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❚ off-line

❚ edge-pin

❚ stored-pattern

❚ full comparison of the output results

neral problems for TG:

❚ the cost of generating the test

❚ the quality of the generated test

❚ the cost of applying the test
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Fault-Or

lve()
gin
if( Imply_and_check() = FAILURE) then return FAI
if (error at PO and  all lines are justified)

then return  SUCCESS
if (error can’t be propagated to a PO)

then return  FAILURE
select an unsolved problem
repeat

begin
select one untried way to solve it
if (Solve() = SUCCESS) then return  SUCCE

end
until  all ways to solve it have been tried
return  FAILURE

d
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Fault-Or
orithms:

the D algorithm

the 9-V algorithm

single-path sensitization

PODEM

FAN

etc.

D-alg()
begin

if( Imply_and_check(
if (error not at PO) th

if(D-frontier = vo
repeat

begin
select 
c = con
assign
if (D-alg

end
until  all gates fr
return FAILURE

end
if (J-frontier = void) th
select a gate (G) from
c = controlling value 
repeat

begin
select an in
if (Solve() =

end
until  all inputs of G a
return  FAILURE

end
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Fault-Or
nciples used for decisions:
attack the most difficult problem first

try the easiest solution first

asures:
controllability: the relative difficulty of setting a line t

observability: the relative difficulty of propagating an

st functions:
distance-based functions

recursive cost functions

fanout-based cost functions
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Fault-Indepe
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conflicts
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lt-oriented TG vs. Fault-independent TG:
fault-oriented TG needs an additional simulation ste
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advantages:

❚ low test generation cost

❚ test vectors usually generated on-the-fly (no 

ge)

disadvantages:

❚ long test sequence (approx. 10 times longer t

rated tests)

❚ high test application cost
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test quality – t N – the probability to detect all po

dom tests

N-step detection probability of f – d f
N – the proba

lying N random tests

detection quality – d N – the probability to detect th

lt after applying N random tests
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f
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usually, one is interested in how long a test sequen

ieve a detection quality (test quality) of c

simulation too expensive

if N tests detect the most difficult to detect fault with

 detect another fault with a probability  ≥ c
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dN ≥ c,        N = ?

df
1 = |Tf| / 2

n, for uniformly distributed input test 

Tf – the set of test vectors that detect the fault

dmin = min f df
1, the lowest detection probabili

circuit

1 – (1 – dmin )N ≥ c

N ≥ ceil(ln(1 – c) / ln(1 – d min ))

tN ≥ c,        N = ?

N ≥ ceil((ln(1 – c) – ln(k)) / ln(1 – d min )), k – nu
probability d min  ≤ d ≤ 2dmin

dmin  has to be determined
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dmin  ≥ 1 / 2n ⇒ exhaustive testing

the probability to detect l s-a-0 = the probability o

there may be several paths to propagate the error
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P(l = 1) is computed in linear time for fanout-free cir

tial

probability intervals and cuts can be used instead o

 time

1
l

1 0

G



20 of  26

November 30, 2000

Difficult Faults

e a lower bound, d L

 with d f ≤ dL, the difficult

t or fanout branch)

e difficult fault becomes
■

■

■

fau

■

■

eas
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

sometimes N max is bounded (fixed) (testing time)

having a desired detection quality c, one can deduc

then the circuit has to be checked if there are faults
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among checkpoint faults (checkpoint = primary inpu

if found, then modify the circuit in such a way that th
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requirements:

❚ fault coverage  ↑

❚ test generation cost  ↓

❚ test set size  ↓

should it collapse faults?
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ATG

eat
Generate_test(t);
fault simulate t
v = value(t)
if acceptable(v) then add t to the test
il endphase1();

/* what about test schedu
/* redundancy elimination

eat
select a new target fault f /* better one close to the 
try to generate a new test t for f
if successful

add f to the test
fault simulate f
discard the faults detected by f

fi
il endphase2();
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❚ biggest problem is the selection of the additio
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algebraic – impractical

extensions for tristate logic – problem: how to avoid
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TG for module-level circuits

❚ modules assumed to be fault free

❚ propagation and justification procedures mor
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