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EVER-INCREASING EMBEDDED-SYSTEM
design complexity combined with a very
tight time-to-market window has revolution-
ized the embedded-system design process.
The concurrent design of hardware and soft-
ware has displaced traditional sequential de-
sign. Further, hardware and software design
now begins before the system architecture
(or even the specification) is finalized. Sys-
tem architects, customers, and marketing de-
partments develop requirement definitions
and system specifications together. System
architects define a system architecture con-
sisting of cooperating system functions that
form the basis of concurrent hardware and
software design.

Interface design requires the participation
of both hardware and software developers.
The next step integrates and tests hardware
and software—this phase consists of many
individual steps. Reusing components tak-
en from previous designs or acquired from
outside the design group is a main design
goal to improve productivity and reduce de-
sign risk.

Figure 1 shows the structure of a design
process, highlighting the hardware and soft-
ware design tasks. A concurrent design start-
ing with a partially incomplete specification
requires close cooperation of all participants
in the design process. Hardware and soft-
ware designers and system architects must
synchronize their work progress to optimize
and debug a system in a joint effort. The ear-

ly discovery of design faults, a prerequisite
for hitting the market window, is a central
requirement to that cooperation. 

A heavy burden is placed on the system
architect, who must make decisions based
on predicted technology data. To this end,
reliable design estimates are essential. To-
day, such estimates are based on experience
and reused components.

Reuse depends on libraries. Libraries of
system functions have a higher reuse poten-
tial than libraries of physical components
with a fixed layout (they become obsolete
as technology progresses). The challenge is
to support the migration of system functions
between different technologies and between
hardware and software without a redesign.

What I have described thus far is already a
hardware-software codesign process to some
extent, but it still lacks a unified approach.
This unified approach is the aim of comput-
er-aided hardware-software codesign.

Modeling and verification
A major problem in the design process is

synchronization and integration of hardware
and software design. This requires perma-
nent control of consistency and correctness,
which becomes more time consuming with
increasing levels of detail. In hardware-soft-
ware cosimulation, software execution is sim-
ulated as running on the target hardware.
Since gate- as well as register-transfer-level
(RTL) hardware simulations are too slow for
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practical software simulation, abstract execution models are
needed. 

For that purpose, the processor is modeled at a higher lev-
el of abstraction than the implemented hardware part. The
cosimulation problem1 lies in coupling the different mod-
els to make the hardware simulation sufficiently accurate. In
the worst case, the processor and hardware obtain arbitrat-
ed access to the same bus and memory. Accurate timing in
this situation requires adapted memory and bus models and
new simulation strategies. An example of this approach is
the cosimulation tool Seamless CVS from Mentor Graphics.
CVS uses a target processor model (an instruction set simu-
lator) and bus models that abstract processor interaction
with the memory depending on concurrent access from
hardware and software.

The main issue is the availability of a library containing
processor and memory models provided by the electronics
design automation (EDA) vendor or the core processor
provider.2 Library standardization efforts, such as VSI Alliance,
might be able to overcome some of the model compatibility
problems.

A more abstract approach reduces the processor execu-
tion to the pure functional behavior without timing and only
models the interface timing behavior. The software runs on
any target platform, preferably the host workstation or PC.
Software execution couples to the hardware model via a sim-
ulator-specific hardware-software communication protocol
that requires a designer to perform software enhancement.
Only hardware interface models are necessary, thus allevi-
ating the library problem. On the other hand, while the soft-
ware function and the interface timing can be analyzed,
timing and performance analyses are restricted to the hard-

ware part (for example, the tool Eaglei from Viewlogic).
The current cosimulation approaches work best on larger

ratios of internal processor operations to processor I/O op-
erations and hardware activity. In this case, the execution
time can be reduced by more than three orders of magni-
tude compared to complete RTL simulation, up to the full
host performance for the more abstract second approach.
Designs with application-specific processors (ASIPs) and
core processor extensions with special-function coproces-
sors are harder to deal with, due to the custom hardware’s
much higher activity. In this case, custom abstract cosimu-
lation models must be developed as part of the design
process. When models for these highly active parts become
available, the cosimulation process can continue as usual.

A second problem is the early detection of design faults.
The design team creates an abstract system model—a
cospecification simulated or formally verified for certain sys-
tem properties. Simulation requires an executable cospec-
ification, also called a virtual prototype. Numerous system
design tools from different application domains support
cospecification simulation, including STATEMATE, MatrixX,
MATLAB, COSSAP, or Bones and SPW.

Rapid prototyping with hardware-in-the-loop emulates the
physical behavior of a system and can replace virtual pro-
totyping. This proves necessary when simulation time dom-
inates design time. 

Executable specifications face several problems. Depend-
ing on the application domain and specification semantics,
they are based on different models of computation. Some sup-
port modeling and simulations of event-driven reactive sys-
tems, while others target dataflow systems. A combination
using both domains (for example, telecommunications) im-
plies simulation overhead. The inclusion of reused compo-
nents and functions that must match the input specification’s
level of abstraction remains a problem. Finally, virtual proto-
types do not cover most of the nonfunctional constraints and
objectives, such as power consumption or safety.

Synthesis
Industrial tools for system synthesis are not as developed

as modeling and analysis tools. On the software side, we can
use real-time operating systems (RTOSs) for load distribu-
tion and scheduling. Codesign, however, requires a closer
look at processes and communication. The second prob-
lem is code generation. Specialized architectures, such as
digital signal processors or microcontrollers, dominate the
embedded-system market due to their superior cost effi-
ciency—especially compared to modern general-purpose
processors.3 Special processor compilation, however, is in
many cases far less efficient than manual code generation.
Consequently, a considerable amount of assembly coding
in embedded systems is still observed.4
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Figure 1. Embedded-system design process.
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Even if compilation improved, there is still the problem
of generating efficient compliable code (such as C) from
abstract models. This problem can be solved for small re-
active systems with finite-state machine behavior and with
simple operations on data. However, as soon as more com-
plex data operations are required, the design space grows
tremendously and the design, when executed manually,
includes target-system-specific transformations. Good ex-
amples include memory optimization requiring target-
architecture-dependent loop transformations, optimized
word length selection, and process restructuring for fine-
grain load distribution. For example, C code developed for
the TI TMS320C6x is not optimized for running on Philips
TriMedia or MPACT processors. The problem is worse here
than with parallel compilers because of architecture spe-
cialization.5 Porting functions between hardware and soft-
ware implementation becomes particularly cumbersome.6

Fortunately, given a certain state of circuit technology,
the choice of hardware or software implementation is pre-
determined for many system parts. However, this border
moves with technological progress and new constraints.
Power minimization and increased flexibility requirements
drive this development.

To be competitive, an automated code generator must
cover a large design space using transformation rules, and
this far exceeds current techniques. Nevertheless, there are
many commercial C or VHDL code generators—such as
STATEMATE, MATLAB, or MatrixX—suitable for prototyp-
ing and acceptable for the final design. They are suitable in
cases of simply structured target architectures and low-to-
moderate cost efficiency and performance requirements.
Other tools restrict the processor types (usually to standard
microprocessors) and the language scope (for example, the
Cmicro code generator for the SDL tool suite of Telelogic).
Guaranteed timing behavior of the generated code is an-
other problem.

One can circumvent the code generation problem with li-
braries of predefined and parameterized code modules
adapted to an application. This of course requires a match-
ing of input to target system modules based on a large mod-
ule library. User-defined and library parts are then combined
with a suitable schedule. This corresponds to a partially au-
tomated design for a specific system domain. The COSSAP,
SPW, and Bones tools fall under this category, as well as the
Mentor Graphics DSP Station.

On the hardware side, we see a growing set of high-level
synthesis tools: the Behavioral Compiler of Synopsys, Mon-
et of Menor Graphics, and RapidPath of DASYS. While this
is a big step forward for cosynthesis, we still need to look at
problems with memory optimization, parallel heteroge-
neous hardware architectures, programmable hardware syn-
thesis and optimization, and communication optimization,

to name just a few. Similar to software synthesis, the design
space is still narrow when compared with a manual design.
Interface synthesis has been neglected for a long time in
commercial tools, and only recently have the first commer-
cial systems appeared. The CoWare system (as an example
of an interface synthesis generating both hardware and soft-
ware parts of a protocol) and the Synopsys Protocol Com-
piler (as an example of a hardware interface synthesis tool)
represent this group.

In summary, there are tools that reach a remarkable de-
gree of automation for specific applications yet do not ex-
ploit the design space to obtain an optimized solution. Other
tools create competitive designs, but only for very specific
problems using hardware or software component libraries,
leaving the rest of the design to be created and integrated
manually. Besides the integration effort, development of
such specific libraries ties up design capacity.

The current synthesis tool landscape leaves the impres-
sion of a patchwork of partial solutions that must be mixed
and matched by the designer. Portability is rudimentary at
best. The situation is certainly better than not having syn-
thesis tools, but parts can hardly be expected to grow to-
gether over time into a homogeneous system. Interestingly,
the current discussion on reusable intellectual property cir-
cuit functions focuses on circuit technology, library, and in-
terface compatibility issues. These logistical problems
sometimes seem to block the more fundamental design is-
sues discussed earlier.

Exploration and optimization
An integrated and coherent codesign system should cap-

ture the complete design specification, support design space
exploration with optimization based on this specification,
and, if possible, cosynthesize a selected design point. Re-
search has provided numerous contributions toward this
goal, but issues of completeness and design process inte-
gration still arise.7 Even push-button cosynthesis approaches
(which have been demonstrated for special applications and
architectures) can only solve part of the design problem.

Complete design capture
Some of the languages previously mentioned for exe-

cutable cospecifications in commercial systems and many
others (including  VHDL and C)5,8-10 can serve as input to the
codesign process. In general, systems are described as a set
of communicating and concurrent entities activated at a giv-
en time or upon arrival of events or data. The name “process”
denotes such an entity. Upon activation, the process exe-
cutes a function, thereby changing or generating output data
and reading or consuming input data. Depending on the
language, these functions can range from very simple, logi-
cal operations to very large, high-level programs.

.
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To be complete, the input description must contain all
design constraints, such as timing requirements. It can also
contain information such as preselected components or cost
functions to guide the design space exploration process. 

At this point, the design might still not be fully captured.
Think of a telecommunications system used in a larger net-
work or a video coder optimized for maximum average per-
formance. In these cases, we need additional information
about process execution and input/output data (to analyze
the internal execution paths of the processes). Current cosyn-
thesis systems expect either profiling data or execution traces.
These data are also part of the design description.11

Global optimization
The high-level and general views of cospecification as an

input to the cosynthesis process sufficiently identify some
of the main problems in design space exploration and op-
timization. First, the activation rules of the processes are
modified for implementation. A process, ready for execu-
tion upon arrival of an external event, might eventually be
executed by interrupt or periodically, polling for the event.
The introduction of buffers delays process execution, thus
widening the design space; it also supports pipelining. There
is a rich variety of solutions originating  in real-time software
development.12 Design constraints, mainly the required tim-
ing, limit feasible solutions. As a consequence, the input and
target models of computation can be quite different, affect-
ing the individual components as well as their interaction.
This requires global system optimization.

Global optimization has become more complicated due
to the combination of (static) data flow and reactivity in a sin-
gle application. Take an MPEG2 encoder generating a fixed
bit rate signal to be transmitted over a communication chan-
nel with a very small receiver buffer, as used in digital video
broadcasting.13 In this application, adaptive video coding that
controls the buffer level is useful.13 We can still describe the
system as a dataflow network, but data flow is controlled with
a tight feedback loop that limits pipelining, communication,
or internal buffering in the encoder.

Secondly, the input process size (granularity) is appro-

priate for system function description but not necessarily for
design space exploration and hardware-software imple-
mentation. Also, the designer might want to reuse system
parts with processes that were optimized to another design
and thus must be retargeted.

Process transformation
Before discussing the optimal process size for design

space exploration and optimization, let’s review some of the
process transformation problems and techniques. With
process transformation, we can partition and merge process-
es, which in turn requires communication transformation.
Explicit or implicit communications occur in the abstract
system specification used as input (the cospecification). As
an example, concurrent finite-state machine variables, by
definition, are globally accessible and arbitrarily referenced.
Referencing variables implies communication, which is in-
serted when the concurrent finite-state machines are dis-
tributed over several components. 

Communication transformation. Figure 2 shows the
problem of manual communication transformation. Except
for simple finite-state machine processes, a process general-
ly contains one or several threads, each consisting of basic
blocks with a sequence of statements. They all work on a set
of local data. If communication between processes is re-
stricted to explicitly specified process communication (like
send or receive statements), then no process can access an-
other process’ data except through communication state-
ments. A cosynthesis system can easily determine the required
communication actions if the processes are assigned to dif-
ferent components—the communication statements directly
map to physical communication actions. At a finer partition-
ing granularity, dataflow analysis is required to find the re-
quired communication.13-15 Resolving variable array indices
becomes important in breaking up processes, since array ac-
cesses often occur in loops with optimization potential.15 An-
other approach avoids breaking up processes and asks the
user to write several versions of a communicating processes
system, but this leads to verbose process descriptions and
places the burden of process transformation on the designer.

If the individual process contains concurrent elements,
then inserting communication statements is generally in-
sufficient. State charts, for example, assume synchronous
operation and broadcasting. If state charts are partitioned
and communication is inserted, synchrony must be checked
and adapted.16

Process merging. This high-level transformation prob-
lem is mostly postponed to back-end cosynthesis tasks,
namely scheduling, high-level synthesis, and software code
generation. The reduction in communication overhead

if loop
Process

Basic block

Statement

LocaldataExplicitcommunication Localdata

Figure 2. Communication in process partitioning.
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when merging processes is estimated as a preprocessing step
to cosynthesis, typically just counting variables to be com-
municated. This can only be done for a subset of all com-
binations, such as nearest neighbors in the control or data
flow. Also, communication overhead grows with finer par-
titioning. The overhead declines later by using shared mem-
ory and by communicating pointers to blocks of variables
rather than communicating all the variables directly;17 how-
ever, the high-level transformation problem remains. To en-
able maximum memory optimization, partitioning of the
local variable set and the larger array variables must com-
plement fine-grain partitioning. This aspect still requires in-
tensive investigation, since it is highly relevant in data signal
processor (DSP) loop optimization.

Figure 3 summarizes the granularity dilemma. Ap-
proaches at the finest level of granularity (used for ASIPs)
do not exploit the full design space.

The bulk of cosynthesis approaches for reactive systems
with short process execution times use the input processes
without changes,9,18,19 thus saving the partitioning step.
Cosynthesis approaches for systems with higher computa-
tion requirements provide most of the contributions to
process partitioning. They work mostly on the basic block
level;15,20 other systems select the function level as a com-
promise, since a function call still exposes the communi-
cated parameters, saving the analysis step.

Because most system designs are not extreme, it is useful
to adapt the level of granularity to the application21 and to
the target architecture. So far, little work has been done in
granularity adaptation.

High-level transformations are also important to retarget
a process (for example, from a RISC to a DSP with a com-
plex memory system). At the current state of research (and
probably for some time to come), this transformation step
needs designer interaction.

Architecture definition
Many embedded systems consist of a complex, hetero-

geneous set of standard processors, ASIPs, coprocessors,
memories, and peripheral components. The designer typi-
cally preselects the architecture to reduce the design
space.10,12 It can also be hard-coded as a cosynthesis tem-
plate—examples include processor-coprocessors,9,15,20 VLIW-
ASIPs,22 or single buses with shared memory.23 There are a
few exceptions24,25 where the search space is controlled by
using clustering (for example, according to deadlines or by
string encoding in a genetic algorithm).

Design space exploration
At this point, we have defined the architecture, and the in-

put system of processes has been analyzed and adapted. The
allocation of processes to components and (complex) vari-

ables to memory, the mapping of abstract process commu-
nication to physical communication, and the scheduling of
processes sharing the same resource remain as problems.

Hardware-software partitioning. The architecture de-
termines the cosynthesis approach. The main difference ap-
pears between ASIPs (requiring a fine-grain, statement-level
approach) and processor-coprocessor systems (working on
at least a basic-block level). 

ASIPs hold a large market share in markets where the ex-
tra design effort is justified. Given an application, the prob-
lem of ASIP design is to derive an appropriate processor
architecture that can implement application-specific soft-
ware. For that purpose, one must adapt compilers, libraries,
operating system functions (if any), and the simulation and
debugging environment. Specialization often leads to ir-
regular register sets and interconnects, which makes com-
pilation and compiler adaptation hard but not infeasible.
Most of the work considers hardware design and software
generation as separate tasks, just as in quantitative general-
purpose processor design.3

Approaches combining both tasks are mostly based on
standard compilers and try to group three address code state-
ments into complex instructions, thereby adapting the data
path22 and exploring only a part of the overall ASIP design
space.5

Another ASIP design automation approach with a fixed
single-processor template (soft core) uses the instruction
word length as a main user-defined parameter to optimize
program memory size.26 In contrast, design space explo-
ration for more complex embedded ASIPs with numerous
free parameters, such as multiprocessor DSP architectures,
is based on user-driven quantitative exploration.27

Standard processors lead to a different set of cosynthesis
problems. Here, the software development environments
are given, and the application splits into a part implement-
ed on the processor and a part implemented in application-
specific hardware (coprocessors). From a tool perspective,

Granularity
Process
Function/global data

Basic block/local data set
Statement/variables

Analysis
No (explicit)

Globaldata flow
Global and localdata flow
Global and localdata flow

Optimizationpotential Communicationoverhead Designeffort

Figure 3. Granularity effects.
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this corresponds to a clear separation in application func-
tions: some are synthesized by hardware synthesis tools and
others are handled by software development tools. This was
the original meaning of the term hardware-software parti-
tioning. In the case of ASIPs, hardware and software syn-
theses are applied to the same application functions in
sequence, but hardware and software are eventually dis-
joined. To highlight the differences, we use the terms verti-
cal hardware-software partitioning and horizontal
hardware-software partitioning, as shown in Figure 4. 

The role of hardware-software partitioning is the optimized
distribution of system functions to software and hardware
components. There is a general similarity to the scheduling
problem in real-time operating systems (RTOSs).28 Time con-
straints must be regarded, context switching is required, and
we need process communication and synchronization.

However, there are major differences. First, the design
space is much larger, since the hardware architecture is not
finalized and includes components with vastly different
properties that software drivers encapsulate and substitute
in RTOSs. In hardware-software partitioning, time constraints
can range to less than a microsecond—considerably below
typical time constraints in an RTOS, giving high importance
to communication and context switch overhead. 

Communication synthesis. This step must map com-
munication in the input description to physical communi-
cation in the target architecture. Target system hardware
and software components can communicate via shared
memory, or they can exchange messages. There are many
different media: point-to-point, switched channels, buses,
or larger networks. The channels can be buffered or non-
buffered. There are many protocols, including packet trans-

fer or split transaction. Cost and bandwidth vary widely. In
other words, communication design space resembles the
component design space in size.

Given the input and output communication models, we
can identify three major tasks: communication channel se-
lection, communication channel allocation, and commu-
nication channel scheduling.

Currently, no tool can cover the whole variety of com-
munication mechanisms.25 Communication channel selec-
tion is mostly manual or predefined, with few exceptions.
Communication channel allocation is mostly treated as a
consequence of process allocation. Tools with static non-
preemptive process scheduling regularly perform commu-
nication scheduling. In these cases, static communication
scheduling complements process scheduling to obtain an
overall fixed schedule. 

Hardware-software scheduling. Scheduling enables
hardware and software resource sharing. On the process lev-
el, there are several scheduling policies derived from
RTOSs,28 for example, static table-driven, priority-based pre-
emptive scheduling, and various other dynamic plan-based
policies that have not yet been applied to codesign.

Priority-based preemptive scheduling is the classic ap-
proach of commercial RTOSs. Process priorities are deter-
mined a priori (static priority) or at runtime (dynamic
priority). They are used in reactive as well as dataflow sys-
tems with sufficiently coarse process granularity. Dynamic
priority assignment requires a runtime scheduler process
that assigns priorities according to process deadlines. This
increases component utilization, in particular for reactive
systems, but makes timing verification harder.

In static (table-driven) scheduling, the order of process
execution is determined at design time. It has been used for
periodic process scheduling, where a static schedule exists
for the least common multiple (LCM) of all process peri-
ods.29 The process sequence can be stored in a schedule
table, but the processes can also be merged into a sequence
to use the compiler (or the synthesis tool) to minimize con-
text switching overhead,30 usually at the cost of a larger pro-
gram. This is the domain of small processes, where context
switching times are significant compared with the process
execution times. Static scheduling can also combine with
preemptive scheduling. Processes communicating with sta-
tic data flow triggered by the same event can be clustered
and scheduled statically, while the process clusters are
scheduled preemptively. This allows for local dataflow op-
timization, including pipelining and buffering.

In recent years, static scheduling has also been used in
event-driven reactive systems. A first approach is to adapt the
sequence of executions in a static schedule to the input events
and data.17 A second approach is to collect all parts of a process
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activated by the same event in one static thread of operations,31

which can then be statically scheduled into a single process.
Both scheduling approaches can be combined and used as a
basis for process merging in event-driven systems.

Complex embedded architectures require distributed
scheduling policies for hardware and software parts such as
scheduling, which is optimized for several communicating
hardware and software components. Communication, es-
pecially in context with processing, has drawn little atten-
tion in RTOS research or has been treated pessimistically.12

This treatment is not acceptable for highly integrated em-
bedded systems, where communication and buffering have
a major impact on performance, power consumption, and
cost. Global approaches to distributed scheduling of com-
municating processes have been proposed for preemptive12

and static scheduling.29

Instead of a uniform scheduling policy, components or
subsystems may use different policies, especially when com-
bining different but compatible system types; but the policies
must be compatible. An example is the TOSCA system.9 It
uses static priority scheduling for software implementation
of concurrent finite-state machines, while the hardware side
does not share resources, thus avoiding hardware schedul-
ing. In the POLIS system,8,18 software scheduling is even less
constrained. A more complicated approach32 proposes static
priority (rate monotonic)28 software scheduling combined
with interrupt-activated, shared-hardware coprocessors in
a robot control system. Notably, out of these global policies,
only the static uniform approach supports global buffering
between components, which is explained by the complex
behavior of preemptive scheduling.

Exploiting process semantics, such as mutually exclusive
process execution and conditional communication,32,33 can
improve scheduling efficiency. In static scheduling, this
knowledge can optimize utilization,33 while in preemptive
scheduling, it can help to verify timing constraints and to
optimize communication.

A major problem of static scheduling is data-dependent
process execution found not only in software execution, but
also in hardware with conditional control flow. Since non-
preemptive scheduling must assume worst-case behavior,
data-dependent timing leads to lower average system perfor-
mance. One approach is to resort to dynamic scheduling with
local buffers, even in purely static dataflow applications.34

The variety of process models of computation and sched-
uling policies (and their possible combinations) is a chal-
lenge to design space exploration and cosynthesis. It
requires design representations that allow the mixing and
matching of different models of computation for schedul-
ing. Software reuse and object-oriented design imply that
critical system parts that the designer knows in detail will
combine with less familiar legacy code. 

Memory optimization. Memory is becoming a domi-
nant cost factor in integrated systems and often bottlenecks
system performance. Allocation of data to memory can, in
principle, be combined with hardware-software partition-
ing and process scheduling.35 Memory optimization, how-
ever, drastically increases the number of design parameters
beyond the assignment of data variables to memories and
accesses to memory ports. Multidimensional data arrays can
be rearranged in memory by index transformations to im-
prove memory use or simplify array index generation.36 Loop
transformations can minimize memory accesses and size. 

The optimal access pattern is technology dependent.
SDRAM, for example, requires efficient burst access to rows.
This influences memory allocation and transformations, es-
pecially in cases of memory hierarchies. Past research has ex-
amined program cache optimization exploiting the program
structure and profiling results to minimize cache misses at the
cost of extra main memory space.37 Other work considers op-
timization for architectures with memories of different types,
such as a combination of scratch-pad SRAM and DRAM.38 Dy-
namic memory allocation is another problem that we have
only recently addressed in hardware-software codesign.39

Estimation. All optimization steps discussed must ac-
knowledge final implementation data, such as the execu-
tion time of a process when executed on a specific processor
or a coprocessor, and the required sizes of program and data
memory. At the time of cosynthesis, these data are not yet
available, except for reused system parts. All other hardware
and software data must be estimated.

One way to obtain such data is to implement each single
process with the target synthesis tool or compiler, and then
run them on the (simulated) target platform or use formal
analysis.11 Since efficient synthesis tools and compilers are
not available for all target architectures, this approach does
not cover the whole design space. In practice, tool license
problems could arise, since a company might not want to ac-
quire tools for a large range of possible processors just for
the sake of design space exploration.

A second approach is to estimate the results using a simpli-
fied but generic version of the synthesis tools, such as a list
scheduler or a path-based scheduler, in case the data path ar-
chitecture isn’t completely familiar.17

Notably, neither of the two approaches is fully accurate,
since both, in general, cannot precisely predict the savings
in cost and timing when several processes share the same
hardware component,15 which is the standard case in design.
Analyzing all potentially useful combinations of processes
and resources, however, is prohibitively time consuming ex-
cept for critical system parts.

Despite these limitations, the current estimation tech-
niques are already much closer to real implementation than

.
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simple back-of-the-envelope estimations.

Exploration and cosynthesis process
Now, we can put the pieces together to propose an inte-

grated computer-aided design space exploration and cosyn-
thesis approach. Figure 5 shows that the system architecture
development process of Figure 1 has been detailed into the
process transformation, hardware-software partitioning, and
scheduling steps. System analysis provides system data de-
rived from the executable cospecification (for example, pro-
filing data). Process transformation prepares the specified
system for the exploration process by matching the differ-
ent parts of the cospecification that may be described in dif-
ferent languages and models of computation.

The system architect can apply high-level transformations
to this description to better match the process to the in-
tended memory model. Computer support for high-level
transformations will improve over time, but there will always
be a difficult-to-automate, creative part. For this reason, we
should leave the architecture selection to the system archi-
tect and the designers, who can then explore different
alternatives, possibly iterating over the high-level transfor-
mation process.

In the next phase, the system architect or the design team
can control the design space exploration process by chang-
ing the selected components (processor types, memories, co-

processors, peripheral units),
communication channels,
the scheduling policy, or
whatever parameters the
cosynthesis system supports.
Next, the cosynthesis tools
partition and schedule the
system and provide feedback
on the resulting system data.
The design space exploration
process should be complet-
ed by hardware and software
synthesis to validate the esti-
mations.

A fully automated hard-
ware and software synthesis
process (including interface
synthesis) requires flexible
and powerful high-level syn-
thesis tools supporting com-
ponent reuse as well as
compilers with excellent
code generators. Since both
are not readily available for
all architectures, manual de-
sign support of these back-

end steps will still be necessary to obtain optimized results
in a large design space. This sounds like bad news for an au-
tomated design process, but design space exploration does
not depend on a complete synthesis of all parts. Instead, it
can exploit data for those parts of a design in which efficient
compilers and synthesis tools or reused hardware and soft-
ware components are available, and use estimations for the
remaining parts. Cosimulation can then evaluate the system
timing, where abstract models can be used for the nonim-
plemented parts.

This approach has many advantages:

n The design space exploration process is split into two
loops with increasing turnaround time and accuracy.
The first loop ends with partitioning and scheduling; the
second one includes part of the hardware and software
synthesis. Estimation precision can be increased by man-
ual interaction. Using both loops, precision can gradu-
ally be improved in the course of the design process,
increasing result reliability and avoiding unnecessary
precision requirements in the early design phases. The
short iteration time of the first loop allows iteration over
the cospecification parameters. Benner and Ernst40 have
demonstrated how the impact of a specified maximum
bus throughput on the optimum architecture of a design
could be investigated within a few hours.

Hardware-softwarepartitioning and scheduling

Systemarchitect

Software synthesisHardware synthesis

Evaluation (cosimulation)

Customer/marketing +system architect
Cospecification

Results

Cosynthesis

System analysis

Processtransformations Reused functionsand processes

High-leveltransformation

Hardware architectureand components
Reused andmanually designedhardware andsoftware components

Softwaredesigner

Hardwaredesigner

Design spaceexplorationcontrol

Figure 5. Design space exploration process.

.



APRIL–JUNE 1998 53

n Reuse of components is supported at different levels of
abstraction.

n The intermediate results of process transformation and
hardware-software partitioning and scheduling can be
used for the final design, and therefore, there is little
overhead.

n The design process can quickly respond to changes in
the specification.

n The design process can profit from an increasing set of
intellectual property libraries as well as from progress in
hardware synthesis and compiler technology, without
a change in the overall methodology.

The many interfaces in Figure 5 give an idea of the work
required to integrate the research results into an easy-to-use
and extendible industrial design environment. I think it’s ev-
ident that this effort would be well spent.

COMPUTER-AIDED HARDWARE-SOFTWARE CODESIGN has
made considerable progress in the past few years. The great-
est demand is currently in system analysis, including cosim-
ulation, coverification, and (executable) cospecification,
which is obvious when considering the current design
process. Cosynthesis and computer-aided design space ex-
ploration are only beginning to reach the industrial design
practice. Using a possible design space exploration scenario,
we have identified the major problems of this emerging EDA
field and have reviewed the results of ongoing research.
Highly automated and optimizing cosynthesis approaches
have been demonstrated, but for a limited class of archi-
tectures and applications. We have, however, seen how the
results can contribute to an advanced interactive design
space exploration process for a much wider range of archi-
tectures. Reuse at different levels of the design process and
design migration between different implementation tech-
nologies can occur without the need for a complete au-
tomation of design steps.
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