
Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 1

Testability Issues in Hardware/Software Systems

1. Heterogeneous Systems and their Design Process

2. Design Validation

3. Formal Verification

4. Design Validation Practice

5. Design Validation by Model Execution

6. Hardware/Software Co-design for Testability.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 2

Intr oduction

A typical embedded system is heterogeneous:

1. Hardware and software components are mixed.

2. Within each of these categories design styles are mixed:
- control oriented processes can run on a microcontroller and

supervise dataflow dominated processes executed on a DSP;
- hardware components can be ASICs, controllers, ASIPs,

memories, etc.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 3

Specification and Refinement

• The design process consists of a sequence of steps: each step
performs a transformation from a more abstract description to a
more detailed one

• A formal model of a design consists of:
1. A functional specification, as a set of explicit or implicit rela-

tions which involve inputs, outputs, and (possibly) internal
state information.

2. A set of performance constraints (cost, reliability, speed, size).

• A design step takes a model of the design at a level of abstraction
and refines it to a lower one.

Testability Issues in Hardware/Software Systems 4

Petru Eles, ESLAB, LiTH

From Specification to Pr oduct

System
specification

Ref_step 1

model 1

Ref_step 2

model 2

Ref_step n

Ref_step_h 1

model_h 1

Ref_step_h m

model_h m

Ref_step_s 1

model_s 1

Ref_step_s k

model_s k

model_h model_s

Fabrication

PRODUCT

S
ys

te
m

-le
ve

l s
yn

th
es

is

H
ar

dw
ar

e
sy

nt
he

si
s S

oftw
are synthesis

D
E

S
I

G
N

 V
A

L
I

D
A

T
I

O
N

(lo
ok

s
fo

r
de

si
gn

 e
rr

or
s)

PRODUCT TESTING
looks for design errors

fabrication defects
physical failures

system
architecture

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 5

Design V alidation

• Validation is the process of determining that a design is correct:

1. Model (specification)
execution

2. Formal verification:

correctness is asserted only with respect
to the actual test vectors provided by the
environment during the validation process.

proves mathematically that a certain
property is true for a specification or that
a refinement step produces a correct
implementation relative to a given model.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 6

Formal V erification

1. Specification verification: checks if a model satisfies some
abstract property; can be used for the verification of the initial
functional specification of the system.

2. Implementation verification: checks if a lower level model, resulted
after one or several refinement steps, correctly implements a
higher-level model.

• The computational complexity of such an analysis is very high.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 7

Formal Verification (cont’d)

Properties of a model, which are of interest

1. safety properties: no matter what inputs are given, and no
matter how nondeterministic choices are resolved, the system
will not get into a specific undesirable configuration (deadlock,
undesired outputs, etc.);

2. liveness properties: some desired configuration will be
reached eventually or infinitely often (a certain response to an
input will be given).

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 8

Basic Appr oaches to Formal V erification

1. Theorem proving methods

2. Finite automata-based methods
- containment checking
- model checking

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 9

Theorem Pr oving Methods

• They provide an environment that assists the designer in carrying
out a formal proof of specification or implementation correctness:

- checks the correctness of a proof given by the user;

- performs some steps of the proof automatically.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 10

Finite A utomata-Based Methods

• The model is restricted to FSMs in order to apply formal
verification methods.

• There is a well-developed theory for analyzing FSM models and
checking their equivalence.

Containment checking
• Both the higher-level model (specification) and the lower-level

implementation have to be captured as FSMs.
• The system checks that the specification machine is contained in

the implementation machine, meaning that they give the same
output for all inputs for which the specification is defined.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 11

Finite Automata-Based Methods (cont’d)

Model checking
• The system is modelled as a synchronous or asynchronous

composition of automata; the property to be checked is described
as a temporal logic formula.

• The proof is carried out by traversing the state space of the FSM
and marking the states that satisfy the temporal logic formula.

• The system to be verified is represented as an explicit state
transition graph ⇒ state explosion problem.

• Certain techniques avoid explicit state enumeration:
symbolic model checking uses symbolic boolean representa-
tions for states and transition functions without building a
global state transition graph explicitly; boolean manipulation
techniques are used to evaluate the truth of temporal logic
formulas with respect to the model.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 12

Some Pr oblems with Formal V erification

• High complexity ⇒ only relatively small designs, or parts of a
design can be verified.

• Correctness can be proven only relative to certain properties
which have to be explicitly formulated ⇒ we maybe know that we
have a correct implementation but we don’t know if we have
implemented the right system.

• Using formal methods needs a strong and very specific theoretical
background ⇒ difficult to introduce in industrial practice.

The design process has to include validation by model execution!

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 13

Currentl y Recommended Practice f or Design V alidation
(Synopsis&Mentor Graphics)

• Early design stages (before hardware/software partitioning):
- Validation of input specification
- Validation for refinement steps during early design phases.

This is based on execution of implementation independent
specifications.

• After hardware/software partitioning
- Validation of behavioral hardware specification.
- Validation of prototype software specification.

This is based on behavioral simulation and software execution.

• Hardware and software development and validation

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 14

Currently Recommended Practice for Design Validation (cont’d)

The Methodology implies validation at two levels:

1. Block-level verification (possibly concerns an IP block and then is
performed at the supplier);

2. System-level verification

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 15

Verification at Bloc k Level

Verification Strategy:

1. Verification of individual subblocks
2. Block verification
3. Prototyping

Goal of the strategy: To achieve a very high level of test coverage at the
subblock level and then to focus at the:

- interfaces between subblocks
- overall block functionality
- corner cases of behavior: complex scenarios that are most

likely to break the design

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 16

Verification at Block Level (cont’d)

• Verification of individual subblocks and block verification is
performed by (co-)simulation.

• Typically, simulation is performed at behavioral and RT level but
has to be performed at gate-level in the later phases of the design
and when high accuracy is needed.

• The main problem in this context is simulation time;
it becomes critical when the hardware model has to be simulated
with the real software running on it.

• The final goal of simulation is to achieve a high coverage.

• A testbench provides inputs and checks outputs during simulation.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 17

Verification at Block Level (cont’d)

Prototyping:

An actual ASIC chip or FPGA is built for the block.

Real code can be run at a real speed!

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 18

Verification at System Le vel

Verification Strategy:

1. Verify blocks (possibly done at IP supplier)

2. Verify interfaces between blocks (integration testing)

3. Run a set of increasingly complex applications on the full system

4. Prototype the full system and run a full set of application software
at full speed for final verification

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 19

Verification at System Level (cont’d)

• Steps 1,2 and 3 are performed by simulation.

• Step 2 is a typical integration testing problem.

• In step 3 the problem of simulation speed becomes critical as the
whole hardware has to be simulated together with the full software
on top of it.
Such a simulation is used for both hardware testing and testing of
the software.

• There are different strategies for speeding up simulation. The
main idea is to reduce the level of detail at which the hardware is
simulated, while keeping the adequate accuracy of the simulation.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 20

Verification at System Level (cont’d)

Prototyping:

An ASIC or (possibly FPGA) implementation of the system is produced
and the full application software is run for testing.

• This is still design verification. The intention, at this stage, is not to
look for fabrication failures (although, they can be there, which
makes the verification more difficult). We test for hardware design
and software faults.
At this phase mainly faults connected to interconnection between
components, hardware/software interaction and timing are
detected.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 21

Verification at System Level (cont’d)

• After prototyping we suppose that, to our best knowledge(?), there
are no hardware design and software faults in the system.

When we go to fabrication, we can accept as a model, that the
hardware design and the software are correct. Thus, after
fabrication, we look only for manufacturing failures (the test
vectors we apply have passed at prototyping).

• However, it is obvious that neither software, nor hardware design
faults have been eliminated!

For field/maintenance testing possible software and hardware
design faults have to be considered!

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 22

Design V alidation b y Model Ex ecution - Design T esting

• The initial specification as well as the models generated as result
of refinement steps are, executable and are formulated in a certain
formal language (C, VHDL, Statecharts, etc.).

• Validation of such a specification is to a large extent similar to
software testing.

• We have to provide a set of test vectors until a confidence is
gained that no major design errors are left undetected.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 23

Design Validation by Model Execution - Design Testing (cont’d)

1. Levels of Testing

2. Functional vs. Structural Testing

3. Kinds of Faults

4. Testing Methods

5. Testability Metrics

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 24

Levels of T esting

Testing at three distinct levels:

1. Unit/component testing: testing of individual modules or groups of
modules with related functionality. The goal is to show that the
module does not satisfy a certain expected beahviour;

2. Integration testing: a set of interacting modules are tested. The
goal is to show that even though the components were individually
satisfactory, the combination of components are incorrect.

3. System testing: the final system is tested. The goal is to reveal
bugs that cannot be identified by testing individual components or
by integration testing. It concerns issues that can be tested only
after the entire system is integrated on the target architecture:
performance, communication aspects, protocols, time constraints,
fault tolerance and recovery, etc.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 25

Functional vs. Structural

• Functional testing: the system is treated as a black box. Only
functionality and features are of concern and no implementation
details are known.

• Structural testing: program structure/coding are considered for
testing.

The boundary is fuzzy: it depends on the abstraction level, what we
consider at the level of structural details and what as a functional “black
box”.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 26

Kinds of F aults

Unfortunately there are no nice and simple explicit fault models.

• Requirements and specifications faults: the earliest to invade the
system and the last to be caught (maybe only after system testing).

• Structural faults
- control faults: related to the order of executing sequences of

operations, the conditions under which operations are execut-
ed, number of iterations, etc.

- logic faults: related to use of boolean operators and the way
they are evaluated (they often result in control faults);

- processing faults: arithmetic faults, evaluation of mathematical
functions, conversions, etc.

- initialization faults.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 27

Kinds of Faults (cont’d)

• Data faults: bugs related to definition of data objects, their formats
and initial values.

• Coding faults: many are caught by compilers.

• Interface, integration, and system faults: external/internal
interfaces, protocols, formats, hardware related problems,
operating system related problems, aspects related to the load of
the system (stress), timing aspects, deadlock, etc.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 28

Testing Methods

1. Path testing

2. Transaction flow testing

3. Data-flow testing

4. Transition testing

5. Mutation testing

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 29

Path Testing

• Is a test technique based on selecting a set of test paths through
the program.

• Selecting the right set of paths ⇒ achieve some test thoroughness.

• Path testing is basically a component testing method. However,
techniques very much related to path testing are used for
functional testing of systems.

Testability Issues in Hardware/Software Systems 30

Petru Eles, ESLAB, LiTH

Path Testing (cont’d)

• The typical representation for path testing is
the control flowgraph.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 31

Path Testing (cont’d)

Path testing strategies:

• Path testing (P∞): execute all possible control flow paths through
the program. If achieved ⇒ complete path coverage; generally it
is impossible to achieve.

• Statement testing (P1): Execute all statements in the program at
least once. If achieved ⇒ complete statement coverage.

• Branch testing (P2): Execute enough tests to assure that every
branch alternative has been exercised at least once. If achieved
⇒ complete branch coverage.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 32

Path Testing (cont’d)

P∞ is the strongest; it includes both P1 and P2.

For structured specifications P2 ⊃ P1

• Statement coverage is established as a minimum testing
requirement by IEEE and ANSI standards.

• Statement and branch coverage are minimum mandatory test
requirements for new code at IBM.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 33

Path Testing (cont’d)

Problem
Path sensitization: find the set of inputs so that you cover the
selected paths.

select the paths so that you achieve coverage;
for each path

trace the path and compose the path predicate; express it in
terms of inputs.

solve the set of inequalities ⇒ set of inputs for the path.

For the general case this is not achievable in practice.

There are tools which can generate test cases with good coverage,
based on static analysis, symbolic execution and heuristics.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 34

Transaction Flo w Testing

• A transaction is a unit of work, seen from the system user’s point
of view; performing a transaction results in a sequence of
operations.

• The system as a whole is specified as a set of transactions it can
process.

• Transaction flow testing is a typical functional testing approach
and is used for system testing.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 35

Transaction Flow Testing (cont’d)

• A transaction can be represented as a transaction flowgraph. It
consists of a set of tasks and conditional/unconditional branches
representing the sequence in which they are executed.

• The transaction flowgraph is a pictorial representation of a
functionality; it does not represent the control structure
corresponding to a particular program that implements the
functionality.

INPUT OUTPUTS A B C

D

E

S SSS

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 36

Transaction Flow Testing (cont’d)

• Transaction flow testing is based on path selection using the
transaction flowgraphs. Technically, this is similar to path testing.

ATTENTION!

With transaction flow testing we use input vectors to activate paths
corresponding to a functional specification and not to a structural
representation which corresponds to a given implementation!
This is a typical way to use structural methods for functional
testing.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 37

Data Flo w Testing

• Data flow testing uses the control flowgraph to select particular
paths to be exercised, in order to explore “unreasonable things”
that can happen to data.

• Data flow testing introduces additional paths to cover a part of the
gap between path coverage and statement and branch coverage.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 38

Data Flow Testing (cont’d)

• Typical data flow anomaly: use of a variable without previous
initialization (definition).

• Possible coverage strategies:
- exercise every path from every definition of a variable to every

use of that definition;
- exercise at least one path from every definition of a variable to

every use of that definition;
- exercise paths so that every definition of a variable is covered

by at least one use of that definition.
- -

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 39

Transition T esting

• Transition testing is used when the specification is a Finite State
Machine model.

• The system is captured as a state graph, where nodes are states
and paths represent transitions.

• The testing strategy is similar to path-testing with flowgraphs: the
goal is to achieve a coverage of paths through the state graph.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 40

Mutation T esting

• Mutation testing is a fault -based approach: design fault-specific
tests, tests that would detect the faults if they are present.

• In mutation testing, faulty versions, called mutants, are created by
infecting the original program.
Each mutant contains one fault generated by applying a mutation
operator to a certain statement.

• Test generation is guided by the goal to distinguish the original
program from its mutants.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 41

Mutation Testing (cont’d)

How do we generate mutants?

Function Max(integer: m,n): integer;

begin

Max := m;

Max := ABS(m); RC: true NC: m<0
if (n>m) then

if (n<m) then RC: true NC: (n>m) ≠ (n<m)
if (n>=m) then RC: true NC: (n>m) ≠ (n≥m)

Max := n;

Max := m; RC: n>m NC: n≠m
end;

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 42

Mutation Testing (cont’d)

The two basic hypotheses:

1. Coupling effect: complex faults are coupled with simple faults in
such a way that a test set that detects all simple faults will also
detect most complex faults.

2. Competent programmer: a competent programmer tends to write
programs that are close to being correct ⇒ they may be incorrect,
but differ from the correct one by relatively simple faults.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 43

Mutation Testing (cont’d)

• Necessity Condition (NC): necessary condition for the mutant to
behave differently from the original program (the mutant to be killed).

• Reachability Condition: necessary condition for the respective
instruction to be executed.

Necessity
Condition

Reachability
Condition

Path
Analyser

Constraint
 Generator

Constraint
 Satisfier Test Data

original
program

mutants

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 44

Mutation Testing (cont’d)

Once the test set is generated:

• Run original program and update if needed, until it behaves
correctly for each test.

• Run mutants for each test vectors and kill if they behave differently
from original program.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 45

Mutation Testing (cont’d)

What about mutants which have not been killed?

• They are functionally equivalent to the original programme (see 3d
mutant in example).

• They have induced a fault, but, with the given test set, it does not
propagate to the output (is not observable) ⇒ new tests are
needed.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 46

A Fault Model f or Har dware Design T esting
(Ferrandi et al, Politecnico di Milano, ‘99)

• The authors propose a methodology very similar to mutation
testing. It is applied to hardware specifications in VHDL

It is based on one single fault model: bit failures.
- Each variable, signal or port is considered as a vector of bits;

each bit can be stuck-at zero or one.
- Each condition can be stuck-at true or stuck-at false.

• Test vectors seem to be better than those generated with
statement coverage.

• Test vectors generated from behavioural specifications can be
successfully used to test the RT level description.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 47

Testability Metrics

Questions they can answer:

• How many bugs can we expect;
• How difficult is it to detect bugs?
• How large is the test set to be applied?
• When can we stop testing?
• How should we change the specification (design) in order to

improve testability?

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 48

Testability Metrics (cont’d)

1. Complexity metrics

2. Extending complexity metrics to large OO systems

3. Observability and the Domain/Range Ratio

4. A Dynamic Testability Metric

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 49

Comple xity Metrics

The more complex the program (design specification), the more likely
that errors are introduced and hence the more testing will be required

• Primitive metrics: lines of code, statement count, etc.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 50

Complexity Metrics (cont’d)

Halstead’s metrics

N1: number of operators in the program
N2: number of operands in the program
Halstead length: N = N1 + N2

n1: number of distinct operators in the program
n2: number of distinct operands in the program
Predicted Halstead length:

Extremely interesting: The effective length (N) can be predicted
based on the specification, before the program has been written!

Predicted number of bugs:

H n1 n2 1log× n2 n2 2log×+=

B
N1 N2+() n1 n2+()

2
log×

3000
--=

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 51

Complexity Metrics (cont’d)

Structural metrics: McCabe’s cyclomatic complexity metric

• McCabe’s metric is not based on program size but more on
information/control flow. It is based on the specification’s flow-
graph representation:

L: number of links in the graph
N: number of nodes in the graph
P: the number of disconnected parts of the graph (calling program
and subroutines)

M = L - N + 2P

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 52

Complexity Metrics (cont’d)

• Correlation studies show that McCabe’s metric can be used as a
guideline for the number of required test cases.

• A very good measure of fault risk is given by the correlation
between McCabe’s complexity and size (number of executable
statements):

- Modules with high complexity for a relatively small number of
executable statements present the highest risk.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 53

Comple xity Metrics f or Lar ge OO Systems
NASA Program for Risk Assessment

• Internal object complexity:
- individual methods: McCabe’s complexity correlated with size;
- for object classes: sum of method complexities;

• Complexity related to object interaction:
- number of methods that can be invoked in response to

received messages;
- number of other classes to which a class is coupled.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 54

A Metric f or Testability: The DRR

• The Domain Range Ratio (DRR): the DRR of a unit (module,
function, operation) is the ratio between the cardinality of the
domain (input) to the cardinality of the range (output).

• A high value of DRR indicates a high potential of the module to
hide faults ⇒ low testability.

function F (in integer X, Y; out boolean B);

begin

if C then A:=(X+Y)*K1 else A:=(X+Y)*K2;

B:= A>1000;

end;

DRR(F) = ∞ : 2

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 55

A Metric for Testability : DRR (cont’d)

• A high DRR indicates modules of the program that are less likely
to expose existing faults (faults are hidden because of low
observability)

This modules have to be tested intensively
OR
Testability has to be improved by

1. adding new output parameters ⇒ increase observability
2. introducing ASSERTIONS ⇒ BIST

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 56

A Metric for Testability : DRR (cont’d)

function F(in integer X,Y;out boolean B;out integer A);
begin

if C then A:=(X+Y)*K1 else A:=(X+Y)*K2;
B:= A>1000;

end;
..
function F (in integer X, Y; out boolean B);
begin

if C then A:=(X+Y)*K1 else A:=(X+Y)*K2;
ASSERT(cond(A), “erroneous state in function F”);
B:= A>1000;

end;

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 57

A Dynamic T estability Metric

• All the metrics discussed so far are static: they are based on static
analysis of the specification.

• PIE (propagation, infection, execution) is a dynamic technique,
based on program execution in order to derive statistical estimates
of testability.

Testability:
The probability that the next execution will fail during testing (with a
particular assumed input distribution) if there exists a fault.

- testing reveals faults;
- testability suggests locations where faults can hide from test-

ing (the portions which should be redesigned or where testing
effort should be concentrated).

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 58

Dynamic Testability Metric (cont’d)

PIE analysis is based on repeated execution with a certain input
distribution; it derives three probability estimates for each location l:

1. Execution estimate: estimate of the probability that program
location l is executed;

2. Infection estimate: estimate of the probability, that given the
program location l is executed, a mutant Ml adversely affects the
data state.

3. Propagation estimate: estimate of the probability, that given that a
variable in the data state following location l changes, the program
output that results also changes.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 59

Dynamic Testability Metric (cont’d)

• Based on the PIE estimates, the global sensitivity of a location
can be predicted.

• Global sensitivity is an expression of the degree to which testing
must be performed in order to be convinced that the location is
probably not protecting a fault from detection.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 60

Hardware/Software Co-Design f or Testability

• Tackling the testability problem in an early phase of system design
has a major impact on the global test cost.

Research efforts have been concentrated into two directions:

1. Developing tools for hardware/software partitioning with the
specific goal to improve testability of the final system.

2. Developing a design methodology and guidelines so that a
high degree of system testability is achieved.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 61

Hardware/Software P artitioning Based on T estability Metrics
(LSR-IMAG Grenoble)

Application of mutation testing for hardware test:
- Test vectors generated with mutation testing, based on the be-

havioral VHDL specification, are used for design validation.
- The same test vectors + a set of additional vectors (depending

on the dimension of operands) are successfully used for test of
the final hardware; test coverage is similar to that obtained with
traditional ATPG tools, applied on lower levels of the design.

A very efficient way to generate tests from the behavioral spec-
ification.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 62

Hardware/Software Partitioning Based on Testability Metrics (cont’d)

• Find a metric which combines software and hardware testability.

Test cost: the number of cases needed to test the system

• Total system test cost is evaluated based on test cost for system
components.

Testability Issues in Hardware/Software Systems 63

Petru Eles, ESLAB, LiTH

Hardware/Software Partitioning Based on
Testability Metrics (cont’d)

• The system representation is a control-data
flowgraph (it can be interpreted similar to a
transaction flowgraph).

• We can identify several flows (transactions).

Cond

End-cond

M1 M2

M3

Cond

M4 M5

M7

In 1

In 2

Out 1

Out 2

End-cond

FT

FT

Flows:
F1: M1,M3,M4,M6,M7
F2: M2,M3,M4,M6,M7
F4: M1,M3,M5,M6,M7
F5: M2,M3,M5,M6,M7
F6: M1,M3,M5
F7: M2,M3,M5

M6

In 3

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 64

Hardware/Software Partitioning Based on Testability Metrics (cont’d)

• Several test strategies can be imagined: test all flaws, test flaws
until all modules have been covered, etc.

• A particular strategy has to be adopted, based on the system
specification; it implies the activation of certain flows Fi, i = 1..n.
The test cost for each flow:

; where Nmj is the test cost for
module mj (mj ∈ Fi);

The system test cost:

TFi Nmj
mj Fi∈

∑=

C TFi
i 1=

n

∑=

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 65

Hardware/Software Partitioning Based on Testability Metrics (cont’d)

• The test cost Nmj for a particular module mj is estimated as the
number of test vectors generated, using mutation testing (this
number differs depending on the module’s implementation in
hardware or software).

• Using the cost C as an objective function, a hardware/software
partitioning can be generated, which is optimal from the testability
point of view.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 66

Hardware/Software Partitioning Based on Testability Metrics (cont’d)

What is good with this approach:
• It tries to define a metric for system testability starting with an

implementation independent system specification.
• It uses this metric in order to guide hardware/software partitioning.

Problems with this approach:
• System test cost is more than simply the sum of test costs for the

components.
• There is no differentiation between applying N test vectors for

software test and performing hardware test with the same number
of test vectors.

• Before manufacturing, hardware design has to be tested also,
exactly like software.

• What about the hardware on which the software is executed?
• Observability/controllability is not considered.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 67

Design f or Test/Deb ug in Har dware/Software Systems
(TU Eindhoven)

An incremental approach to testing: each hardware and software
component is tested first in isolation; when the component passes the
test, it can be integrated into the system.

System level testing is the task of verifying the correctness of the
system by applying test stimuli to the hardware/software
implementation of the system and observing the responses.

We verify the correctness of the system as a whole, constituted of all
its hardware and software components.
System testing aims at detecting design and fabrication/physical
failures that are revealed by the complex interactions between many
hardware and software components.

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 68

Design for Test/Debug in Hardware/Software Systems (cont’d)

• Testing and debugging a system through its external interfaces
does usually not provide sufficient control and observation of the
internal system operation.

The approach primarily concentrates on design for test&debug by
improving visibility into communication interfaces and the state
information of software processes and hardware components.
This is achieved by inserting Points of Control and Observation
(PCOs).

Petru Eles, ESLAB, LiTH

Testability Issues in Hardware/Software Systems 69

Design for Test/Debug in Hardware/Software Systems (cont’d)

• PCOs are inserted into the implementation independent system
specification, based on initial test requirements.

• During successive synthesis steps PCOs are implemented in
hardware and software.

• Software implementation usually implies additional methods and
input/outputs of the objects.

• Hardware implementation:
- synthesis of scan and BIST facilities;
- using existing DFT/DFD facilities of microprocessors or IP

cores.

Testability Issues in Hardware/Software Systems 70

Petru Eles, ESLAB, LiTH

Summar y

• Embedded systems typically are
heterogeneous hardware/software systems.

• Design validation and product testing are
aimed to guarantee correct functionality and
efficient maintenance.

• Design validation can be performed by formal
verification and model execution.

• Formal verification can mathematically
demonstrate certain features of the models or
equivalence between two models.

• Design practice includes validation by model
execution and prototyping.

• Model execution implies practically the testing
of a software system. A set of test vectors
have to be provided until a certain degree of
confidence is gained that no major design
errors are left undetected.

Testability Issues in Hardware/Software Systems 71

Petru Eles, ESLAB, LiTH

Summary (cont’d)

• Several approaches to model testing have
been studied in order to efficiently achieve a
high degree of test coverage. These
techniques are related to hardware testing
techniques and some of them can be directly
used for hardware and hardware/software
testing.

• Testability metrics provide a measurement of
how difficult it is to test a certain system.

• Applied to a system specification, some of
these metrics provide a measure of the overall
testability (regardless of later implementation
decisions)

• System testability metrics can be used in
order to guide system-level design for
testability; hardware/software partitioning is a
good example.

