
1 of 26

November 30, 2000

ATG for SSFs in Combinatorial Circuits

 Traian Pop Sorin Manolache
trapo@ida.liu.se sorma@ida.liu.se

2 of 26

November 30, 2000

Outline

eneration
■

■

■

■

■

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Introduction

Deterministic Test Generation

❚ Fault-Oriented ATG

❚ Fault Independent ATG

Random Test Generation

❚ Combined Deterministic and Random Test G

ATG Systems

Conclusions

3 of 26

November 30, 2000

Introduction
Tes

Ge
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

ting

❚ off-line

❚ edge-pin

❚ stored-pattern

❚ full comparison of the output results

neral problems for TG:

❚ the cost of generating the test

❚ the quality of the generated test

❚ the cost of applying the test

4 of 26

November 30, 2000

ic Test Generation

Tests
(Test stimuli + Correct response)

data
Diagnostic
■

■

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Determinist

manual / automatic

fault-oriented / fault-independent

Circuit
model

Fault
universe

ATG

5 of 26

November 30, 2000

Fault-Oriented ATG

 by a fault model

imary
tputs
■

Pro
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

targeted at certain fault within a fault universe given

blems:
❚ fault activation

❚ error propagation

f s-a-v

Primary
inputs

Pr
ou

N

x

6 of 26

November 30, 2000

iented ATG (cont’d)

 the value of a gate
 are reached)

1

0

1

D

D

0/0

0/1

1/0

1/1

v/v f

err
1

err
1

non-controlling value
Fau
out

Err

■

■

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Fault-Or

lt activ ation: line-justification (recursively justifying
put by values of the gate inputs until primary inputs

or pr opagation:

composite logic values

reduced to a set of line-justification problems

0
1

x
1
1

0
x

7 of 26

November 30, 2000

iented ATG (cont’d)

D
1 D

j

e = 1
m = D
o = 1

l = 0 p = D

c = 1
j = 0 k = 0

o = 0

a = 1 b = 1

c = 0 k = 0

Initial implications

To justify n = 1

Contradiction

Implications

To justify n = 1

To justify o = 1

g = D
f = 1
n = 1

d = 1
Fan

Cir

.

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Fault-Or
out-free circuits:

cuits with fanout:

a
b

c
d
e

1
1

0
x
0

g

f s-a-0
D
0

h

i

x

i = 1

h = 1

o = 1

Decisions

a
b

c
d

e
f
g

s-a-1
x

n

m

l

k

j
i

o p

h

.
.

.

8 of 26

November 30, 2000

iented ATG (cont’d)

LURE

SS
So
be

en
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Fault-Or

lve()
gin
if(Imply_and_check() = FAILURE) then return FAI
if (error at PO and all lines are justified)

then return SUCCESS
if (error can’t be propagated to a PO)

then return FAILURE
select an unsolved problem
repeat

begin
select one untried way to solve it
if (Solve() = SUCCESS) then return SUCCE

end
until all ways to solve it have been tried
return FAILURE

d

9 of 26

November 30, 2000

iented ATG (cont’d)

0
1
x
1

x
D

D-fro
■ u

■ b

J-fr o
■ k

Minim
■ m

■ g

■ re

■ e
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Fault-Or
ntier:

sed during error propagation process (D-drive)

ecomes void if no error can be propagated to a PO

ntier:
eeps track of unjustified lines

izing the number of incorrect decisions:
aximum implications principle

lobal implications

versing incorrect decisions

rror-propagation look-ahead

10 of 26

November 30, 2000

iented ATG (cont’d)

) = FAILURE) then return FAILURE
en begin
id) then return FAILURE

an untried gate (G) from D-frontier
trolling value of G
c to every input of G with value x
() = SUCCESS) then return SUCCESS

om D-frontier have been tried

en return SUCCESS
J-frontier

of G

put (j) of G with value x, assign c to j
 SUCCESS) then return SUCCESS

re specified
Alg

■

■

■

■

■

■

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Fault-Or
orithms:

the D algorithm

the 9-V algorithm

single-path sensitization

PODEM

FAN

etc.

D-alg()
begin

if(Imply_and_check(
if (error not at PO) th

if(D-frontier = vo
repeat

begin
select
c = con
assign
if (D-alg

end
until all gates fr
return FAILURE

end
if (J-frontier = void) th
select a gate (G) from
c = controlling value
repeat

begin
select an in
if (Solve() =

end
until all inputs of G a
return FAILURE

end

11 of 26

November 30, 2000

iented ATG (cont’d)

o a value

 error from a line to a PO

1

Pri
■

■

Me
■

■

Co
■

■

■

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Fault-Or
nciples used for decisions:
attack the most difficult problem first

try the easiest solution first

asures:
controllability: the relative difficulty of setting a line t

observability: the relative difficulty of propagating an

st functions:
distance-based functions

recursive cost functions

fanout-based cost functions

C0 l() min C0 i(){ } f l –+=
C1 l() C1 i(){ }∑ f l 1–+=

12 of 26

November 30, 2000

lt-Independent ATG

f SSFs without targeting

critical values on the gate inputs

mplete specification)
Go
ind

Cri

■

■

! cr
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Fau

al: to produce a set of tests that detect a large set o
ividual faults

tical-path TG algorithm:

select a PO and assign it a critical value

recursively justify any critical value on a gate output by

itical values are used instead of primitive values (co

13 of 26

November 30, 2000

ndent ATG (cont’d)

p to detect SSFs

rting from already existing ones

ctable faults
Cri
■

■

■

■

Fau
■

■

■

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Fault-Indepe

tical-path TG for circuits with reconvergent fanout:
conflicts

self-masking

multiple-path sensitization

overlap among PO cones

lt-oriented TG vs. Fault-independent TG:
fault-oriented TG needs an additional simulation ste

using critical-path TG, new tests can be generated sta

fault-independent algorithms cannot identify undete

14 of 26

November 30, 2000

m Test Generation

etect as many faults as
■

■

pos
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Rando

do not target a particular fault

random test vectors are applied and one hopes to d

sible

15 of 26

November 30, 2000

Comparison

need for test vector stor-

han deterministically gen-
■

a

■

e

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

advantages:

❚ low test generation cost

❚ test vectors usually generated on-the-fly (no

ge)

disadvantages:

❚ long test sequence (approx. 10 times longer t

rated tests)

❚ high test application cost

16 of 26

November 30, 2000

Quality Measures

ssible faults after applying N

bility to detect fault f after

e most difficult to detect
■

ran

■

app

■

fau
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

test quality – t N – the probability to detect all po

dom tests

N-step detection probability of f – d f
N – the proba

lying N random tests

detection quality – d N – the probability to detect th

lt after applying N random tests

dN = min f d
f
N

tN < dN

17 of 26

November 30, 2000

Test Length (1)

ce should be in order to

 probability c, then they
■

ach

■

■

will
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

usually, one is interested in how long a test sequen

ieve a detection quality (test quality) of c

simulation too expensive

if N tests detect the most difficult to detect fault with

 detect another fault with a probability ≥ c

18 of 26

November 30, 2000

Test Length (2)

vectors

f

ty among the SSFs in the

mber of faults with detection
■

■

■

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

dN ≥ c, N = ?

df
1 = |Tf| / 2

n, for uniformly distributed input test

Tf – the set of test vectors that detect the fault

dmin = min f df
1, the lowest detection probabili

circuit

1 – (1 – dmin)N ≥ c

N ≥ ceil(ln(1 – c) / ln(1 – d min))

tN ≥ c, N = ?

N ≥ ceil((ln(1 – c) – ln(k)) / ln(1 – d min)), k – nu
probability d min ≤ d ≤ 2dmin

dmin has to be determined

19 of 26

November 30, 2000

dmin

f G being 1

)
cuits, otherwise expo-

f fixed probabilities ⇒ lin-
■

■

■

■

nen

■

ear
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

dmin ≥ 1 / 2n ⇒ exhaustive testing

the probability to detect l s-a-0 = the probability o

there may be several paths to propagate the error

dmin ≥ P(Gk = 1) (max?
P(l = 1) is computed in linear time for fanout-free cir

tial

probability intervals and cuts can be used instead o

 time

1
l

1 0

G

20 of 26

November 30, 2000

Difficult Faults

e a lower bound, d L

 with d f ≤ dL, the difficult

t or fanout branch)

e difficult fault becomes
■

■

■

fau

■

■

eas
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

sometimes N max is bounded (fixed) (testing time)

having a desired detection quality c, one can deduc

then the circuit has to be checked if there are faults

lts

among checkpoint faults (checkpoint = primary inpu

if found, then modify the circuit in such a way that th

ier to detect (design for testability)

21 of 26

November 30, 2000

uted Test Vectors

optimization goals (cov-

s, gathers statistical data

n the pdf of future test
■

era

■

■

abo

vec
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Non-Uniformly Distrib

turned out to be better for some circuits for various

ge, testing cost, cost of DFT modifications)

research for computing the pdf of the test vectors

adaptive RTG , monitors the test generation proces

ut the most successful test vectors and adjusts the

tors

22 of 26

November 30, 2000

inistic/Random TG

m Testing)

1
0

enerated tests will have A = 1
■

■

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

Combined Determ

RAPS (Random Path Sensitization)

SMART (Sensitizing Method for Algorithmic Rando

0

0
x

x
1

x 1

half of g

A

23 of 26

November 30, 2000

ATG Systems
■

■

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

requirements:

❚ fault coverage ↑

❚ test generation cost ↓

❚ test set size ↓

should it collapse faults?

24 of 26

November 30, 2000

 Systems Structure

ling? */
 is important */

PI */
rep

unt

rep

unt
ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

ATG

eat
Generate_test(t);
fault simulate t
v = value(t)
if acceptable(v) then add t to the test
il endphase1();

/* what about test schedu
/* redundancy elimination

eat
select a new target fault f /* better one close to the
try to generate a new test t for f
if successful

add f to the test
fault simulate f
discard the faults detected by f

fi
il endphase2();

25 of 26

November 30, 2000

est Set Compaction

nal faults are detected

nal fault to be tested
■

■

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

T

static compaction

01x 011 010
0x1
0x0 0x0 001
x01 x01

dynamic compaction

❚ try to set the unspecified PIs such that additio

❚ biggest problem is the selection of the additio

26 of 26

November 30, 2000

Other TG Methods

 the simultaneous ena-

e complicated, derived

re tested before (design

me with its gate level
■

■

blin

■

fr

fo

m

ATG for SSFs in Combinatorial Circuits
Traian Pop, Sorin Manolache

algebraic – impractical

extensions for tristate logic – problem: how to avoid

g of multiple bus drivers

TG for module-level circuits

❚ modules assumed to be fault free

❚ propagation and justification procedures mor

om the module’s function

❚ if the modules are not fault free, either they a

r testability) or after by replacing one module at a ti

odel

	Outline
	Introduction
	Deterministic Test Generation
	Fault-Oriented ATG
	Fault Independent ATG

	Random Test Generation
	Combined Deterministic and Random Test Generation

	ATG Systems
	Conclusions

	Introduction
	Testing
	off-line
	edge-pin
	stored-pattern
	full comparison of the output results

	General problems for TG:
	the cost of generating the test
	the quality of the generated test
	the cost of applying the test

	Deterministic Test Generation
	manual / automatic
	fault-oriented / fault-independent

	Fault-Oriented ATG
	targeted at certain fault within a fault universe given by a fault model
	Problems:
	fault activation
	error propagation

	Fault-Oriented ATG (cont’d)
	Fault activation: line-justification (recursively justifying the value of a gate output by values...
	Error propagation:
	composite logic values
	reduced to a set of line-justification problems

	Fault-Oriented ATG (cont’d)
	Fanout-free circuits:
	Circuits with fanout:

	Fault-Oriented ATG (cont’d)
	Solve()
	begin
	if(Imply_and_check() = FAILURE) then return FAILURE
	if(error at PO and all lines are justified)
	then return SUCCESS
	if(error can’t be propagated to a PO)
	then return FAILURE
	select an unsolved problem
	repeat
	begin
	select one untried way to solve it
	if(Solve() = SUCCESS) then return SUCCESS
	end
	until all ways to solve it have been tried
	return FAILURE
	end

	Fault-Oriented ATG (cont’d)
	D-frontier:
	used during error propagation process (D-drive)
	becomes void if no error can be propagated to a PO
	J-frontier:

	keeps track of unjustified lines
	Minimizing the number of incorrect decisions:

	maximum implications principle
	global implications
	reversing incorrect decisions
	error-propagation look-ahead

	Fault-Oriented ATG (cont’d)
	Algorithms:
	D-alg()
	begin
	if(Imply_and_check() = FAILURE) then return FAILURE
	if(error not at PO) then begin
	if(D-frontier = void) then return FAILURE
	repeat
	begin
	select an untried gate (G) from D-frontier
	c = controlling value of G
	assign c to every input of G with value x
	if(D-alg() = SUCCESS) then return SUCCESS
	end
	until all gates from D-frontier have been tried
	return FAILURE
	end
	if(J-frontier = void) then return SUCCESS
	select a gate (G) from J-frontier
	c = controlling value of G
	repeat
	begin
	select an input (j) of G with value x, assign c to j
	if(Solve() = SUCCESS) then return SUCCESS
	end
	until all inputs of G are specified
	return FAILURE
	end
	the D algorithm
	the 9-V algorithm
	single-path sensitization
	PODEM
	FAN
	etc.

	Fault-Oriented ATG (cont’d)
	Principles used for decisions:
	attack the most difficult problem first
	try the easiest solution first
	Measures:

	controllability: the relative difficulty of setting a line to a value
	observability: the relative difficulty of propagating an error from a line to a PO
	Cost functions:

	distance-based functions
	recursive cost functions
	fanout-based cost functions

	Fault-Independent ATG
	Goal: to produce a set of tests that detect a large set of SSFs without targeting individual faults
	Critical-path TG algorithm:
	select a PO and assign it a critical value
	recursively justify any critical value on a gate output by critical values on the gate inputs
	! critical values are used instead of primitive values (complete specification)

	Fault-Independent ATG (cont’d)
	Critical-path TG for circuits with reconvergent fanout:
	conflicts
	self-masking
	multiple-path sensitization
	overlap among PO cones
	Fault-oriented TG vs. Fault-independent TG:

	fault-oriented TG needs an additional simulation step to detect SSFs
	using critical-path TG, new tests can be generated starting from already existing ones
	fault-independent algorithms cannot identify undetectable faults

	Random Test Generation
	do not target a particular fault
	random test vectors are applied and one hopes to detect as many faults as possible

	Comparison
	advantages:
	low test generation cost
	test vectors usually generated on-the-fly (no need for test vector storage)

	disadvantages:
	long test sequence (approx. 10 times longer than deterministically generated tests)
	high test application cost

	Quality Measures
	test quality – tN – the probability to detect all possible faults after applying N random tests
	N-step detection probability of f – dfN – the probability to detect fault f after applying N rand...
	detection quality – dN – the probability to detect the most difficult to detect fault after apply...

	Test Length (1)
	usually, one is interested in how long a test sequence should be in order to achieve a detection ...
	simulation too expensive
	if N tests detect the most difficult to detect fault with probability c, then they will detect an...

	Test Length (2)
	dN ³ c, N = ?
	tN ³ c, N = ?
	dmin has to be determined

	dmin
	dmin ³ 1 / 2n ﬁ exhaustive testing
	the probability to detect l s-a-0 = the probability of G being 1
	there may be several paths to propagate the error
	P(l = 1) is computed in linear time for fanout-free circuits, otherwise exponential
	probability intervals and cuts can be used instead of fixed probabilities ﬁ linear time

	Difficult Faults
	sometimes Nmax is bounded (fixed) (testing time)
	having a desired detection quality c, one can deduce a lower bound, dL
	then the circuit has to be checked if there are faults with df £ dL, the difficult faults
	among checkpoint faults (checkpoint = primary input or fanout branch)
	if found, then modify the circuit in such a way that the difficult fault becomes easier to detect...

	Non-Uniformly Distributed Test Vectors
	turned out to be better for some circuits for various optimization goals (coverage, testing cost,...
	research for computing the pdf of the test vectors
	adaptive RTG, monitors the test generation process, gathers statistical data about the most succe...

	Combined Deterministic/Random TG
	RAPS (Random Path Sensitization)
	SMART (Sensitizing Method for Algorithmic Random Testing)

	ATG Systems
	requirements:
	fault coverage �
	test generation cost Ø
	test set size Ø

	should it collapse faults?

	ATG Systems Structure
	repeat
	Generate_test(t);
	fault simulate t
	v = value(t)
	if acceptable(v) then add t to the test
	until endphase1();
	/* what about test scheduling? */
	/* redundancy elimination is important */
	repeat
	select a new target fault f /* better one close to the PI */
	try to generate a new test t for f
	if successful
	add f to the test
	fault simulate f
	discard the faults detected by f
	fi
	until endphase2();

	Test Set Compaction
	static compaction
	dynamic compaction
	try to set the unspecified PIs such that additional faults are detected
	biggest problem is the selection of the additional fault to be tested

	Other TG Methods
	algebraic – impractical
	extensions for tristate logic – problem: how to avoid the simultaneous enabling of multiple bus d...
	TG for module-level circuits
	modules assumed to be fault free
	propagation and justification procedures more complicated, derived from the module’s function
	if the modules are not fault free, either they are tested before (design for testability) or afte...

	ATG for SSFs in Combinatorial Circuits
	Traian Pop Sorin Manolache
	trapo@ida.liu.se sorma@ida.liu.se

