_{1}, \ldots, Y_{m}\right) \rightarrow \\
& \quad X_{1} \doteq Y_{1} \wedge \ldots \wedge X_{m} \doteq Y_{m} \\
& f(\ldots \ldots) \neq X
\end{aligned}
$$

Soundness of "Negation as Failure"

Theorem Let P be a definite program. If
$\leftarrow A$ has a finitely failed SLD-tree then $\operatorname{comp}(P) \models \forall \neg A$.

Completeness of "Negation as Failure"

Theorem Let P be a definite program. If $\operatorname{comp}(P) \vDash \forall \neg A$ then there exists a finitely failed SLD-tree of $\leftarrow A$.

SLDNF-resolution for definite programs

A general goal is an expression

$$
\leftarrow L_{1}, \ldots, L_{n} .
$$

where each L_{i} is an atom (positive literal) or a negated atom (negative literal).

Combine SLD-resolution and "Negation as Failure"

Given a general goal - if the selected literal is positive then the next goal is obtained in the usual way. If the selected literal is negative $(\neg A)$ and $\leftarrow A$ has a finitely failed SLD-tree then the next goal is obtained by removing $\neg A$ from the goal.

Soundness of SLDNF

Theorem Let P be a definite program and $\leftarrow L_{1}, \ldots, L_{n}$ a general goal. If $\leftarrow L_{1}, \ldots, L_{n}$ has an SLDNF-refutation with computed answer-substitution θ then $\forall\left(L_{1} \wedge \cdots \wedge L_{n}\right) \theta$ is a logical consequence of $\operatorname{comp}(P)$.

No completeness!!!

General (or normal) programs

A general clause is a clause of the form

$$
A \leftarrow L_{1}, \ldots, L_{n} \quad(n \geq 0)
$$

where L_{1}, \ldots, L_{n} are positive/negative literals.

Completion

Completion of a general program is obtained in the same way as for definite programs.
(Negative literals are handled like positive literals.)

Stratified programs

Problem Completion of a general program can be inconsistent (unsatisfiable).

Limitation A stratified program is a general program where "no relation is defined in terms of its own complement". That is, no predicate symbol depends on its own negation.

Stratified programs

A general program P is stratified iff there exists a partitioning P_{1}, \ldots, P_{n} of P such that

- if $p(\ldots) \leftarrow \ldots, q(\ldots), \ldots \in P_{i}$ then
$\operatorname{DEF}(q) \subseteq P_{1} \cup \ldots \cup P_{i}$.
- if $p(\ldots) \leftarrow \ldots, \neg q(\ldots), \ldots \in P_{i}$ then
$\operatorname{DEF}(q) \subseteq P_{1} \cup \ldots \cup P_{i-1}$.

Theorem Completion of a stratified program is always consistent.

SLDNF-resolution for general programs

Let P be a general program, G_{0} a general goal and \Re a computation rule. The SLDNF-forest of G_{0} is the least forest (modulo renaming) such that

1. G_{0} is a root of one tree.
2. if G is a node and $\Re(G)=A$ then G has a child G^{\prime} for each clause C such that G^{\prime} is obtained from G and C. If there is no such clause, G has a single child $\mathbf{F F}$;
3. if G is a node of the form
$\leftarrow L_{1}, \ldots, L_{i-1}, \neg A, L_{i+1}, \ldots, L_{i+j}$ and $\Re(G)=\neg A$, then

Cont'd

- the forest contains a tree with the root $\leftarrow A$;
- if the tree with the root $\leftarrow A$ has a leaf \square with the empty computed answer-substitution, then G has a child FF.
- if the tree with root $\leftarrow A$ is finite and all leaves are $\mathbf{F F}$, then G has a single child $\leftarrow L_{1}, \ldots, L_{i-1}, L_{i+1}, \ldots, L_{i+j}$.

Soundness of SLDNF-resolution

Let P be a general program, $\leftarrow L_{1}, \ldots, L_{n}$ a general goal and \Re a computation rule. If θ is a computed answer-substitution in an SLDNF-refutation of $\leftarrow L_{1}, \ldots, L_{n}$ then $\forall\left(\left(L_{1} \wedge \ldots \wedge L_{n}\right) \theta\right)$ is a logical consequence of $\operatorname{comp}(P)$.
father (X) :parent (X, Y),
$\backslash+\operatorname{mother}(X, Y)$.
disjoint ([], X).
disjoint ([X|Xs],Ys) :-
$\+$ member (X,Ys),
disjoint(Xs,Ys).

```
founding(X) :-
    on(Y,X),
    on_ground(X).
on_ground(X) :-
    \+ off_ground(X).
off_ground(X) :-
    on(X,Y).
on(c,b).
on(b,a).
```

go_well_together (X,Y) :-
\+ incompatible(X,Y).
incompatible(X,Y) :-
\+ likes(X,Y).
incompatible(X,Y) :-
\+ likes(Y,X).
likes(X,Y) :harmless(Y).
likes(X,Y) :eats (X,Y).
harmless(rabbit).
eats(python,rabbit).

father (X,Y) :parent (X,Y), \+ mother (X,Y).

parent (a,b). parent (c, b).
mother (a, b).
father (X,Y) :-
parent (X,Y),

$$
\backslash+\operatorname{mother}(\mathrm{X}, \mathrm{Y}) .
$$

mother (X,Y) :-
parent (X,Y),

$$
\text { \+ father }(X, Y)
$$

parent (a,b).
parent (c, b).

$$
\begin{aligned}
& \text { on_top }(X):- \\
& \quad \backslash+\text { blocked }(X) .
\end{aligned}
$$

$$
\begin{gathered}
\text { blocked }(X):- \\
\text { on }(Y, X) .
\end{gathered}
$$

on (a, b).
\%---------------------
| ? - + on_top (b).
| ? \quad + + on_top (X).

Logic and Grammars: Overview

- Context free languages;
- Context sensitive languages;
- Definite Clause Grammars (DCGs);
- DCGs and Prolog.

Context free Ianguages

- A context free grammar is a triple $\langle N, T, P\rangle$ where:
- N is a finite set of non-terminals;
- T is a finite set of terminals (and $N \cap T=\emptyset)$;
- $P \subseteq N \times(N \cup T)^{*}$ is a finite set of production rules.
- Examples of production rules:

$$
\begin{aligned}
\langle\text { expr }\rangle & \rightarrow\langle\text { expr }\rangle+\langle\text { expr }\rangle \\
\langle\text { sent }\rangle & \rightarrow\langle n p\rangle\langle v p\rangle
\end{aligned}
$$

Derivations

- Let $\alpha, \beta, \gamma \in(N \cup T)^{*}$. We say that $\alpha A \gamma$ directly derives $\alpha \beta \gamma$ iff $A \rightarrow \beta \in P$. Denoted

$$
\alpha A \gamma \Rightarrow \alpha \beta \gamma
$$

- We say that α_{1} derives α_{n} iff there exists a sequence $\alpha_{1} \Rightarrow \alpha_{2}, \alpha_{2} \Rightarrow \alpha_{3}, \ldots, \alpha_{n-1} \Rightarrow \alpha_{n}$. Denoted

$$
\alpha_{1} \stackrel{*}{\Rightarrow} \alpha_{n}
$$

- A terminal string $\alpha \in T^{*}$ is in the language of A iff $A \stackrel{*}{\Rightarrow} \alpha$.

Example: Context free grammar

$\langle s e n t\rangle \rightarrow\langle n p\rangle\langle v p\rangle$
$\langle n p\rangle \rightarrow$ the $\langle n\rangle$
$\langle v p\rangle \rightarrow$ runs
$\langle n\rangle \rightarrow$ engine
$\langle n\rangle \rightarrow$ rabbit

Naive implementation

$\operatorname{sent}(Z) \leftarrow \operatorname{append}(X, Y, Z), n p(X), v p(Y)$.
$n p([$ the $\mid X]) \leftarrow n(X)$.
$v p([$ runs $])$.
$n([$ engine $])$.
$n([r a b b i t])$.
$\operatorname{append}([], X s, X s)$.
append $([X \mid X s], Y s,[X \mid Z s]) \leftarrow$ $\operatorname{append}(X s, Y s, Z s)$.

Usage of "Difference Lists"

- Assume that "-/2" denotes a partial function which given two strings $x_{1} \ldots x_{m-1} x_{m} \ldots x_{n}$ and $x_{m} \ldots x_{n}$ returns the string $x_{1} \ldots x_{m-1}$.
- Example

$$
\begin{aligned}
& \operatorname{sent}\left(X_{0}-X_{2}\right) \leftarrow n p\left(X_{0}-X_{1}\right), v p\left(X_{1}-X_{2}\right) \\
& \underbrace{x_{1} \ldots x_{i-1} \underbrace{x_{i} \ldots x_{j-1} \underbrace{x_{j} \ldots x_{k}}_{X_{2}}}_{X_{1}}}_{X_{0}}
\end{aligned}
$$

Two Alternatives

$$
\begin{aligned}
& \text { sent }\left(X_{0}-X_{2}\right) \leftarrow n p\left(X_{0}-X_{1}\right), \text { vp }\left(X_{1}-X_{2}\right) . \\
& n p\left(X_{0}-X_{2}\right) \leftarrow C^{\prime}\left(X_{0}, \text { the }, X_{1}\right), n\left(X_{1}-X_{2}\right) . \\
& v p\left(X_{0}-X_{1}\right) \leftarrow '^{\prime}\left(X_{0}, \text { runs, } X_{1}\right) . \\
& n\left(X_{0}-X_{1}\right) \leftarrow C^{\prime}\left(X_{0}, \text { engine, } X_{1}\right) . \\
& n\left(X_{0}-X_{1}\right) \leftarrow C^{\prime}\left(X_{0}, \text { rabbits, } X_{1}\right) . \\
& C^{\prime}([X \mid Y], X, Y) .
\end{aligned}
$$

```
sent (X0-X ( 
np([the | X | ]- - X ) \leftarrown( 
vp([runs | X ] ]-X - ).
n([engine | }\mp@subsup{X}{1}{}]-\mp@subsup{X}{1}{})
n([rabbit | X | ]-X ( ).
```


Partial deduction

```
grandparent(X,Y) :- parent(X,Z), parent(Z,Y).
```

parent (X,Y) :father (X,Y).
parent (X,Y) :mother (X,Y).
\qquad
grandparent(X,Y) :father (X,Z), parent(Z,Y).
grandparent(X,Y) :mother (X,Z), parent(Z,Y).
parent (X,Y) :father (X,Y).
parent (X,Y) :mother (X,Y).

Context sensitive languages

- Some languages cannot be described by context free grammars. For instance

$$
\begin{aligned}
A B C & =\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\} \\
& =\{\epsilon, a b c, a a b b c c, a a a b b b c c c, \ldots\}
\end{aligned}
$$

- The language $A B C$ can be expressed in Prolog

$$
\begin{aligned}
& a b c\left(X_{0}-X_{3}\right) \leftarrow \\
& a\left(N, X_{0}-X_{1}\right), \\
& b\left(N, X_{1}-X_{2}\right), \\
& c\left(N, X_{2}-X_{3}\right) . \\
& a\left(0, X_{0}-X_{0}\right) . \\
& a\left(s(N),\left[a \mid X_{1}\right]-X_{2}\right) \leftarrow a\left(N, X_{1}-X_{2}\right) . \\
& b\left(0, X_{0}-X_{0}\right) . \\
& b\left(s(N),\left[b \mid X_{1}\right]-X_{2}\right) \leftarrow b\left(N, X_{1}-X_{2}\right) . \\
& c\left(0, X_{0}-X_{0}\right) . \\
& c\left(s(N),\left[c \mid X_{1}\right]-X_{2}\right) \leftarrow c\left(N, X_{1}-X_{2}\right) .
\end{aligned}
$$

Definite Clause Grammars (DCGs)

- A Definite Clause Grammar is a triple $\langle N, T, P\rangle$ where
- N is a finite/infinite set of atoms;
- T is a finite/infinite set of terms (and $N \cap T=\emptyset)$;
- $P \subseteq N \times(N \cup T)^{*}$ is a finite set of production rules.

Derivations

- Let $\alpha, \beta, \gamma \in(N \cup T)^{*}$. We say that $\alpha A \gamma$ directly derives $(\alpha \beta \gamma) \theta$ iff $A^{\prime} \rightarrow \beta \in P$ and $m g u\left(A, A^{\prime}\right)=\theta$. Denoted

$$
\alpha A \gamma \Rightarrow(\alpha \beta \gamma) \theta
$$

- We say that α_{1} derives α_{n} (denoted $\left.\alpha_{1} \stackrel{*}{\Rightarrow} \alpha_{n}\right)$ iff there exists a sequence

$$
\alpha_{1} \Rightarrow \alpha_{2}, \alpha_{2} \Rightarrow \alpha_{3}, \ldots, \alpha_{n-1} \Rightarrow \alpha_{n}
$$

- A terminal string $\alpha \in T^{*}$ is in the language of A iff $A \stackrel{*}{\Rightarrow} \alpha$.

Example of DCG

$\operatorname{sent}(\mathrm{s}(\mathrm{X}, \mathrm{Y}))$--> np(X, N)\ vp(Y, N).
np(john, singular(3)) --> [john].
np(they, plural(3)) --> [they].
vp(run, plural(X)) --> [run].
vp(runs, singular(3)) --> [runs].

Semantical (context sensitive) constraints

The following DCG describes the language $\left\{a^{2 n} b^{2 n} c^{2 n} \mid n \geq 0\right\}$
$a b c \quad-->\quad a(N), b(N), c(N)$, even(N).
a(0) --> [].
$a(s(N))$--> [a], a(N).
even(0) --> [].
even(s(s(N))) --> even(N).

Note

- The language of even (X) contains only the string $\epsilon!!!$
- This may be emphasized by writing

$$
a b c-->a(N), b(N), c(N),\{\operatorname{even}(N)\} .
$$

- and by defining even/1 as a logic program

$$
\begin{aligned}
& \operatorname{even}(0) . \\
& \operatorname{even}(s(s(X))) \leftarrow \operatorname{even}(X) .
\end{aligned}
$$

DCGs and Prolog

- Every production rule in a DCG can be compiled into a Prolog clause;
- The resulting Prolog program can be used as a (top-down) parser for the language (cf. "recursive descent");

Compilation

- Assume that X_{0}, \ldots, X_{m} are distinct variables that do not occur in

$$
p\left(t_{1}, \ldots, t_{n}\right) \rightarrow T_{1}, \ldots, T_{m}
$$

- The Prolog program will then contain a clause

$$
p\left(t_{1}, \ldots, t_{n}, X_{0}, X_{m}\right) \leftarrow T_{1}^{\prime}, \ldots, T_{m}^{\prime} .
$$

where each $T_{i}^{\prime},(1 \leq i \leq m)$, is of the form

$$
\begin{gathered}
q\left(t_{1}, \ldots, t_{n}, X_{i-1}, X_{i}\right) \text { if } T_{i}=q\left(t_{1}, \ldots, t_{n}\right) \\
C^{\prime}\left(X_{i-1}, t, X_{i}\right) \text { if } T_{i}=[t] \\
T, X_{i-1}=X_{i} \text { if } T_{i}=\{T\} \\
X_{i-1}=X_{i} \text { if } T_{i}=[]
\end{gathered}
$$

Example

$$
\begin{aligned}
& \text { sent --> np, vp. } \\
& \text { np --> [the], n. } \\
& \text { vp --> [runs]. } \\
& \text { n --> [boy]. }
\end{aligned}
$$

\% Translates into...
sent(S0,S2) :- np(S0,S1), vp(S1,S2).
np(S0,S2) :- 'C'(S0,the,S1), n(S1,S2).
vp(S0,S1) :- 'C'(S0,runs,S1).
n(S0,S1) :- 'C'(S0,boy,S1).
'C' ([X|Xs],X,Xs).

Summary

- Logic programming can be used to define
- (Regular languages);
- Context free languages;
- Context sensitive languages;
- (Recursively enumerable languages).
- Definite Clause Grammars (DCGs);
- Compilation of DCGs into Prolog.

Examples

\% Membership in a ordered binary tree member (X, node(Left, X, Right)). member (X, node(Left, Y, Right)) :$\mathrm{X}<\mathrm{Y}$, member (X, Left).
member (X, node(Left, Y, Right)) :X > Y, member(X, Right).
\% Property of being a father father (X) :parent(X, Y), male(X).

General

- Prolog constructs the SLD(NF)-tree by a depth-first search in combination with backtracking.
- By means of cut (!) the user can prohibit the Prolog engine from exploring certain branches in the tree.
- Cut (!) may only occur in the righthand sides of clauses and can be viewed as a regular (nullary) atom.

Principles

- Two principal uses
- Prune infinite and failed branches (green cut);
- Prune refutations (red cut).
- Acceptable "red cut":
- Prune multiple occurrences of the same answer.

The Golden Rule

First write a correct program without cuts. Then add cuts in approprate places to improve the efficiency.

Constraint Iogic programming

- Constraints
- Operations on constraints
- Constraint Logic Programming
- Language
- Operational semantics
- Examples

Constraint

Given a set of variables, a constraint is a restriction on the possible values of the variables.

Example

Variables: X, Y.

Constraint I: $X^{2}+Y^{2} \leq 4$

Constraint II: $Y \geq 2-2 \cdot X$

Solution

The constraint $X^{2}+Y^{2} \leq 4$ has a set of solutions - variable assignments when the constraint is true, e.g:
$\{X \mapsto 2, Y \mapsto 0\}$
$\{X \mapsto 0, Y \mapsto 2\}$ $\{X \mapsto 1, Y \mapsto 1\}$

A mapping from variables to values is called a valuation. A valuation where the constraint is true is called a solution.

Domain of a constraint

Whether a constraint has a solution or not depends on the values that the variables can take.

The constraint $X^{2}=2$ has a real solution, but not an integer or a rational solution.

The set of all possible values of the variables is called the domain of the constraint.

Conjunctive constraints

The conjunction of the primitive constraints
$X^{2}+Y^{2} \leq 4$ and $Y \geq 2-2 \cdot X$ is a new (conjunctive) constraint:

Sets of primitive constraints represent conjunctive constraints.

Properties of constraints

A constraint is said to be satisfiable iff it has at least one solution.

A constraint C_{1} implies a constraint C_{2} (written $C_{1} \models C_{2}$) iff every solution of C_{1} is also a solution of C_{2}.

Two constraints are equivalent if they have the same set of solutions.

Optimal solutions

A solution σ of a set of constraints S is maximal subject to an expression E if $\sigma(E)$ is greater than $\sigma^{\prime}(E)$ for any solution σ^{\prime} of S.

Example

The solution $\{X \mapsto 1.6, Y \mapsto-1.2\}$ is a maximal solution of

$$
\begin{aligned}
X^{2}+Y^{2} & \leq 4 \\
Y & \geq 2-2 \cdot X
\end{aligned}
$$

subject to $-Y$.

Constraint Logic Programming

sorted([]).
sorted([x]).
sorted([Fst,Snd|Rst]) :-
Fst $=<$ Snd, sorted([Snd|Rst]).
:- sorted([X1, X2, X3]).

ARITHMETIC ERROR!!!

Language

- Functors and predicate symbols divided into:
- Uninterpreted symbols (Herbrand terms/atoms);
- Interpreted symbols (constraints).
- Special solvers handle constraints;
- SLD(NF)-resolution is used for Herbrand atoms;

Language (cont'd.)

- A clause is an expression

$$
A_{0} \leftarrow C_{1}, \ldots, C_{m}, A_{1}, \ldots, A_{n}
$$

where

- A_{0}, \ldots, A_{n} are Herbrand atoms;
$-C_{1}, \ldots, C_{m}$ are constraints.
- A goal is an expression

$$
\leftarrow C_{1}, \ldots, C_{m}, A_{1}, \ldots, A_{n}
$$

CLP(X): A Family of Languages

CLP(R) Linear equations over reals

CLP(Q) Linear equations over rationals

CLP(B) Booleans
CLP(FD) Finite domains

Example CLP(R)

mortgage(Loan, Years,AInt,Bal, APay) :\{ Years>0,

Years <= 1,
Bal=Loan*(1+Years*AInt)-APay \}.
mortgage(Loan, Years,AInt, Bal,APay) :-
\{ Years>1,
NewLoan = Loan*(1+AInt)-APay,
Years1 = Years-1 \},
mortgage(NewLoan, Years1,AInt,Bal,APay).
?- mortgage (120000, 10, 0.1, 0, AnnPay).
AnnPay=19529.4
?- mortgage(Loan, 10, 0.1, 0, 19529.4).
Loan=120000
?- mortgage(Loan, 10, 0.1,0, AnnPay).
Loan=6.14457*AnnPay

Resolution with constraints

A state is a pair $(G ; S)$ where G is a goal, and S is a constraint store. Given a program P a derivation is a sequence of states:

- $(\leftarrow A, B ; S) \Rightarrow\left(\leftarrow A=A^{\prime}, B^{\prime}, B ; S\right)$ if $A^{\prime} \leftarrow B^{\prime} \in P$
- $(\leftarrow C, G ; S) \Rightarrow(\leftarrow G ;\{C\} \cup S)$
- $(G ; S) \Rightarrow$ fail if $\operatorname{sat}(S)=$ false;
- $(G ; S) \Rightarrow\left(G ; S^{\prime}\right)$ if S and S^{\prime} are equivalent.
- $(G ;\{X=t\} \cup S) \Rightarrow(G ; S)\{X / t\}$

Example: Arithmetic

```
:- res(ser(r(10),r(20)),X).
```

$\operatorname{res}(r(X), Y):-$ $\{X=Y\}$.
res(cell(X),Y) :-
$\{Y=0\}$.
res(ser $(\mathrm{X} 1, \mathrm{X} 2), \mathrm{R}):-$
$\{R=R 1+R 2\}, r e s(X 1, R 1), r e s(X 2, R 2)$.
res(par(X1,X2),R) :-
$\{1 / R=1 / R 1+1 / R 2\}, \operatorname{res}(X 1, R 1), r e s(X 2, R 2)$.

Modeling with Boolean constraints

Boolean operations

+	Disjunktion	$*$	Conjunction
$=<$	Implikation	$=:=$	Equivalence
$\#$	Exclusive or	\sim	Negation

MOS transistors

$$
\begin{aligned}
& \operatorname{nmos}(S, G, D):-\operatorname{sat}(S * G=:=D * G) . \\
& \operatorname{pmos}(S, G, D):-\operatorname{sat}\left(S * \sim_{G}=:=D * \sim G\right) .
\end{aligned}
$$

Design of XOR-gate

$$
\begin{array}{r}
\text { circuit }(X, Y, Z):- \\
\operatorname{pmos}(X, Y, Z), \\
\operatorname{pmos}(1, X, T), \\
\\
\operatorname{nmos}(T, X, 0), \\
\operatorname{nmos}(T, Y, Z) \\
\operatorname{nmos}(Y, T, Z) \\
\\
\operatorname{pmos}(Y, X, Z)
\end{array}
$$

Verification of correctness

?- circuit($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$), $\operatorname{taut}(\mathrm{Z}=:=\mathrm{X} \# \mathrm{Y}, 1)$. yes

CLP with Finite Domains

- Constraints and constraint problems
- Primitive constraints
- CLP(FD)
- Optimization
- Global constraints

Example

- A, B and C live in different houses
- C lives left of B
- B has two neighbors

Constraint problem

- A constraint problem consists of a finite set of problem variables,
- Each variable takes its value from a given domain
- Constraints are relations that restrict the values that can be assigned to the problem variables

Mathematical reformulation

- $A, B, C \in\{1,2,3\}$
- $A \neq B, A \neq C$ and $B \neq C$
- $C<B$
- $(A<B<C)$ or $(C<B<A)$

Example

Two problem variables X and Y with the integer domains 5..10 and 1..7. One constraint (relation) $\mathrm{X}<\mathrm{Y}$:

New domains imposed by the constraint:
X in $5 . .6$
Y in $6 . .7$

Operations on constraints

- Satisfiability: Does a given set of constraint have at least one solution?
- Entailment: Is every solution of a set S of constraints also a solution of a constraint C (denoted $S \models C$)?
- Equality: Do two sets of constraints have the same set of solutions?
- Optimality: Find the best solution (given some criterion of optimality)
- Simplification: Given a set S of constraints, find a simpler set of constraints S^{\prime} equivalent to S.

Primitive Finite Domain constraints

| ? $-X$ in 3..8.
X in 3.. 8
| ? -X in 3..8, Y in 1..4, $\mathrm{Z} \#=\mathrm{X}+\mathrm{Y}$.
X in 3..8,
Y in 1..4,
Z in 4..12
| ? - X in 5..10, Y in 1..7, X \#< Y.
X in 5..6,
Y in 6..7

Domains vs solutions

Note that domains are not identical to solutions:

?- X in $5 . .10$, Y in 1..7, X \#< Y.

Produces the domains:

X in 5..6.
Y in 6..7.

But the domains contain all solutions:
$X=5, Y=6$
$X=5, Y=7$
$X=6, Y=7$

More examples

$$
\begin{aligned}
& \text { | ?- } X \text { in 0..9, } Y \text { in 0..1, } X \text { \#< } Y \text {. } \\
& X=0 \text {, } \\
& Y=1 \\
& \text { | ?- } X \text { in 4..6, } Y \text { in 1..3, } X \text { \#< } Y \text {. } \\
& \text { no } \\
& \text { | ? - } X \text { in 1..12, } Y \text { in 1..12, } X \quad \#=2 * Y \text {. } \\
& \mathrm{X} \text { in 2..12, } \\
& Y \text { in } 1 . .6 \\
& \text { | ?- } X \text { in 1..2, } Y \text { in 1..2, } Z \text { in 1..2, } \\
& \mathrm{X} \# \backslash=\mathrm{Y}, \mathrm{X} \# \backslash=\mathrm{Z}, \mathrm{Y} \# \backslash=\mathrm{Z} . \\
& X \text { in 1..2, } \\
& Y \text { in 1..2, } \\
& \text { Z in 1..2 }
\end{aligned}
$$

Parallel declaration of domains
| ?- domain([X,Y,Z], 0, 9).

Labeling

Domains approximate solutions...
| ?- X in 1..2, Y in 1..3, X \#< Y.
X in 1..2,
Y in 2..3

Systematically assign values to a variable from its domain.
| ?- X in 1..2, Y in 1..3, X \#< Y , labeling([],[X,Y]).
$\mathrm{X}=1, \mathrm{Y}=2$
$X=1, \quad Y=3$
$X=2, \quad Y=3$
| ?- X in $1 . .12$, Y in $1 . .12$, X \#= $2 * \mathrm{Y}$,
labeling ([],[X,Y]).
$\mathrm{X}=2, \quad \mathrm{Y}=1$
$X=4, Y=2$

CLP (X)

A logic program is a set of rules

$$
A_{0}:-A_{1}, \ldots, A_{n}
$$

or facts

$$
A_{0}
$$

where $A_{0}, A_{1}, \ldots, A_{n}$ are atomic formulas; i.e. formulas of the form $p\left(t_{1}, \ldots, t_{n}\right)$.

Note: A constraint is an atomic formula!

A constraint logic program is a logic program where some of A_{1}, \ldots, A_{n} may be (some pre-defined) constraints over some algebraic structure X.

CLP(X)

- $\operatorname{CLP}(R)$, reals
- CLP(Q), rational numbers
- CLP(B), Boolean values
- CLP(FD), finite domains
- CLP(Sets), sets

CLP(FD)

1. queens (N, L) :-
2. length(L, N),
3. domain(L, 1, N),
4. safe(L),
5. labeling([], L).
6. safe([]).
7. safe([X|Xs]) :-
8. safe_between(X, Xs, 1),
9. safe(Xs).
10. safe_between(X, [], M).
11. safe_between(X, [Y|Ys], M) :-
12. no_attack(X, Y, M),
13. M1 is $\mathrm{M}+1$,
14. safe_between(X, Ys, M1).
15. no_attack(X, Y, N) :-
16. $\mathrm{X} \# \backslash=\mathrm{Y}, \mathrm{X}+\mathrm{N} \# \backslash=\mathrm{Y}, \mathrm{X}-\mathrm{N} \# \backslash=\mathrm{Y}$.

General Strategy

1. solution(L) :-
2. create_variables(L),
3. constrain_variables(L),
4. solve_constraints(L).

Optimization

$$
\begin{aligned}
\text { I ?- } & \mathrm{X} \text { in } 1 . .9, \mathrm{Y} \text { in } 4 \ldots 6, \mathrm{Z} \#=\mathrm{X}-\mathrm{Y}, \\
& \operatorname{labeling}([\operatorname{maximize}(\mathrm{Z})],[\mathrm{X}, \mathrm{Y}]) .
\end{aligned}
$$

1. items (A, B, C, S, P) :-
2. domain ([A, B , C] , 0, 10) ,
3. $A S$ \# $=2 * \mathrm{~A}, \mathrm{AP} \#=3 * \mathrm{~A}$,
4. $B S$ \# $=3 * B, B P \#=4 * B$,
5. CS \#= $7 * C, C P$ \# $=10 * C$,
6. S \#>= AS+BS+CS,
7. P \#= AP+BP+CP,
8. labeling([maximize (P)],[P, S, A, B , C]).

Global Constraints

all_different $\left(\left[X_{1}, \ldots, X_{n}\right]\right)$

1. $\operatorname{smm}([S, E, N, D, M, O, R, Y]):-$
2. domain([S,E,N,D,M,O,R,Y], O, 9),
3. S \#> 0, M \#> 0,
4. all_different([S,E,N,D,M,O,R,Y]),
5. $\quad \operatorname{sum}(S, E, N, D, M, O, R, Y)$,
6. labeling([], [S,E,N,D,M,O,R,Y]).
7. sum(S, E, N, D, M, O, R, Y) :-
8.

$1000 * S+100 * E+10 * N+D$
9.
$+1000 * \mathrm{M}+100 * \mathrm{O}+10 * \mathrm{R}+\mathrm{E}$
10. \#= $10000 * \mathrm{M}+1000 * 0+100 * \mathrm{~N}+10 * E+\mathrm{Y}$.
cumulative(Ss,Ds,Rs,L)
| ?- domain([S1,S2,S3],0,4), S1 \#< S3, cumulative([S1, S2, S3], [3, 4, 2], $[2,1,3], 3)$, labeling ([], [S1, S2, S3]).

Resource allocation

1. shower (S, Done) :-
2.

$D=[5,3,8,2,7,3,9,3,3,5,7]$,
3. $R=[1,1,1,1,1,1,1,1,1,1,1]$,
4. length (D, N),
5. length (S, N),
6. domain(S, 0, 100),
7. Done in 0..100,
8. ready (S, D, Done),
9. cumulative (S, D, R, 3),
10. labeling([minimize(Done)], [Done|S]).
11. ready([], [], _).
12. ready([S|Ss], [D|Ds], Done) :-
13. Done \#>= S+D,
14. ready(Ss, Ds, Done).
element $\left(X,\left[X_{1}, \ldots, X_{n}\right], Y\right)$
| ?- element(X, [1,2,3,5], Y).
| ?- X in 2..3, element(X, [1, X, 4, 5], Y).
circuit $\left(\left[X_{1}, \ldots, X_{n}\right]\right)$

Traveling Salesman

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}
X_{1}	-	4	8	10	7	14	15
X_{2}	4	-	7	7	10	12	5
X_{3}	8	7	-	4	6	8	10
X_{4}	10	7	4	-	2	5	8
X_{5}	7	10	6	2	-	6	7
X_{6}	14	12	8	5	6	-	5
X_{7}	15	5	10	8	7	5	-

Traveling Salesman (cont'd)

1. tsp(Cities, Cost) :-
2. Cities $=[\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7]$,
3. element (X1, [$0,4,8,10,7,14,15], C 1)$,
4. element (X2, [4, 0, 7, 7,10,12, 5], C2),
5. element (X3, [8, 7, 0, 4, 6, 8,10], C3),
6. element (X4, [10, 7, 4, 0, 2, 5, 8], C4),
7. element (X5, [7,10, 6, 2, 0, 6, 7], C5),
8. element (X6, [14, 12, 8, 5, 6, 0, 5], C6),
9. element (X7, [15, 5, 10, 8, 7, 5, 0], C7),
10. Cost \#= C1+C2+C3+C4+C5+C6+C7,
11. circuit(Cities),
12. labeling([minimize(Cost)], Cities).

Deductive Databases: Overview

- Top-down evaluation;
- Relational databases;
- Bottom-up evaluation;
- "Magic templates"

Logic programs as Databases

- Powerful language for representation of relational data.
- Explicit data
- Views
- Queries
- Integrity constraints
- How to compute answers to database queries?
- Does not address issues such as concurrency control, updates, crashes etc.

Top-down \Rightarrow Recomputation

```
path(X,Y) :- edge(X,Y).
path(X,Z) :- edge(X,Y), path(Y,Z).
edge(a,b).
edge(b,c).
edge(a,c).
...
```


Top-down \Rightarrow Infinite computations

$\operatorname{path}(X, Y)$:- edge(X,Y).
$\operatorname{path}(X, Z):-\operatorname{path}(X, Y), \operatorname{edge}(Y, Z)$.
edge (a, b).
edge (b, a).
edge (b, c).

Properties: Top-down

- Advantages:
- Efficient handling of search space;
- Goal-directed (Backward-chaining);
- Disadvantages:
- Termination;
- Recomputations;

How to compute database queries?

Example:

Father		Mother	
X	Y	X	Y
tom	mary	mary	billy
john	tom	kate	tom
:	:	:	:

New derived relations using relational algebra:

$$
\begin{aligned}
P & :=F(X, Y) \cup M(X, Y) \\
G P & :=\pi_{X, Z}(P(X, Y) \bowtie P(Y, Z))
\end{aligned}
$$

Bottom-up evaluation (Cf. T_{P})

$$
\begin{aligned}
S_{P}(X)= & \\
\left\{A_{0} \theta \mid\right. & A_{0} \leftarrow A_{1}, \ldots, A_{n} \in P \text { and } \\
& A_{1}^{\prime}, \ldots, A_{n}^{\prime} \in X \text { and } \\
& \left.m g u\left\{A_{1}=A_{1}^{\prime}, \ldots, A_{n}=A_{n}^{\prime}\right\}=\theta\right\}
\end{aligned}
$$

Naive evaluation
fun naive(P)
begin
$x:=$ facts (P);
repeat

$$
\begin{aligned}
& y:=x ; \\
& x:=S_{P}(y) ;
\end{aligned}
$$

until $x=y$;
return x;
end

Bottom-up evaluation (cont'd.)

$\Delta S_{P}(X, \Delta X)=$

$$
\begin{aligned}
\left\{A_{0} \theta \mid\right. & A_{0} \leftarrow A_{1}, \ldots, A_{n} \in P \text { and } \\
& A_{1}^{\prime}, \ldots, A_{n}^{\prime} \in X, \exists A_{i}^{\prime} \in \triangle X \text { and } \\
& \left.m g u\left\{A_{1}=A_{1}^{\prime}, \ldots, A_{n}=A_{n}^{\prime}\right\}=\theta\right\}
\end{aligned}
$$

Semi-naive evaluation

fun seminaive (P)
begin
$\Delta x:=\operatorname{facts}(P) ;$
$x:=\Delta x$;
repeat
$\Delta x:=\Delta S_{P}(x, \Delta x) \backslash x ;$
$x:=x \cup \Delta x ;$
until $\Delta x=\emptyset$;
return x;
end

Properties: Bottom-up

- Advantages:
- Termination;
- Re-use of already computed results;
- Disadvantages:
- Not goal-directed;
- Termination;

Magic Templates

Let $\operatorname{magic}(P)$ be the least program such that if $A_{0} \leftarrow A_{1}, \ldots, A_{n} \in P$ then:

- $A_{0} \leftarrow \operatorname{call}\left(A_{0}\right), A_{1}, \ldots, A_{n} \in \operatorname{magic}(P)$
- $\operatorname{call}\left(A_{i}\right) \leftarrow \operatorname{call}\left(A_{0}\right), A_{1}, \ldots, A_{i-1} \in$ $\operatorname{magic}(P)$

In addition $\operatorname{call}(A) \in \operatorname{magic}(P)$ if $\leftarrow A$.

Compute naive(magic (P)).

Example

```
%-----------ORIGINAL PROGRAM----------------
p(X,Y) :- e(X,Y).
p(X,Z) :- p(X,Y), e(Y,Z).
e(a,b).
e(b,a).
e(b,c).
    :- p(a,X).
%--------------MAGIC PROGRAM---------------
p(X,Y) :- call(p(X,Y)), e(X,Y).
p(X,Z) :- call(p(X,Z)), p(X,Y), e(Y,Z).
e(a,b) :- call(e(a,b)).
e(b,a) :- call(e(b,a)).
e(b,c) :- call(e(b,c)).
%
call(e(X,Y)) :- call(p(X,Y)).
call(p(X,Y)) :- call(p(X,Z)).
call(e(Y,Z)) :- call(p(X,Z)), p(X,Y).
%
call(p(a,X)).
```


Bottom-up with Magic Templates

- Advantages:
- Termination;
- Re-use of results;
- Goal-directed;
- Disadvantages:
- Sometimes slower than Prolog (when Prolog terminates);

Logic programming with Equations

- What is equality?
- E-unification.
- Logic programs with Equations
- SLDE-resolution

What is equality?

We sometimes want to express that two terms should be interpreted as the same object.

Example

Let Γ be:

$$
\begin{aligned}
& \text { person }(X) \leftarrow \text { female }(X) . \\
& \text { female(queen). } \\
& \text { silvia } \doteq \text { queen } .
\end{aligned}
$$

Then $\Gamma \vDash$ person(silvia).

Equations

An equation is an atom $s \doteq t$ where s and t are terms.

The predicate \doteq is always interpreted as the identity relation.

That is, $\Im \models_{\sigma} s \doteq t$ iff $\sigma_{\Im}(s)=\sigma_{\Im}(t)$.

Example

$$
\begin{aligned}
X+0 & \doteq X . \\
X+s(Y) & \doteq \\
1 & \doteq s(X+Y) . \\
2 & \doteq 1+1 . \\
3 & \doteq \\
\doteq & 10) .
\end{aligned}
$$

Equality theory

$E \vdash s \doteq t:$ " $s \doteq t$ is derived from E "

$$
\begin{gathered}
\{\ldots, s \doteq t, \ldots\} \vdash s \doteq t \\
E \vdash s \doteq s \\
\frac{E \vdash s \doteq t}{E \vdash s \sigma \doteq t \sigma} \\
\frac{E \vdash s \doteq t}{E \vdash t \doteq s} \\
\frac{E \vdash r \doteq s \quad E \vdash s \doteq t}{E \vdash r \doteq t} \\
\frac{E \vdash s_{1} \doteq t_{1} \cdots E \vdash s_{n} \doteq t_{n}}{E \vdash f\left(s_{1}, \ldots, s_{n}\right) \doteq f\left(t_{1}, \ldots, t_{n}\right)} \\
* * * \\
s \equiv_{E} t \text { ff } E \vdash s \doteq t
\end{gathered}
$$

Theorem

The relation \equiv_{E} is an equality relation.

Theorem
$E \vDash s \doteq t$ iff $s \equiv_{E} t($ iff $E \vdash s \doteq t)$.

E-unification

Two terms s and t are E-unifiable iff $s \theta \equiv_{E} t \theta$. The substitution θ is called an E-unifier.

Problem

- E-unification is undecidable;
- In general there is no single "most general unifier" but only "complete sets of E-unifiers";
- This set may be infinite.

Unification. . .

...can be carried out using e.g. narrowing.

Logic programs with Equations

 Programs consist of two components- A set of definite clauses that do not include the predicate symbol $\doteq / 2$;
- A set of equations;

Observation

Herbrand interpretations are uninteresting!

Patch

Consider interpretations whose domain consists of sets (equivalence classes) of ground terms.

Every equivalence class consists of "equivalent term".

Interpretations with domain U_{P} / \equiv_{E} are of special interest.

Let \Im be an interpretation where $|\Im|=U_{P} / \equiv_{E}$:
That is, $\bar{s}=\left\{t \in U_{P} \mid E \vdash s \doteq t\right\}$.

Theorem

$$
\begin{array}{lll}
\Im \models s \doteq t & \text { iff } & \bar{s}=\bar{t} \\
& \text { iff } & s \equiv t \\
& \text { iff } & E \models s \doteq t
\end{array}
$$

NB: Herbrand interpretations as a special case!

The Least Model

Every program P, E has a least model $M_{P, E}$:

$$
P, E \models p\left(t_{1}, \ldots, t_{n}\right) \text { iff } \overline{p\left(t_{1}, \ldots, t_{n}\right)} \in M_{P, E}
$$

Fixed point semantics

$$
\begin{aligned}
T_{P, E}(x):=\left\{\begin{array}{lll}
\bar{A} & \mid & A \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P) \\
& \wedge \overline{B_{1}}, \ldots, \overline{B_{n}} \in x
\end{array}\right)
\end{aligned}
$$

SLDE-Resolution

Given a goal

$$
\leftarrow A_{1}, \ldots, A_{i-1}, A_{i}, A_{i+1}, \ldots, A_{n}
$$

with selected literal A_{i}. If

- $H \leftarrow B_{1}, \ldots, B_{m}$ is a renamed program clause
- H and A_{i} have a non-empty set Θ of E-unifiers
- $\theta \in \Theta$
then

$$
\leftarrow\left(A_{1}, \ldots, A_{i-1}, B_{1}, \ldots, B_{m}, A_{i+1}, \ldots, A_{n}\right) \theta
$$

is a new goal.

Theorem [Soundness]

If $\leftarrow A_{1}, \ldots, A_{n}$ has a computed answer substitution θ then $P, E \models \forall\left(A_{1} \wedge \cdots \wedge A_{n}\right) \theta$.

Theorem [Completeness]

Similar to SLD-resolution.

