ERRATA

- Page 15: The definition of composition is incorrect since e.g. the composition of $\{X / a\}$ with itself results in ϵ according to definition 1.20. The definition should be as follows:
Let θ and σ be the substitutions

$$
\begin{aligned}
\theta & :=\left\{X_{1} / s_{1}, \ldots, X_{m} / s_{m}\right\}, \\
\sigma & :=\left\{Y_{1} / t_{1}, \ldots, Y_{n} / t_{n}\right\} .
\end{aligned}
$$

The composition $\theta \sigma$ of θ and σ is obtained by taking the union of

$$
\left\{X_{1} / s_{1} \sigma, \ldots, X_{m} / s_{m} \sigma\right\} \text { and }\left\{Y_{1} / t_{1}, \ldots, Y_{n} / t_{n}\right\}
$$

after removing all $X_{i} / s_{i} \sigma$ such that $X_{i}=s_{i} \sigma$, and all Y_{i} / t_{i} such that $Y_{i} \in \operatorname{Dom}(\theta)$.
(Pointed out by Włodek Drabent.)

- Page 26: To the last statement on the page a requirement should be added that A is ground or there are infinitely many constants in the alphabet.
(Pointed out by Włodek Drabent.)
- Page 96: All occurrences of t^{\prime} should be replaced by n.
- Page 236: The claim that naive $($ magic $(P))$ terminates whenever naive (P) terminates is wrong! For instance, let P be:

$$
p(X) \leftarrow p(s(X))
$$

- Solution 7.12: A correct(?) answer is:

```
msort([],[]).
msort([X], [X]).
msort([X, Y|Xs], Ys) :-
    split(Xs,Split1,Split2),
    msort([X|Split1],Sorted1),
    msort([Y|Split2],Sorted2),
    merge(Sorted1,Sorted2,Ys).
split([],[],[]).
split([X|Y],[X|V],W) :-
    split(Y,W,V).
merge([], [], []).
merge([], [X|Xs], [X|Xs]).
merge([X|Xs], [], [X|Xs]).
```

```
merge([X|Xs], [Y|Ys], [X|Zs]) :-
    X<Y,
    merge(Xs, [Y|Ys], Zs).
merge([X|Xs], [Y|Ys],[Y|Zs]) :-
    X>=Y,
    merge([X|Xs], Ys, Zs).
```

(Error pointed out by Jørgen Fischer Nilsson and Morten Lindegaard.)

- Page 166: All occurrences of prod_rule/1 should read prod_rule/2.
(Pointed out by Jørgen Fischer Nilsson and Morten Lindegaard.)
- Solution 6.5: " \geq " should read " \leq "
(Pointed out by Jørgen Fischer Nilsson and Morten Lindegaard.)
- Page 252: The definition of a function is incorrect. Should read "...if whenever $f(z, x)$ and $f(z, y)$ then $x=y$.
(Pointed out by Walter Vieira.)

