Memory and Time-Efficient Schedulability Analysis of
Task Sets with Stochastic Execution Time

Sorin Manolache, Petru Eles, Zebo Peng
{sorma, petel, zebpe}@ida.liu.se

Department of Computer and Information Science,
Linkoping University, Sweden

Abstract above. It may happen that information about a schedule fit-
ness would be needed without knowing exactly the proces-

This paper presents an efficient way to analyse the PETSor on which a certain task will be executed. The processor

form‘.iﬂce of task Se‘% where .the task exec'u.uon. “”.‘e Rself could be still under design and, thus, no exact infor-
specified as a generalized continuous probability dlstrlbu-mation concerning execution time would be available.

tion. We consider fixed task sets of periodic, possibly Tia et al. [11] provide an example where the maximum
dependent, non-pre-emptable tasks with deadlines less laetal [,.] provide P 0
than or equal to the period. Our method is not restricted toP"0CESSOr utilizations are around 145%, whereas the aver-

any specific scheduling policy and supports policies with®9€ utillizations do not exceed 25%. Thg large variation in
both dynamic and static priorities. An algorithm to con- Utilizations stems from the large variation of task execu-
struct the underlying stochastic process in a memory andion times. This could be due to several reasons:.arc.hltec-
time efficient way is presented. We discuss the impact d#ral factors (dynamic features like caches and pipelines),
various parameters on complexity, in terms of analysiscauses related to functionality (data dependent branches
time and required memory. Experimental results show th&nd loops), external causes (network delays), and depend-
efficiency of the proposed approach. encies on input data (very strong in multimedia applica-

. tions). Another source of non-exact execution time
1 Introduction specification is the limited amount of information availa-

Embedded systems are digital systems meant thle. This could be the case at early design phases or with
perform a dedicated function inside a larger system. Mostlesigns integrating third party components, or other cus-
embedded systems are also real-time systems. Hence, thedmer blocks with secret functionality and insufficiently
validation has to take into consideration not only thespecified non-functional interfaces.
functional aspect but also timeliness. Typically, by using variable execution time models,

A typical digital systems design flow starts from an considerable savings in system (hardware) cost can be
abstract description of the functionality and a set ofexpected. The functionality can be implemented on less
constraints. Subsequent steps partition the functionalitypowerful and cheaper processors, leading to a higher
allocate processing units, map the functionality to theprocessor utilization. In the case of overload, some tasks
allocated processing units and, finally, select a schedulingill, most likely, fail their deadlines. The designer has to
policy and perform timing analysis. be provided with analysis tools in order to guide his or her

In safety-critical applications missing a deadline candecisions and to estimate the trade-off between cost and
have disastrous consequences. Hence, a conservatigeality, the failure likeliness and the failure consequences.
model for task scheduling is adopted, the worst-caséhus, new execution time models and analysis techniques
execution time (WCET) model. Such systems are designeHave to be developed.
to perform according to hard time constraints even in rare Approaches based on the average case or on probabili-
borderline cases. This leads to a processor underutilizatioties uniformly distributed between the best and worst case
for most of the operation time. execution time have the advantage of simplicity. However,

There are several opportunities to relax some of theheir use is limited, as they do not give information on the
conservative assumptions typical to hard real-timelikeliness of particular cases. More accurate models are
systems. This is the case for applications where missing based on execution time probability distributions. Those
deadline causes an overall quality degradation, but it is stiltistributions can be derived from statistical models of the
acceptable provided that the probability of such misses isariation sources, from legacy designs, code analysis,
below a certain limit. Such applications are, for example,simulations and profiling. One of the main difficulties with
multimedia and telecommunication systems. probabilistic models is their solving complexity.

Another opportunity to relax the WCET model is during The aim of this work is to provide a performance anal-
the early design stages. For instance, in transformationalsis method for task schedules considering probabilistic
design approaches, the design phases may not be penodels of task execution times. The methodology is not
formed in the simplistic waterfall sequence describedspecific to any particular execution time probability distri-

bution class or scheduling policy and, thus, it is adaptablelo not intend to give per-task guarantees, but characterize
to various applications. The result of the application analthe fithess of the entire task set. Because they consider all
ysis is the ratio of missed deadlines per task or task graptpossible combinations of execution times of all requests up
In order to cope with the complexity problem typical to to a time moment, the analysis can be applied only to small
such an analysis, we have considered both execution timgask sets due to complexity reasons.

and memory aspects. The algorithm is efficient in both De Veciana et al. [4] address a different type of problem.
regards and can be applied to the analysis of large task setdaving a task graph and an imposed deadline, they
We have also investigated the impact of the task set parantetermine the path that has the highest probability to
eters (e.g. periods, dependencies, and number of tasks) eiolate the deadline. The problem is then reduced to a non-
the complexity of the analysis in terms of time and memorylinear optimization problem by using an approximation of

The rest of the paper is structured as follows. Section 2he convolution of the probability densities.
surveys some related work. Section 3 details our Lehoczky [8] models the task set as a Markovian
assumptions and gives the problem formulation. Section $rocess. The advantage of such an approach is that it is
introduces the underlying stochastic process and illustrategpplicable to arbitrary scheduling policies. The process
its construction and analysis on an example. Section State space is the vector of lead-times (time left until the
presents the analysis algorithm and in section 6 weleadline). As this space is potentially infinite, Lehoczky
evaluate our approach experimentally. The last sectiomnalyses it in heavy traffic conditions, when the system
draws some conclusions. provides a simple solution. The main limitations of this
2 Related work gpproac_h are the nor!-rea_listic assumptions about task

inter-arrival and execution times.

Much work has been done in the field of task scheduling Kalavade and Moghe [7] consider task graphs, where
with fixed parameters (periods, execution times, etc.)the task execution times are arbitrarily distributed over dis-
Results are summarized in several surveys such as those Bjete sets. Their analysis is based on Markovian stochastic
Stankovic et al. [10], Fidge [5], and Audsley et al. [3]. processes too. Each state in the process is characterized by
However, only recently researchers have focused ofhe executed time and lead-time. The analysis is performed
scheduling policies, schedulability analysis and perform+y solving a system of linear equations. Because the exe-
ance analysis of tasks with stochastic parameters. cution time is allowed to take only a finite (most likely

Atlas and Bestavros [2] extend the classical ratesmall) number of values, such a set of equations is smalll.
monotonic scheduling policy with an admittance Besides the differences in assumptions, our work
controller in order to handle tasks with StOChaStiCdivergeS from Kalavade and Moghe’s in the sense that we
execution times. They analyse the quality of service of theyse pseudo-continuous execution time distributions
resulting schedule and its dependence on the admittanggiscretized continuous distributions) instead of being
controller parameters. The approach is limited to rateestricted to discrete sets. As the number of possible
monotonic analysis and assumes the presence of agkecution times becomes very high, it is infeasible to
admission controller at run-time. consider individual times as states. Our solution is to group

Abeni and Butazzo’s work [1] addresses both schedulexecution times in equivalence classes. As a consequence,
ing and performance analysis of tasks with stochastiGve have to use probability density convolutions for the
parameters. Their focus is on how to schedule both har@nawsis_ In order to reduce the Comp|exity in terms of
and soft real-time tasks on the same processaor, in SUChrﬁemory space, the stochastic process is never stored

way that the hard ones are not disturbed by ill-behaved sofntirely in memory, but we both construct and analyse the
tasks. The performance analysis method is used to assegfocess at the same time.

their proposed scheduling policy (constant bandwidth ser- . . .
ver), and is restricted to the scope of their assumptions. 3 Preliminaries and problem formulation
Spuri and Butazzo [9] propose five scheduling The system to be analysed is represented as a set of task
algorithms for aperiodic tasks. The task model theygraphs. A task graph is an acyclic graph with nodes repre-
consider is one with aperiodic tasks but with fixed, worst-senting tasks and edges capturing the precedence con-
case execution time. straints among tasks. Precedences can be induced, for
Tia et al. [11] assume a task model composed ofexample, by data dependencies (a task processes the out-
independent tasks. Two methods for performance analysigut of its predecessor). All tasks are executed on one single
are given. One of them is just an estimate andprocessor. They are assumed to be non-pre-emptable.
demonstrated to be overly optimistic. In the second LetN be the number of tasks and Igt<i <N, denote
method, a soft task is transformed into a deterministic tasla task. Let M be the number of task graphs andleb g i
and a sporadic one. The latter is executed only when the M denote a task graph.
former exceeds the promised execution time. The sporadic Each task is characterized by its period (inter-arrival
tasks are handled by a server policy. The analysis is carrietime), assumed to be fixed, its deadline, and its execution
out on this model. time probability density. Letjand d, 0<i< N, denote the
Zhou et al. [12] root their work in Tia's. However, they period and deadline of task where ¢l< p;. P, the applica-

factors. g is a deterministic density (a Dirac impulse).

When a job of a task t misses its deadline it is discarded.
If t has a successor in the task graph then two different
policies are considered for the analysis among which the
designer can choose:

1.

Figure 1. Set of task graphs
tion period, is the least common multiple of all task periods.
The period of a task has to be a common multiple of the pe-
riods of its predecessors. The period of a task graph equals
the least common multiple of the periods of its composing
tasks. Let G 0<i< M, denote the period of the task graph
g;- A task graph gs activated every Gime units.

A task consists of an infinite sequence of activations
called jobs. In the sequel, we will say that a task is running
when one of its jobs is running. Similarly, a task is ready
when one of its jobs is ready, and a task is discarded when
one of its jobs was discarded.

The task t O g; is ready (pending, waiting) if and only
if each of its predecessogshias run p/p; times during the
current activation of task graph.df any of the jobs in a
current activation of a task graph has missed its deadline,

then the current task graph activation is said to have failedy ,vever a method to work this around

A probabilistic guarantee given for a tasis expressed

The whole task graph is discarded. This means that
all the jobs belonging to the current activation of the
task graph are discarded. These are the ones already
arrived but not yet completed and the ones that will
arrive before a new activation of the task graph. This
strategy is adopted in the case when the computed
value of a job is critical for the continuation of the
tasks in the task graph and it is a meaningful value
only if the job met its deadline. In this case, it is mean-
ingless to give per task guarantees and only per task
graph guarantees will be produced as a result of the
analysis. In the example in Figure 1 assume that two
jobs of task A have successfully executed and B and C
are now ready. Assume that B executes and misses its
deadline. Then gis discarded and no jobs of any of
its tasks are anymore accepted until a new arrival of
the entire task graph at a time moment multiple gf G
Only the missing job is discarded, but the rest of the
task graph is activated normally. The successor tasks
will consume either a partial result or the result from
a previous execution of the discarded task. In this
case, it is important to provide not only per task graph
but also per task guarantees.

Task execution is considered to be non-pre-emptable.

if needed, is to de-

fine pre-emption points inside a task. For analysis, the task

as the ratio between the number of jobs belonginghat i he replaced by several dependent tasks with the same
miss their deadlines and the total number of jobs of the tasberiod and deadline as the original one, as shown in Figure

t. A probabilistic guarantee given for a task graphis 3 | 6118 0<i< S be S tasks that resulted from tagkand
expressed as the ratio between the number of the tasq e their respective periods? their deadlines aned
graph's activations that fail and the number of all jhqir ETPDES. Them{=p, andd%=d,, 0<i< S. The con-
activations of the task grapgh o volution (denoted by *) of the execution time probability
Figure 1 depicts a task set consisting of three taskje ity functiongd has to be equal to,eDue to the fact
graphs g, gy, and g. For each task and task graph the 1, the tasks® are dependent and have the same period,

respective period is shown. o __ the consequence of such a task decomposition on the anal-
Let §, 0 <i < N, be the execution time probability ygis complexity is limited, as will be shown later.
density function (ETPDF) of task tg is represented as a

set of samples resulting from the discretization of thePrOblem formulation _ -
density curve. The discretization resolution is left to the The input to the analysis algorithm is a set of task
designer's choice. We assume generalized probabilitgraphs and a scheduling policy. The task graphs are given

densities of the task execution times. Figure 2 illustrates _ ¢

some possible ETPDFs. Density eould happen if, for pre'e;?npt“on

example, the task has only three computation paths and the P

variation around them is caused by hardware architecture 15k T=pyq

probability probability Aprobability pre-emption
point by :dq
pre-emption goq . 5&1 - gg_l =eq
point
_ . S8
exec. time exec. time exec. time .
€0 e; e, task tg analysis model

Figure 2. Exec. time probability density function s Figure 3. Introducing pre-emption points

according to the assumptions discussed previously. The !
scheduling policy is given as an algorithm to choose a next I
job knowing the set of ready jobs, their deadlines and the |
current time. |
The analysis produces per task and per task graph |
probabilistic guarantees, as defined above.) . I)
0 1 2 3 4tmeo0 1 2 3

4 The stochastic process
€o €1

The_analysis meIFhodoIo%y for (tjaslk ;ets witrr]] stqchastic Figure 4. ETPDFs for tasks t gand t;
execution times relies on the underlying stochastic proCy,q,, yiss their respective deadlines, the analysis is per-

ess. Astophastic processis a mathematical abstra_ction thf?)trmed over the interval [0, P), where P is the application
characterizes a rqndom process wh|ch proceeds in Stag‘:ﬁseriod (the least common multiple of all task periods).

The set of all possible stage outcomes in every stage forms |, i foliowing, an example is used in order to illustrate
the stochastic process state space. A stochastic process 4B construction and the analysis of the stochastic process.

be represented graphically in a similar manner as ﬁnitq_ettoandgbe two independent tasks scheduled according
state machines. The difference is that a next state is know) 1, earlier deadline first (EDF) policy. Le§p 3 and p

only probabilistically. It is assumed that the next state tran— 5 be their periods and lebd pyand d = py. P is then
sition probabilities are known once the current and pas g he execution time probabilities are distributed as

states are known. If the next states and their correspondin@epicted in Figure 4. For simplicity, the densities were not
transition probabilities depend only on the current Statedepicted as discretized. Note tha eontains execution

then the process e>§h|b|ts the Markovian property. Th.e dlsﬁmes larger than the deadline.
crete time stochastic process that results from sampling the As a first step to the analysis, the interval [0, P) is
state space of the underlying continuous time stochastiaivided i :

he ti . diatelv followi b in disjunct intervals, the so-calle@riority
process, at the time moments immediately following & Joby, o tonicity intervals (PMI)A PMI is delimited by the

arrival or a job completion, forms the embedded stochastlcr‘ime moments a job may arrive or may be discarded
process. . L . Figure 5a depicts the PMIs for the example above. If the

For the sequel, “process” will refer to the underlying deadlines weregk 2 and d = 4, then the PMIs would be
stochastic process, and “state” will refer to the stochasti%s depicted in Figure 5b

processdsta:(e. h bedded b Kovi Next, the stochastic process is constructed and analysed
In order for the embedded process to be Markovian, the same time. Let us assume the straightforward

certain information have to be available in a process Stateapproach mentioned earlier. In this case, a stochastic proc-
A straightforward solution would be to characterize a state,< state would be characterized by the index of the task
by the currently running task, the ready tasks and the staghq ¢ ;rrently running job belongs to, the start time of this

time of the running job. A state change would occur if the-ob and the indexes of the waiting tasks (see Figurea).
running task finished execution for some reason. The ready 1 in Figure 6a are possible finishing times for the
tas.ks can b,e deduced from t'he old rea}dy t"’.‘SkS and the Jo?éb of taqsk p and, implicitly, possible starting times of the
arnvgd dyrmg the old task's execution time. The €W \yaiting job of task 1. The number of next states equals the
runnmg_Job can be sglepted considering the particulag per of possible execution times of the running job in
scheduling policy. In P””C'p'e’ thgre may be as many N€Xnhe current state. The resulting process is extremely large
states as many possible execution times the running joyeqretically infinite, practically depending on the discre-
has. Hence, one factor that influences the stochastif,,ion resolution) and, in practice, unsolvable. Therefore,

Process hSiZ(IEI is tzebtaSk lexe((;utiondtime ipan. Thgslis ghﬁ/e would like to group as many states as possible in one
approach followed by Kalavade and Moghe [7] and leads, jiyajent state and still preserve the Markovian property.

to tree-like stochastic processes. Except the case that only Consider a stateysharacterized by {i, t, w}: the current
a very small number of discrete execution times are

allowed for each task, such an approach leads to an PMis 0 1 2 3 4 5 6
extremely huge state explosion. In our approach, we have
grouped time moments into equivalence classes and, by
doing so, we limited the process size explosion. Thus,
practically a set of equivalent states is represented asa PMis 0 1 23 4 5 6 7 8 9 10 11

probability probability

N
o — - — -
[e28
=
3
@

| — | —

T T T 1
0 3 56 910 12 15
a)

single state in the stochastic process. Even so, the . 1 T 1 T 1 T 1
.. L. e period 5

application size is still limited by the amount of memory

available for analysis. Therefore, we propose a way to peri0d3l T 1 T 1 T 1 T 1 T 1

perform the construction and the analysis of the process | — t —

simultaneously. Consequently only a part of the process is 0 2 345686 8 9101112 1415

stored in memory at any time during the analysis. b)

Due to the assumption that the tasks are discarded when Figure 5. Priority monotonicity intervals

successor states of a stgteonsists of those states that can
be reached directly from statg 8Vith our proposed sto-
chastic process representation, the time moment a transi-
tion to a states; occurred is not determined exactly, as the
task execution times are known only probabilistically.
However, a probability density of this time can be
deduced. Letjalenote this density function. Thepcan be
computed from the functions,avhere $0J [, and the
ETPDFs of the tasks running in the states § ;.
@D b) (@}) Figure 7 depicts a part of the stochastic process
] i constructed for our example. The initial state 4s{, O,
Figure 6. State encoding {1}}. The first field indicates that a job of task, tis
job belongs to task tit has been started at time t, and the rynning. The second field shows the current pmi (0), and
waiting jobs belong to the tasks in set w. Let us considethe third field denotes that taskis waiting. If the job of
the next states derived frorg: s, characterized by {jT1, task ¢, does not complete until ime moment 3, then it will
wi} and s, with {k, T, wo}. Let 15 andT, belong to the pe discarded. The statglsas two possible next states. The
same PMI. This means that no job has arrived or finishedjrst one is state;s{1, 0, {}} and corresponds to the case
in the time interval betweer, andty, no one has missed \yhen the job completes before time moment 3. The second
its deadline, and the relative priorities of the tasks insidegne is state s {1, 1, {0}} and corresponds to the case
the set w have not changed (see Section 5.1). Thus, j=kighen the job was discarded at time moment 3. State s
the index of the highest priority task in the set w; indicates that a job of task ts running (it is the job that
wy=wy=w\{t;}. It follows that all states derived from state \yas waiting in stateg, that the pmi is 0 and that no job is
So that have their time belonging to the same PMI have \yaiting. Consider state $0 be the new current state. Then
an identical current job and identical sets of waiting jobs.the next states could be statg §-1, 0, {}} (task t,
Therefore, instead of considering individual times we con-completed before time moment 3 and the processor is
sider time intervals, and we group together those states th@dje), state s {0, 1, {}} (task t; completed at a time
have their associated start time inside the same PMI. Withhoment somewhere between 3 and 5), or staté0s 2,
such a representation, the number of next states of asstatg1}} (the execution of task { reached over time moment 5,
equals the number of PMIs the possible execution time 0pnd hence it was discarded at time moment 5). The
the job that runs in statds spanning over. construction procedure continues until all possible states
We propose a representation in which a stochastic proccorresponding to the time interval [0, P) have been visited.
ess state is a triplet {r, pmi, w}, where ris the running task The transition time probability density functiong z,,
index, pmi is the index of the PMI containing the running z3, 24, and z are shown in Figure 7 to the left of their
job’s start time, and w the set of ready task indexes. Whegorresponding states. The transition from statéeosstate
there is no running task, the =-1. In our example, the ex- 5, occurs at a precisely known time instant, time 3, at
ecution time of taskgt(which is in the interval [2, 3.5]) is which a new job of taskgtarrives. Therefore, Zwill
spanning over the PMIs 0 and 1. Thus, there are only tWontain a Dirac impulse at the beginning of the
states emerging from the initial state, as shown in Figure 6k:orresponding PMI. The probability density functiop z
Let [, the set of predecessor states of a siatienote resylts from the superposition of 2 e; (because task t
the set of all states that hageas a next state. The set of yyns in state H with z, * e, (because task tuns in state

{0,0, {11}

probability
probability

time
01234 0123 4

2 Zy

probability

probability

S3
012 3 4 time 2 345 6 time
23 Zy

Figure 7. Stochastic process example

s, too) and with the aforementioned Dirac impulse over theunrelated to the construction of a stochastic process.
PMI 1, i.e. over the time interval [3, 5). Let A; denote the set of time moments in the interval [0,
The embedded process being Markovian, the probabiliP) when a new job of task arrives and let A denote the
ties of the transitions out of a stateare computed exclu- union of all A. Let D; denote the set of absolute deadlthes
sively from the information stored in that state For of the jobs belonging to taskih the interval [0, P), and D
example, the probability of the transition from stajee be the union of all P Consequently,
state g (see Figure 7) is given by the probability that the A = {x|x=kOp,0<k<P/p}
transition occurs at some time moment in the PMI of state D; = {x|x=d +kOp,0<k<P/p}
s, (the interval [3, 5)). This probability is computed by
integrating z * e, over the interval [3, 5). The probability If the deadline of a certain taskdquals its period, then;A
of a task missing its deadline is easily computed from the= D; (the time moment O is considered, conventionally, to
transition probabilities of those transitions that corresponde the deadline of the job arrived at time momept -p
to a job discarding (the thick arrows in Figure 7). LetH=A0OD. If His sorted in ascending order of the
As it can be seen, by using the PMI approach, somdime moments, then a priority monotonicity interval is the in-
process states have more than one incident arc, thusrval between two consecutive time momentsin H. The last
keeping the graph “narrow”. This is because, asPMlIisthe interval between the greatestelementinHandP.
mentioned, one process state in our representation capturesThe only restriction imposed on the scheduling policies
several possible states of a representation consideringccepted by our approach is that inside a PMI the ordering
individual times (see Figure 6a). of tasks according to their priorities is not allowed to
Because the number of states grows rapidly and becausdhange. The consequence of this assumption is that the
each state has to store its probability density function, theext state can be determined no matter when the currently
memory space required to store the whole process can bednning task completes within the PMI. All the widely
come prohibitively large. Our solution to mastering mem-used scheduling policies we are aware of (RM, EDF,
ory complexity is to perform the stochastic processFCFS, etc.) exhibit this property.
construction _and analys!s_ S|mult§meously. As e_ach armow 5 The construction and analysis algorithm
updates the time probability density of the state it leads to, .] .)
the process has to be constructed in topological order. The The algorithm proceeds as discussed in Section 4. An
result of this procedure is that the process is never store@SSential point is the construction of the process in
entirely in memory but rather that a sliding window of topologlcql order, which allows only parts of the states to
states is used for analysis. For the example in Figure 7, th@€ Stored in memory at any moment. o
construction starts with statg é\fter its next states ¢sand The algorithm for the stochastic process construction is
s,) are created, their corresponding transition probabilitiesiepicted in Figure 8. All states belonging to the sliding
determined and the possible discarding probabilities acWindow are stored in a priority queue. The key to the proc-
counted for, stateycan be removed from memory. Next, €SS construction in topological order lies in the order in
one of the states;sand s is taken as current state, let us which the states are e_xtracted from this queue. First, ob-
consider state;s The procedure is repeated, statgssg ~ S€rve that it is impossible for an arc to lead from a state
and s are created and statg ®moved. At this moment, with a PMI number u to a state with a PMI number v so that

the arcs emerging from statesand g have not yet been put first state in the queue;

created. Consequently, one would think that any of thewhile queue not empty do

states s s3, 4, and g can be selected for continuation of s; = extract state from the queue;

the analysis. Obviously, this is not the case, as not all the t; = s;.running; --field r of state s j
information needed in order to handle statgaisd g are distribution = convolute(&;, Z;);
computed (in particular those coming frorg and s). nextstatelist conZiEZ)r(tt_aSstitzse(pendesnjc)i;esl
Thus, only statesysand s are possible alternatives for the for each s, O nextstatelist 4o

continuation of the analysis in topological order. In Sec-

. . e) compute probability of the transition
tion 5 we discuss the criteria for selection of the correct P P y

from s; to sy using distribution ;

state to continue with. update discarding probabilities;
5 Stochastic process construction and analysis ~ Update Zx
if s, isnotinthe queue then
The analysis of the stochastic task set is performed in pyt sy in the queue;
two phases: end if :
1. Divide the interval [0, P) in PMls. end for ;
2. Construct the stochastic process in topological order delete state Sj;
and analyse it. end while ;

5.1 Priority monotonicity intervals Figure 8. Construction and analysis algorithm

The concept of PMI (called in their paper “state”) Was 1. Except here, whenever we use the term “deadline”, we consider rel-
introduced by Zhou et al. [12] in a different context, ative deadlines.

200000

180000

160000

140000

120000

100000

number of states

Figure 9. State selection order 80000

Vv < u (there are no arcs back in time). Hence, a first crite-
rion for selecting a state from the queue is to select the one
with the smallest PMI number. A second criterion deter-
mines which state has to be selected out of those with the 200————-————————————
same PMI number. Note that inside a PMI no new job can_.) number of tasks)
arrive, and that the task ordering according to their prioritiesFlgure 10. Experlmentll, stochastic process size
is unchanged. Thus, it is impossible that the next sjaté s Values of the task periods = 15.0, 10.9, 8.8, and 4.8
a current state; svould be one that contains waiting tasks (kéeping P=360). The results are shown in Figure 10.
of higher priority than those waiting ip.$dence, the second Figure 11 depicts the maximum size of the sliding window
criterion reads: among states with the same PMI, one shoulfr the same task sets. As it can be seen from the diagram,
choose the one with the waiting task of highest priority. the increase, both of the process size and of the sliding

Figure 9 illustrates the algorithm on the example gi\,enwindow, is linear. The steepness of the curves depends on
in Section 4 (Figure 7). The shades of the states denotd€ task periods (which influence the number of PMIs). It
their PMI number. The lighter the shade, the smaller thdS important to notice the big difference between the
PMI number. The numbers near the states denote therocess size and the maximum number of states in the
sequence in which the states are extracted from the queddding window. In the case for 19 tasks, for example, the

60000

40000,

and processed. process size is between 64356 and 198356 while the
. dimension of the sliding window varies between 373 and
6 Experimental Results 11883 (16 to 172 times smaller). The reduction factor of

The most computation intensive part of the analysis ighe sliding window compared to the process size was
the computation of the convolutions. In our implementa-between 15 and 1914, considering all our experiments.
tion we used the FFTW library [6] for performing convo- Because of space limitation, for the rest of paper we will
lutions based on the Fast Fourier Transform. The numbegoncentrate only on the process size.
of convolutions to be performed equals the number of Inthe second set of experiments we analysed the impact
states of the stochastic process. The memory required f@f the application period P (the least common multiple of
analysis is determined by the maximum number of stateghe task periods) on the process size. We considered 784
in the sliding window. The main factors on which the sto- sets, each of 20 independent tasks. The task periods were
chastic process depends are P (the least common multiptdosen such that P takes values in the interval [1, 5040].
of the task periods), the number of PMIs, the number ofFigure 12 shows the variation of the average process size
tasks, and the task dependencies. with the application period.

As the selection of the next running task is unique, given With the third set of experiments we analysed the
the pending jobs and the time moment, the particulaimpact of task dependencies on the process size. A task set
scheduling policy has a reduced impact on the processf 200 tasks with strong dependencies (28000 arcs) among
size. On the other hand, the task dependencies play the tasks was initially created. The application period P
significant role, as they strongly influence the set of readywas 360. Then 9 new task graphs were successively

tasks and by this the process size. Additionally, they T .o
generate a smaller number of PMIs as they impose a 02100

certain harmony among the task periods. 10000

In the following, we report on three sets of experiments.§
The aspects of interest were the stochastic process size, zass‘)""
it determines the analysis execution time, and thes
maximum size of the sliding window, as it determines the§ %
memory space required for the analysis. All experiment5§
were performed on an UltraSPARC 10 at 450 MHz. 5 4000

In the first set of experiments we analysed the impact of
the number of tasks on the process size. We considered 2°0°#¢?
task sets of 10 up to 19 independent tasks. P, the least

common multiple of the task periods, was 360 for alltask o5 o = w1
sets. We repeated the experiment four times for average number of tasks

tes]

Figure 11. Experiment 1, sliding window size

1.8e+0 time is considered to be uniformly distributed between an
upper and a lower bound. When two channels are sched-
uled on the same DSP, the ratio of missed deadlinesis O (all
deadlines are met). Considering three channels assigned to
1.26+06 the same processor, the analysis produced a ratio of missed
10406 deadlines, which was below the one enforced by the
required QoS. Itis important to note that using a hard real-
time model with WCET, the system with three channels
600000 would result as unschedulable on the selected DSP. The
400000 underlying stochastic process for the three channels had
130 nodes and its analysis took 0.01 seconds. The small
number of nodes is caused by the strong harmony among
%0 S0 oo 1s00 2000 2500 aoon oo 4000 aso0 seoo sso L€ task periods, imposed by the GSM standard.

application period

Figure 12. Experiment 2, stochastic process size 7 Conclusions

derived from the first one by uniformly removing This work proposes a method for performance analysis
dependencies between the tasks until we finally gota set Qf task sets with probabilistically distributed execution

200 independent tasks. The results are depicted in Figuignes. The tasks are scheduled according to an arbitrary
13 with a logarithmic scale for the y axis. The x axis gcheduling policy. The method is based on the construction
represents the degree of dependencies among the tasksdfine underlying stochastic process and the analysis of
for independent tasks, 9 for the initial task set with theinis process. The stochastic process is constructed and
highest amount of dependencies). In this set ofgnalysed in a memory- and time-efficient way making the

experiments, we used the first of the two policies defineqynethod applicable to large task sets. Experimental results

in Section 3 for handling task graphs with dependencies.gp gy a very good scaling of the algorithm both in terms of
As mentioned, the execution time for the analysismemory space and execution time.

algorithm strictly depends on the process size. Therefore, as 3 future work, we intend to extend our approach in

we showed all the results in terms of this parameter. For thgqer to handle sets of tasks distributed over multiproces-
set of 200 independent tasks used in the last experimenry,, systems.

(process size 1126517) the analysis time was 745 seconds. ¢
In the case of the same 200 tasks with strong dependenci&t (€rences

i i [1] L. Abeni, G. Butazzo, “Integrating Multimedia
(pro_cess size 2178). the analysis took 1.4 seconds. . Applications in Hard Real-Time SystemsProc. of the
Finally, we considered an example from the mobile Real-Time Systems Symposium, 1998, pp. 4—13

communication area. A set of 8 tasks co-operate in ordej2] A. Atlas, A. Bestavros, “Statistical Rate Monotonic

to decode the digital bursts corresponding to a GSM 900 fgggdu””%’zgg%z()f the Real-Time Systems Symposium,
signalling channel. In this example, there are two source N. C_'Apfdgey’ A. Burns, R. . Davies, K. W. Tindell, A. J.

of variation in execution times. One task has both dataand Wellings, “Fixed Priority Pre-emptive Scheduling: An
control intensive behaviour, which can cause pipeline haz- Historical Perspective; Journal of Real-Time Systems, v8,

S - . 1995, pp. 173-198
ards on the deeply pipelined DSP it runs on. Its executiony] . DeppVeciana, M. Jacome, J.H. GudAssessing

time probability density is derived from the input data Probabilistic Timing Constraints on System Performance”
streams and measurements. Another task will finally_, Jour.of Design Autom. for Emb. Systems, v5, 2000, pp. 61-81

. . . . [5] C. J. Fidge, “Real-Time Schedulability Tests for Pre-
implement a deciphering unit. Due to the lack of knowl- emptive Multitasking?” Journal of Real-Time Systems, v14,
edge about the deciphering algorithm (its specification is[| 1998, pp. 61-93] d .

; ; ; ; ian[6] M. Frigo, S. G. JohnsonFFTW: An Adaptive Software
not publicly available), the deciphering task execution Architecture for the FFT, Proc. Intl. Conf. of Acoustics,
Speech and Signal Processing, 1998, v. 3, p. 1381
1e+06 [71 A. Kalavade, P. Moghe,“A Tool for Performance

Estimation for Networked Embedded SysterRsbc. of the
Design Automation Conference, 1998, pp. 257-262
[8] J.P.Lehoczky,Real-Time Queueing TheoryProc. of the
Real-Time Systems Symposium, 1996, pp. 186-195
100000 [9] M. Spuri, G. Butazzo, “Scheduling Aperiodic Tasks in
Dynamic Priority Systems”, Journal of Real-Time Systems,
v. 10, no. 2, 1996, pp. 1979-2012
[10] J. A. Stankovic, M. Spuri, M. Di Natale, G. Butazzo,
“Implications of Classical Scheduling Results for Real-
10000 Time Systems1lEEE Computer, June 1995, pp. 16-25
[11] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C.
Wu, J. W.-S. Liu,“Probabilistic Performance Guarantee
for Real-Time Tasks with Varying Computation Times”
Proc. of IEEE Real-Time Techn. and Applic. Symp., 1995
1000, - . . - . . - . . [12] T. Zhou, X. Hu, E. H.-M. Sha,“A probabilistic
dependency degree performance metric for Real-Time System Desjdtroc. of
Figure 13. Experiment 3, stochastic process size the Hardw/Softw. Co-Design Symposium, 1999, pp. 90-94

1.6e+06

1.4e+06

800000}

number d states

200000

number of states

