ATG for SSFs in Combinatorial Circuits

Traian Pop Sorin Manolache
trapo@ida.liu.se sorma@ida.liu.se

1 of 26
h November 30, 2000

Outline
T T S e el il B Bmte w B mm m B

s Introduction
s Deterministic Test Generation
0 Fault-Oriented ATG

0 Fault Independent ATG

» Random Test Generation

0 Combined Deterministic and Random Test Generation

s ATG Systems

s Conclusions

ATG for SSFs in Combinatorial Circuits 2 of 26
November 30, 2000

Traian Pop, Sorin Manolache

Testing
0 off-line
0 edge-pin
0 stored-pattern

0 full comparison of the output results

General problems for TG:

O the cost of generating the test
0 the quality of the generated test

O the cost of applying the test

ATG for SSFs in Combinatorial Circuits

Traian Pop, Sorin Manolache

Introduction
ot e T "]

3 of 26
November 30, 2000

Deterministic Test Generation
S T T TR Rt e B mimiell B BEnts n B mim m N |

Circuit Tests
model \ / (Test stimuli + Correct response)
T ATG N T
w/) h ~ w
Fault RN Diagnostic
universe data

~_ ~_

= Mmanual / automatic

= fault-oriented / fault-independent

ATG for SSFs in Combinatorial Circuits 4 of 26
November 30, 2000

Traian Pop, Sorin Manolache

Fault-Oriented ATG

= targeted at certain fault within a fault universe given by a fault model

Primary N Primary
inputs outputs
— e
f s-a-v
Emmm X EEEEm
— e
Problems:

o fault activation

0 error propagation

ATG for SSFs in Combinatorial Circuits 5 of 26

Traian Pop, Sorin Manolache November 30, 2000

Fault-Oriented ATG (cont'd)

Fault activ ation: line-justification (recursively justifying the value of a gate
output by values of the gate inputs until primary inputs are reached)

Da

Da

e
inlidis

Error pr opagation:

VIV non-controlling value
= composite logic values /01 0 1 — _
e 1/1] 1 err err
= reduced to a set of line-justification problems 1
0/1| D]
1/0] D

ATG for SSFs in Combinatorial Circuits 6 of 26

Traian Pop, Sorin Manolache November 30, 2000

Fault-Oriented ATG (cont'd)

K D h o
I,ID 1 D—.D
j

Fanout-free circuits:

U

o X |O [k

® QO T Y

Circuits with fanout: Decisions Implications
g=D e=1 Initial implications
f=1 m=D
n=1 o0o=1
I=0 p=D
=1 To justify n=1
p c=1 d=1
j=0 k=0
0=0 Contradiction
h=1 To justify n=1
a=1 b=1
o=1 To justify o=1
c=0 k=0

ATG for SSFs in Combinatorial Circuits 7 of 26

Traian Pop, Sorin Manolache

November 30, 2000

Fault-Oriented ATG (cont'd)
s T T T A, G
Solve()
begin
If(Imply_and_check() = FAILURE) then return FAILURE
if(error at PO and all lines are justified)
then return SUCCESS
If (error can’t be propagated to a PO)
then return FAILURE
select an unsolved problem
repeat
begin
select one untried way to solve it
If(Solve() = SUCCESS) then return SUCCESS
end
until all ways to solve it have been tried
return FAILURE
end

ATG for SSFs in Combinatorial Circuits 8 of 26
November 30, 2000

Traian Pop, Sorin Manolache

Fault-Oriented ATG (cont'd)

D-frontier:
= used during error propagation process (D-drive)

D,

X
= becomes void if no error can be propagated to a PO }

J-fr ontier:
s keeps track of unjustified lines

‘HX‘H

BDa
Minimizing the number of incorrect decisions:

= maximum implications principle

= Qlobal implications
m reversing incorrect decisions

= error-propagation look-ahead

ATG for SSFs in Combinatorial Circuits 9 of 26

Traian Pop, Sorin Manolache November 30, 2000

Fault-Oriented ATG (cont'd)

Algorithms: Dol
begin
s theD algorithm if(Imply_and_check() = FAILURE) then return FAILURE
if (error not at PO) then begin
s the 9-V algorlthm LEIODe;ont/er void) then return FAILURE
: .- : begin

= Single-path sensitization select an untried gate (G) from D-frontier
¢ = controlling value of G

s PODEM assign c to every input of G with value x
if(D-alg() = SUCCESS) then return SUCCESS

end
= FAN until all gates from D-frontier have been tried
s etc return FAILURE
. end

if (J-frontier = void) then return SUCCESS
select a gate (G) from J-frontier
¢ = controlling value of G
repeat
begin
select an input (j) of G with value x, assign c to j
if (Solve() = SUCCESS) then return SUCCESS
end
until all inputs of G are specified
return FAILURE
end

ATG for SSFs in Combinatorial Circuits 10 of 26

Traian Pop, Sorin Manolache

November 30, 2000

Fault-Oriented ATG (cont’d)

. . moom 0 om N e M MR
Principles used for decisions:

= attack the most difficult problem first

= try the easiest solution first

Measures:
= controllability: the relative difficulty of setting a line to a value

= Observability: the relative difficulty of propagating an error from a line to a PO

Cost functions:
s distance-based functions

m recursive cost functions
s fanout-based cost functions

Co(l) = min{ CO(i)} + f, -1
Ci(l) = J{CL(i)} + -1

ATG for SSFs in Combinatorial Circuits 11 of 26

Traian Pop, Sorin Manolache November 30, 2000

Fault-Independent ATG

Goal: to produce a set of tests that detect a large set of SSFs without targeting
iIndividual faults

Critical-path TG algorithm:

= Select a PO and assign it a critical value

= recursively justify any critical value on a gate output by critical values on the gate inputs

| critical values are used instead of primitive values (complete specification)

ATG for SSFs in Combinatorial Circuits 12 of 26
November 30, 2000

Traian Pop, Sorin Manolache

Fault Independent ATG (contd)

Critical-path TG for circuits with reconvergent fanout:
= conflicts

= Self-masking
= Mmultiple-path sensitization

= overlap among PO cones

Fault-oriented TG vs. Fault-independent TG:
= fault-oriented TG needs an additional simulation step to detect SSFs

= using critical-path TG, new tests can be generated starting from already existing ones

= fault-independent algorithms cannot identify undetectable faults

ATG for SSFs in Combinatorial Circuits 13 of 26
November 30, 2000

Traian Pop, Sorin Manolache

Random Test Generation
S T T TR Rt e B mimiell B BEnts n B mim m N |

= do not target a particular fault

= random test vectors are applied and one hopes to detect as many faults as

possible

ATG for SSFs in Combinatorial Circuits 14 of 26
November 30, 2000

Traian Pop, Sorin Manolache

Comparison
moom o o w T SRR S

= advantages:
0 low test generation cost
0 test vectors usually generated on-the-fly (no need for test vector stor-
age)
= disadvantages:

0 long test sequence (approx. 10 times longer than deterministically gen-

erated tests)

0 high test application cost

ATG for SSFs in Combinatorial Circuits 15 of 26
November 30, 2000

Traian Pop, Sorin Manolache

Quality Measures
mom o e e ey T

m lestquality —t ,—the probability to detect all possible faults after applying N
random tests

s N-step detection probability of f — d f n — the probability to detect fault f after
applying N random tests

= detection quality —d , —the probability to detect the most difficult to detect

fault after applying N random tests

dy = ming dfy

ATG for SSFs in Combinatorial Circuits 16 of 26

Traian Pop, Sorin Manolache November 30, 2000

Test Length (1)
moom o o w T SRR S

= usually, one is interested in how long a test sequence should be in order to
achieve a detection quality (test quality) of c
= Simulation too expensive

= if N tests detect the most difficult to detect fault with probability c, then they

will detect another fault with a probability >C

ATG for SSFs in Combinatorial Circuits 17 of 26

Traian Pop, Sorin Manolache November 30, 2000

Test Length (2)

mom o e e ey T
m dNZC, N="7?

dfl = |T¢| / 2", for uniformly distributed input test vectors

T; — the set of test vectors that detect the fault f

dmin = Ming dfl, the lowest detection probability among the SSFs in the
circuit

1-(Q—dmn)2c
N = ceil(n(L—c)/In(1 —d yin))

m tNZC, N="7?

N = ceil((In(1 —c) —In(k)) / In(1 —d in)), k—number of faults with detection
probability d iy <d < 2d,in

s dj, has to be determined

ATG for SSFs in Combinatorial Circuits 18 of 26
November 30, 2000

Traian Pop, Sorin Manolache

= dpin =1/2" 0 exhaustive testing

= the probability to detect [/s-a-0 = the probability of G being 1

= there may be several paths to propagate the error

dmin 2 P(G =1) (max?)
s P(I=1)is computed in linear time for fanout-free circuits, otherwise expo-

nential
= probability intervals and cuts can be used instead of fixed probabilities [lin-

ear time

ATG for SSFs in Combinatorial Circuits 19 of 26
November 30, 2000

Traian Pop, Sorin Manolache

Difficult Faults

= sometimes N 5% IS bounded (fixed) (testing time)

= having a desired detection quality c, one can deduce a lower bound, d L

= then the circuit has to be checked if there are faults with d ;< d, the difficult
faults

= among checkpoint faults (checkpoint = primary input or fanout branch)

= if found, then modify the circuit in such a way that the difficult fault becomes

easier to detect (design for testability)

ATG for SSFs in Combinatorial Circuits 20 of 26
November 30, 2000

Traian Pop, Sorin Manolache

Non-Uniformly Distributed Test Vectors
mom o e e ey T

= turned out to be better for some circuits for various optimization goals (cov-
erage, testing cost, cost of DFT modifications)

= research for computing the pdf of the test vectors

s adaptive RTG , monitors the test generation process, gathers statistical data
about the most successful test vectors and adjusts then the pdf of future test

vectors

ATG for SSFs in Combinatorial Circuits 21 of 26

Traian Pop, Sorin Manolache November 30, 2000

Combined Deterministic/Random TG
T T S e el il B Bmte w B mm m B

= RAPS (Random Path Sensitization)
0

X X X

half of generated tests will have A =1

s SMART (Sensitizing Method for Algorithmic Random Testing)

ATG for SSFs in Combinatorial Circuits 22 of 26
November 30, 2000

Traian Pop, Sorin Manolache

ATG Systems

= requirements:

o fault coverage 1
0 test generation cost |
0 testsetsize |

= should it collapse faults?

ATG for SSFs in Combinatorial Circuits 23 of 26
November 30, 2000

Traian Pop, Sorin Manolache

ATG Systems Structure

repeat
Generate_test(t);
fault simulate t
v = value(t)
If acceptable(v) then add t to the test
until endphasel();
[* what about test scheduling? */
[* redundancy elimination is important */
repeat
select a new target fault f /* better one close to the PI */
try to generate a new test t for f
If successful
add f to the test
fault simulate f
discard the faults detected by f
fi
until endphase2();

ATG for SSFs in Combinatorial Circuits 24 of 26
November 30, 2000

Traian Pop, Sorin Manolache

Test Set Compaction
mom o e e ey T

= Static compaction
Ol1x 011 010

Ox1
Ox0 0OxO 001
x01 x01

= dynamic compaction

0 try to set the unspecified Pls such that additional faults are detected

0 biggest problem is the selection of the additional fault to be tested

ATG for SSFs in Combinatorial Circuits 25 of 26
November 30, 2000

Traian Pop, Sorin Manolache

Other TG Methods

moom o o w T SRR S
= algebraic — impractical
= extensions for tristate logic — problem: how to avoid the simultaneous ena-
bling of multiple bus drivers

s G for module-level circuits

0 modules assumed to be fault free

0 propagation and justification procedures more complicated, derived

from the module’s function

o if the modules are not fault free, either they are tested before (design
for testability) or after by replacing one module at a time with its gate level

model

ATG for SSFs in Combinatorial Circuits 26 of 26

Traian Pop, Sorin Manolache November 30, 2000

	Outline
	Introduction
	Deterministic Test Generation
	Fault-Oriented ATG
	Fault Independent ATG

	Random Test Generation
	Combined Deterministic and Random Test Generation

	ATG Systems
	Conclusions

	Introduction
	Testing
	off-line
	edge-pin
	stored-pattern
	full comparison of the output results

	General problems for TG:
	the cost of generating the test
	the quality of the generated test
	the cost of applying the test

	Deterministic Test Generation
	manual / automatic
	fault-oriented / fault-independent

	Fault-Oriented ATG
	targeted at certain fault within a fault universe given by a fault model
	Problems:
	fault activation
	error propagation

	Fault-Oriented ATG (cont’d)
	Fault activation: line-justification (recursively justifying the value of a gate output by values...
	Error propagation:
	composite logic values
	reduced to a set of line-justification problems

	Fault-Oriented ATG (cont’d)
	Fanout-free circuits:
	Circuits with fanout:

	Fault-Oriented ATG (cont’d)
	Solve()
	begin
	if(Imply_and_check() = FAILURE) then return FAILURE
	if(error at PO and all lines are justified)
	then return SUCCESS
	if(error can’t be propagated to a PO)
	then return FAILURE
	select an unsolved problem
	repeat
	begin
	select one untried way to solve it
	if(Solve() = SUCCESS) then return SUCCESS
	end
	until all ways to solve it have been tried
	return FAILURE
	end

	Fault-Oriented ATG (cont’d)
	D-frontier:
	used during error propagation process (D-drive)
	becomes void if no error can be propagated to a PO
	J-frontier:

	keeps track of unjustified lines
	Minimizing the number of incorrect decisions:

	maximum implications principle
	global implications
	reversing incorrect decisions
	error-propagation look-ahead

	Fault-Oriented ATG (cont’d)
	Algorithms:
	D-alg()
	begin
	if(Imply_and_check() = FAILURE) then return FAILURE
	if(error not at PO) then begin
	if(D-frontier = void) then return FAILURE
	repeat
	begin
	select an untried gate (G) from D-frontier
	c = controlling value of G
	assign c to every input of G with value x
	if(D-alg() = SUCCESS) then return SUCCESS
	end
	until all gates from D-frontier have been tried
	return FAILURE
	end
	if(J-frontier = void) then return SUCCESS
	select a gate (G) from J-frontier
	c = controlling value of G
	repeat
	begin
	select an input (j) of G with value x, assign c to j
	if(Solve() = SUCCESS) then return SUCCESS
	end
	until all inputs of G are specified
	return FAILURE
	end
	the D algorithm
	the 9-V algorithm
	single-path sensitization
	PODEM
	FAN
	etc.

	Fault-Oriented ATG (cont’d)
	Principles used for decisions:
	attack the most difficult problem first
	try the easiest solution first
	Measures:

	controllability: the relative difficulty of setting a line to a value
	observability: the relative difficulty of propagating an error from a line to a PO
	Cost functions:

	distance-based functions
	recursive cost functions
	fanout-based cost functions

	Fault-Independent ATG
	Goal: to produce a set of tests that detect a large set of SSFs without targeting individual faults
	Critical-path TG algorithm:
	select a PO and assign it a critical value
	recursively justify any critical value on a gate output by critical values on the gate inputs
	! critical values are used instead of primitive values (complete specification)

	Fault-Independent ATG (cont’d)
	Critical-path TG for circuits with reconvergent fanout:
	conflicts
	self-masking
	multiple-path sensitization
	overlap among PO cones
	Fault-oriented TG vs. Fault-independent TG:

	fault-oriented TG needs an additional simulation step to detect SSFs
	using critical-path TG, new tests can be generated starting from already existing ones
	fault-independent algorithms cannot identify undetectable faults

	Random Test Generation
	do not target a particular fault
	random test vectors are applied and one hopes to detect as many faults as possible

	Comparison
	advantages:
	low test generation cost
	test vectors usually generated on-the-fly (no need for test vector storage)

	disadvantages:
	long test sequence (approx. 10 times longer than deterministically generated tests)
	high test application cost

	Quality Measures
	test quality – tN – the probability to detect all possible faults after applying N random tests
	N-step detection probability of f – dfN – the probability to detect fault f after applying N rand...
	detection quality – dN – the probability to detect the most difficult to detect fault after apply...

	Test Length (1)
	usually, one is interested in how long a test sequence should be in order to achieve a detection ...
	simulation too expensive
	if N tests detect the most difficult to detect fault with probability c, then they will detect an...

	Test Length (2)
	dN ³ c, N = ?
	tN ³ c, N = ?
	dmin has to be determined

	dmin
	dmin ³ 1 / 2n ﬁ exhaustive testing
	the probability to detect l s-a-0 = the probability of G being 1
	there may be several paths to propagate the error
	P(l = 1) is computed in linear time for fanout-free circuits, otherwise exponential
	probability intervals and cuts can be used instead of fixed probabilities ﬁ linear time

	Difficult Faults
	sometimes Nmax is bounded (fixed) (testing time)
	having a desired detection quality c, one can deduce a lower bound, dL
	then the circuit has to be checked if there are faults with df £ dL, the difficult faults
	among checkpoint faults (checkpoint = primary input or fanout branch)
	if found, then modify the circuit in such a way that the difficult fault becomes easier to detect...

	Non-Uniformly Distributed Test Vectors
	turned out to be better for some circuits for various optimization goals (coverage, testing cost,...
	research for computing the pdf of the test vectors
	adaptive RTG, monitors the test generation process, gathers statistical data about the most succe...

	Combined Deterministic/Random TG
	RAPS (Random Path Sensitization)
	SMART (Sensitizing Method for Algorithmic Random Testing)

	ATG Systems
	requirements:
	fault coverage �
	test generation cost Ø
	test set size Ø

	should it collapse faults?

	ATG Systems Structure
	repeat
	Generate_test(t);
	fault simulate t
	v = value(t)
	if acceptable(v) then add t to the test
	until endphase1();
	/* what about test scheduling? */
	/* redundancy elimination is important */
	repeat
	select a new target fault f /* better one close to the PI */
	try to generate a new test t for f
	if successful
	add f to the test
	fault simulate f
	discard the faults detected by f
	fi
	until endphase2();

	Test Set Compaction
	static compaction
	dynamic compaction
	try to set the unspecified PIs such that additional faults are detected
	biggest problem is the selection of the additional fault to be tested

	Other TG Methods
	algebraic – impractical
	extensions for tristate logic – problem: how to avoid the simultaneous enabling of multiple bus d...
	TG for module-level circuits
	modules assumed to be fault free
	propagation and justification procedures more complicated, derived from the module’s function
	if the modules are not fault free, either they are tested before (design for testability) or afte...

	ATG for SSFs in Combinatorial Circuits
	Traian Pop Sorin Manolache
	trapo@ida.liu.se sorma@ida.liu.se

