Common Criteria

Johan Otterström

Sectra Communications AB

Sectra Communications AB

Cryptographic Tokens

Management Equipment

Network Encryption

Personal Devices

Outline

- Security Evaluation
- Common Criteria
- Development Workflow

Security Evaluation

- Independent verification of security claims
- Determine the appropriateness of security functions and assurance
- Reveal weaknesses

Methods

- Common Criteria
- FIPS 140, Security Requirements for Cryptographic Modules
- National standards and requirements

Why evaluate?

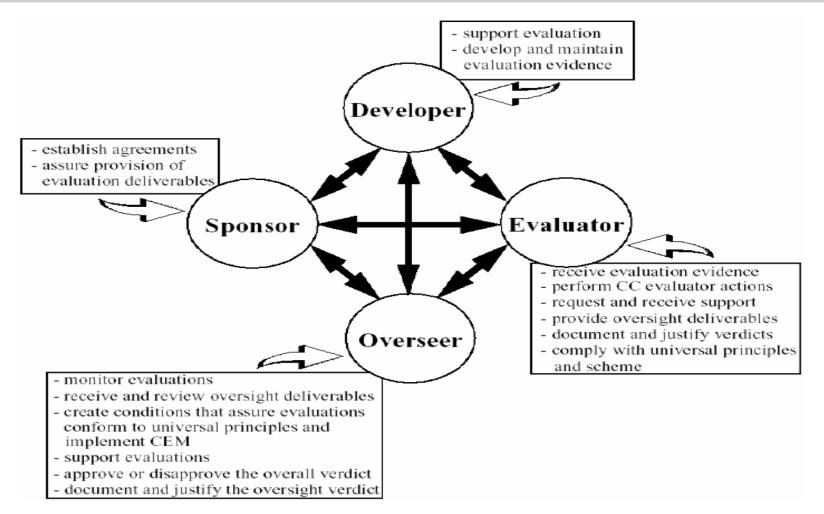
- Buyer:
 - To get assurance of the security in the product
 - Independent statement of the security
- Supplier
 - Legal requirements, legislation, etc.
 - Competitive advantage

Common Criteria

- Internationally recognized standard for evaluating security products
- Evaluation is performed by an independent and certified entity (evaluation facility)
- Product that pass the evaluation gets a certificate
- The certificate is valid for all countries that is part of the Common Criteria community

Common Criteria

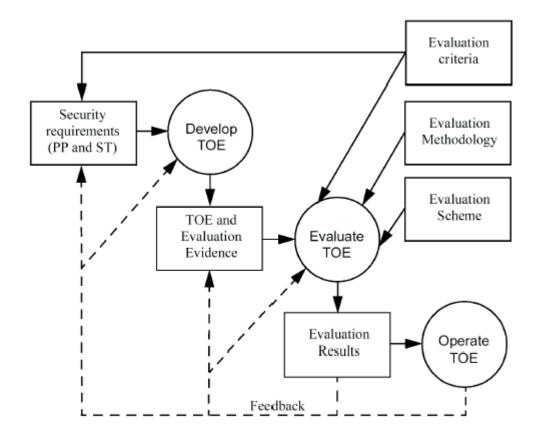
- Rules for:
 - Security requirements and security function specification
 - The development process
 - Work flow, testing
 - Development environment
 - Configuration management, security
 - User documentation
 - Operational environment
 - Product lifecycle



Common Criteria Documentation

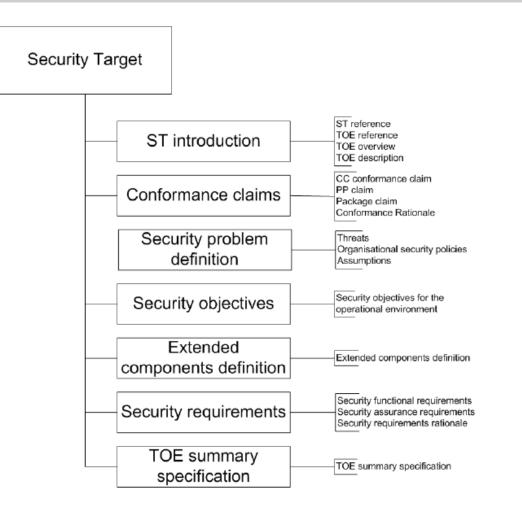
- Common Criteria (ISO/IEC 15408)
 - Part 1 Introduction and general model
 - Part 2 Security functional requirements
 - Part 3 Security assurance requirements
- CEM Evaluation Methodology
- Each country has a Scheme

Roles and responsibilities in CC



Terminology

- Protection Profile (PP)
 - An implementation-independent set of security requirements for a <u>category</u> of TOEs that meet specific consumer needs.
- Security Target (ST)
 - A set of security requirements and specifications to be used as the basis for evaluation of an <u>identified</u> TOE
- Target of Evaluation (TOE)
 - The TOE is the entity, defined by the ST, that is evaluated
 - The TOE is the IT product or system, including the associated administrator and user guidance, that is the subject of an evaluation
- TOE Security Functionality (TSF)
 - The portions of the TOE that must be relied upon for the security enforcement



Evaluation Process

Security Target Structure

Structure of the Requirements

- A cookbook of predefined
 - Functional Requirements
 - Assurance Requirements
- Modular classes, families, components, elements
- Hierarchy of components
- Dependencies between different components

Predefined Functionality Classes

- FAU Security audit
- FCO Communication
- FCS Cryptographic support
- FDP User data protection
- FIA Identification and authentication
- FMT Security management
- FPR Privacy
- FPT Protection of the TSF
- FRU Resource utilization
- FTA TOE access
- FTP Trusted path/channels

Functional Requirement - Example

Security audit event storage (FAU_STG)

FAU_STG.1 Protected audit trail storage

Hierarchical to: No other components. Dependencies: FAU_GEN.1 Audit data generation

- **FAU_STG.1.1** The TSF shall protect the stored audit records in the audit trail from unauthorised deletion.
- **FAU_STG.1.2** The TSF shall be able to **[selection, choose one of: prevent, detect]** unauthorised modifications to the stored audit records in the audit trail.

Assurance Classes

Assurance Class	Assurance Family	Abbreviated Name		
Class ADV: Development	Security Architecture	ADV_ARC		
_	Functional specification	ADV_FSP		
	Implementation representation	ADV_IMP		
	TSF internals	ADV_INT		
	Security policy modelling	ADV_SPM		
	TOE design	ADV_TDS		
Class AGD: Guidance	Operational user guidance	AGD_OPE		
documents	Preparative procedures	AGD_PRE		
Class ALC: Life-cycle	CM capabilities	ALC_CMC		
support	CM scope	ALC_CMS		
	Delivery	ALC_DEL		
	Development security	ALC_DVS		
	Flaw remediation	ALC_FLR		
	Life-cycle definition	ALC_LCD		
	Tools and techniques	ALC_TAT		
Class ASE: Security	Conformance claims	ASE_CCL		
Target evaluation	Extended components definition	ASE_ECD		
	ST introduction	ASE_INT		
	Security objectives	ASE_OBJ		
	Security requirements	ASE_REQ		
	Security problem definition	ASE_SPD		
	TOE summary specification	ASE_TSS		
Class ATE: Tests	Coverage	ATE_COV		
	Depth	ATE_DPT		
	Functional tests	ATE_FUN		
	Independent testing	ATE_IND		
Class AVA: Vulnerability	Vulnerability analysis	AVA_VAN		
assessment				

Evaluation Assurance Levels

Level EAL1

 The lowest level which should be considered for purposes of evaluation

Level EAL2

 Best that can be achieved without imposing some additional tasks on a developer

Level EAL3

 Allows a conscientious developer to benefit from positive security engineering design without alteration of existing reasonably sound development practices

Level EAL4

 The best that can be achieved without significant alteration of current good development practices.

Level EAL5

 The best achievable via preplanned, good quality, careful security-aware development without unduly expensive practices.

Level EAL6

 A "high tech" level for (mainly military) use in environments with significant threats and moderately valued assets.

Level EAL7

 The greatest amount of evaluation assurance attainable whilst remaining in the real world for real products. EAL7 is at the limits of the current technology

Evaluation Packages and EAL Levels

Assurance class	Assurance Family	Assurance Components by Evaluation Assurance Level						
		EAL1	EAL2	EAL3	EAL4	EAL5	EAL6	EAL7
Development	ADV_ARC		1	1	1	1	1	1
	ADV_FSP	1	2	3	4	5	5	6
	ADV_IMP				1	1	2	2
	ADV_INT					2	3	3
	ADV_SPM						1	1
	ADV_TDS		1	2	3	4	5	6
Guidance	AGD_OPE	1	1	1	1	1	1	1
documents	AGD_PRE	1	1	1	1	1	1	1
	ALC_CMC	1	2	3	4	4	5	5
Life-cycle support	ALC_CMS	1	2	3	4	5	5	5
	ALC_DEL		1	1	1	1	1	1
	ALC_DVS			1	1	1	2	2
	ALC FLR							
	ALC LCD			1	1	1	1	2
	ALC TAT				1	2	3	3
Security Target evaluation	ASE CCL	1	1	1	1	1	1	1
	ASE ECD	1	1	1	1	1	1	1
	ASE INT	1	1	1	1	1	1	1
	ASE OBJ	1	2	2	2	2	2	2
	ASE REQ	1	2	2	2	2	2	2
	ASE SPD		1	1	1	1	1	1
	ASE TSS	1	1	1	1	1	1	1
Tests	ATE COV		1	2	2	2	3	3
	ATE DPT			1	1	3	3	4
	ATE FUN		1	1	1	1	2	2
	ATE IND	1	2	2	2	2	2	3
Vulnerability assessment	AVA_VAN	1	2	2	3	4	5	5

SECTRA

Assurance Requirement - Example

ALC_CMC.1 Labelling of the TOE

ALC_CMC.1.1D (Developer action)

The developer shall provide the TOE and a reference for the TOE.

ALC_CMC.1.1C (Content and presentation)

The TOE shall be labelled with its unique reference.

ALC_CMC.1.1E (Evaluator action)

The evaluator shall confirm that the Information provided meets all requirements for content and presentation of evidence.

Objective:

A unique reference is required to ensure that there is no ambiguity in terms of which instance of the TOE is being evaluated. Labelling the TOE with its reference ensures that users of the TOE can be aware of which instance of the TOE they are using.

CC Community

Certificate Authorizing

Australia and New Zealand Canada France Germany Italy Japan Malaysia **Netherlands** Norway South Korea Singapore Spain Sweden Turkey **United Kingdom United States**

Certificate Consuming

Austria Czech Republic Denmark Finland Greece Hungary India Israel Pakistan Singapore

Authorities in Sweden

- CSEC Certification body
- ATSEC Evaluation facility
- Combitech Evaluation facility
- TSA Swedish National Communication Security Agency, approval of cryptographic products
- FMV Swedish Defence Material Administration, sponsor of evaluation

Pros and Cons

- + Enforces a structural way of developing systems
- + Security is built into the system from the start
- + Becomes a natural part of the development process if done in the right way
- The documentation for the CC standard is extensive
- A costly process (time and money)
- Does not evaluate the technical solution

Recommendations

- Certify a well-known and relatively small product
- Start at a low assurance level, such as EAL2
- Go through a pre-evaluation if this is the first evaluation of the product
- Certify a product in development, changes to the product and its documentation are expected.

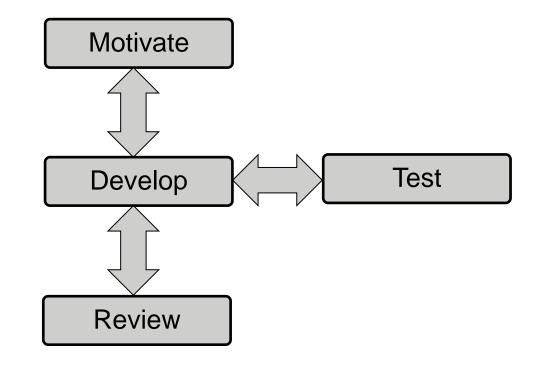
Recommendations

- Select a product that isn't critical for time-to-market
- Select a product developed locally in one location
- Expect 4-6 months for EAL2 and about 1 year for EAL4
- The ST is a formal document and its quality is essential
- Do not write the ST yourself unless you have a strong CC background

Recommendations

- Try to start the evaluation early in the development cycle
 Makes it easier to include changes and bug fixes
- Document your processes and provide evidence that you follow them
- Use Configuration Management for everything

Break



Development Phases

- Preconditions
- Project definition
- System definition
- System design
- Implementation
- Verification and validation

Assurance

Preconditions

- Context of the system
- Primary assets
- Organisational policies
- Functional and security features
- Protection Profiles
- Threat analysis

Threat Analysis

- Assets
 - Attributes
 - Life-cycle
- Threat agents
 - Opportunity
 - Knowledge
 - Resources
 - Motivation
- Threats
 - Manipulation
 - Disclosure
 - Denial of service

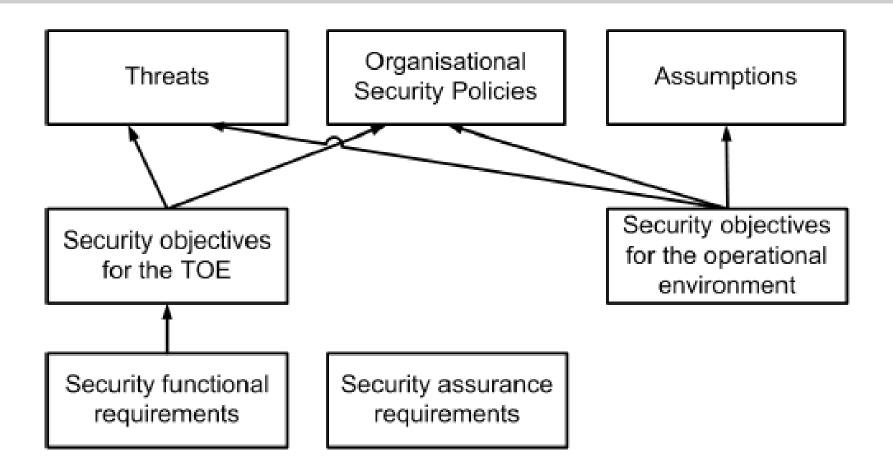
- Countermeasures
- Policies
- Assumptions

Project Definition

- Time and activity planning
 - Delivery Plan (developer)
 - Evaluation Work Plan (evaluator)
- Define processes
 - Configuration management
 - Development security
 - Change management
 - Tools and techniques
- Evaluation of life-cycle management

System Definition

- Settle the requirements
 - Security Target
 - Functional requirements
 - Performance requirements
- Evaluation of ST



Security Target

- Security Problem Definition
 - Based on the threat analysis
- Security Objectives
- Security Functional Requirements
 - CC part 2
- Security Assurance Requirements
 - CC part 3
 - EAL-statement
- Justify the objectives and requirements

Security Objectives and Requirements

System Design

- Functional specification
 - Identifying security functions
- External interfaces
 - Identifying interfaces to security functions
- Design
 - Decomposition
 - Dependencies
 - Dynamic behavior
 - Map security functions
- Evaluation of the design

Implementation phase

- Detailed design
- Map security functions
- Tag the security functions in the implementation
- Evaluate the detailed design and implementation

Verification and Validation

- Verify the design
- Validate the fulfillment of requirements
- Evaluate the tests
- Independent test by the evaluator
- Vulnerability analysis and penetration tests
- Evaluate the guidance documentation

Gaining trust

- Reviews
- Tests
- Security Architecture
- Correspondence analysis
- Physical and logical protection analysis
- Security verification

Reviews

- Document review
- Implementation review
- Pair programming
- Evidence of reviews

Test

- Unit test
- Integration test
- System test
- Penetration test
- Fuzz test
- Test coverage
- Code coverage
- Evidence of tests
- Depth of tests

Security Architecture

- Explains how the system is designed and implemented concerning the following three aspects:
 - Self-protection: How is the integrity of the security functionality in the system preserved?
 - Protection concerning bypass: How is security functionality in the system protected from being bypassed?
 - Domain separation: How is the system divided into different security domains?
- The level of detail is given by the assurance requirements

Correspondence Analysis

- Justification of the fulfillment of security functional requirements
- Justification of the interfaces to the security functions
- Justification of security function decomposition

Physical and Logical Protection Analysis

- Analysis of the implementation of the security functions
 - Does the physical implementation counter the threats?
 - Does the interfaces counter logical attacks?
- Attacker perspective

Security Verification

- Verify the cryptographic mechanisms
- Verify the security functionality

www.commoncriteriaportal.org

