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Embedded systems generally interact in some way with the outside world. This may involve
measuring sensors and controlling actuators, communicating with other systems, or interact-
ing with users. These functions impose real-time constraints on system design. Verification of
these specifications requires computing an upper bound on the worst-case execution time
(WCET) of a hardware/software system. Furthermore, it is critical to derive a tight upper
bound on WCET in order to make efficient use of system resources.

The problem of bounding WCET is particularly difficult on modern processors. These proces-
sors use cache-based memory systems that vary memory access time based on the dynamic
memory access pattern of the program. This must be accurately modeled in order to tightly
bound WCET. Several analysis methods have been proposed to bound WCET on processors
with instruction caches. Existing approaches either search all possible program paths, an
intractable problem, or they use highly pessimistic assumptions to limit the search space. In
this paper we present a more effective method for modeling instruction cache activity and
computing a tight bound on WCET. The method uses an integer linear programming
formulation and does not require explicit enumeration of program paths. The method is
implemented in the program cinderella and we present some experimental results of this
implementation.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of
Systems—Modeling techniques

General Terms: Performance

1. INTRODUCTION
The execution time of a program can often vary significantly from one run
to the next on the same system. Even given a known program and a known
system, the actual execution time depends on the input data values and the
initial state of the system. In many cases it is essential to know the worst-
case execution time (WCET) for a hardware/software system. In hard
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real-time systems, the programmer must guarantee that the WCET satis-
fies the timing deadlines. Many real-time operating systems rely on this for
process scheduling. In embedded system designs, the WCET of the software
is often required for deciding how hardware/software partitioning is done.

The actual WCET of a program cannot be determined unless we simulate
all possible combinations of input data values and initial system states.
This is clearly impractical due to the large number of simulations required.
As a result, we can only obtain an estimate on the actual WCET by
performing a static analysis of the program. For it to be useful, the
estimated WCET must be tight and conservative such that it bounds the
actual WCET without introducing undue pessimism.

WCET analysis can be divided into two components: program path
analysis, which determines the sequence of instructions to be executed in
the worst-case scenario, and microarchitecture modeling, which models the
underlying hardware systems and computes the WCET of a known se-
quence of instructions. Both components are important in determining
tight estimated WCETs.

The program path analysis has been discussed extensively in our previ-
ous work [Li and Malik 1995]. It deals with computing the estimated
WCET of a program efficiently and making use of the user-provided
program path annotations to eliminate infeasible program paths. We
observed that while the user annotations do tighten the estimated WCET
significantly, a large amount of pessimism still exists in the estimated
WCET because of the simple microarchitecture modeling.

Microarchitecture modeling is particularly difficult for modern micropro-
cessors. These processors usually include pipelined instruction execution
and cache-based memory systems. These features speed up the typical
performance of the system, but complicate timing analysis. The exact
execution time of an instruction depends on many factors and varies more
than in the previous generation of microprocessors. The cache memory
system is particularly difficult to model and is becoming the dominant
factor in the pessimism. Incorporating accurate cache modeling into the
worst– case timing analysis is essential in order to effectively use modern
processors in real-time systems. Our goal is to devise an instruction cache
modeling method that accurately represents cache activity and provides
enough information for the timing analysis tool to tightly bound the WCET.

We propose a method to model instruction cache memory. Unlike other
cache analysis methods, it does not require explicit program path enumer-
ation, yet it provides a tighter bound on the worst-case cache miss penalties
than other practical estimation methods that we know of. In this paper, we
limit our method to model a direct-mapped instruction cache. However, it
can be extended to handle set associative instruction cache memory.

This paper is organized as follows: We first discuss some related work in
this area in Section 2. Then, in Section 3, we summarize our previous work
in program path analysis. In Section 4 and 5, we describe how this work is
extended to model direct-mapped instruction cache. Implementation issues
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are discussed in Section 6. This is followed by the experimental results
shown in Section 7. Finally, we present the conclusions in Section 8.

2. RELATED WORK

The problem of finding a program’s worst-case execution time is in general
undecidable and is equivalent to a halting problem. This is true even with a
constant-access-time instruction memory. Kligerman and Stoyenko [1986],
as well as Puschner and Koza [1989], listed the conditions for this problem
to be decidable. These conditions are bounded loops, absence of recursive
function calls, and absence of dynamic function calls. These researchers,
together with Mok et al. [1989] and Park and Shaw [1992], have proposed a
number of methods to determine the estimated WCET. These methods
assume a simple hardware model such that the execution time of every
instruction in the program is a constant equal to the instruction’s worst-
case execution time. No cache analysis is performed.

The presence of cache memory complicates the WCET analysis signifi-
cantly. The reason is that to determine the worst-case execution path, the
execution times of individual instructions are needed. Yet without knowing
the worst-case execution path, the cache hits and misses of instructions,
and hence the execution times of the instructions, cannot be determined. As
a result, program path analysis and cache memory analysis are interre-
lated.

Several WCET analyses with direct-mapped instruction cache modeling
methods have recently been proposed. Liu and Lee [1994] noted that a
sufficient condition for determining the exact worst-case cache behavior is
to search through all feasible program paths exhaustively. This becomes an
intractable problem whenever there is a conditional statement inside a
while loop, which unfortunately happens frequently. Lim et al. [1994], who
extended Shaw’s timing schema methodology [Shaw 1989] to incorporate
cache analysis, also encountered a similar problem. To deal with this
intractable problem, the above researchers trade-off cache prediction accu-
racy for computational complexity by proposing different pessimistic heu-
ristics. Even so, the size of the program for analysis is still limited. Arnold
et al. [1994] proposed a less aggressive cache analysis method. They used
flow analysis to identify the potential cache conflicts and classified each
instruction as first miss, always hit, always miss, or first hit categories.
This results in fast but less accurate cache analysis. Rawat [1993] handled
data cache performance analysis by using graph-coloring techniques. How-
ever, this approach had limited success even for small programs. A severe
drawback of all the methods above is that they do not accept any user
annotations describing infeasible program paths, which are essential in
tightening the estimated WCET.

Explicit path enumeration is not a necessity in obtaining a tight esti-
mated WCET. An important observation here is that the WCET can be
computed by methods other than path enumeration. We propose a method
that determines the worst-case execution counts of the instructions and,
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from these counts, computes the estimated WCET. The main advantage of
this method is that it reduces the solution search space significantly.
Further, as we show in Section 4, only minimal necessary sequencing
information is kept in performing the cache analysis. No path enumeration
is needed. The method supports user annotations that is at least as
powerful as Park’s Information Description Language (IDL) [Park 1992]
and, at the same time, computes the cache memory activity that is far more
accurate than Lim’s work. To the best of our knowledge, our research is the
first to address both issues together.

3. ILP FORMULATION

Our previous work [Li and Malik 1995] focused on path analysis given a
simple microarchitecture model, which assumes that every instruction
takes a constant time to execute. Instead of searching all program paths,
the path analysis analytically determines the dynamic execution count of
each instruction under the worst-case scenario. There are similarities
between our analysis technique and the one used by Avrunin et al. [1994]
in determining time bounds for concurrent systems.

Since we assume that each instruction takes a constant time to execute,
the total execution time can be computed by summing up the product of
instruction counts by their corresponding single execution times. Further-
more, since the instructions within a basic block are always executed
together, their execution counts must be the same. Hence, they can be
considered as a single unit. If we let variable xi be the execution count of a
basic block Bi, and constant ci be the execution time of the basic block, then
the total execution time of the program is given as

Total execution time 5 O
i51

N

cixi, (1)

where N is the number of basic blocks in the program. Clearly, xis must be
integer values. The possible values of xi are constrained by the program
structure and the possible values of the program variables. If we can
represent these constraints as linear inequalities, then the problem of
finding the worst-case execution time of a program is transformed into an
integer linear programming (ILP) problem which can be solved by many
existing ILP solvers.

The linear constraints are divided into two parts: (1) program structural
constraints, which are derived automatically from the program’s control
flow graph (CFG), and (2) mprogram functionality constraints, which are
provided by the user to specify loop bounds and other path information. The
construction of these constraints is best illustrated by an example shown in
Figure 1, in which a conditional statement is nested inside a while loop.
Figure 1(ii) shows the CFG. Each node in the CFG represents a basic block
Bi. A basic block execution count, xi, is associated with each node. Each
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edge in the CFG is labeled with a variable di which serves both as a label
for that edge and as a count of the number of times that the program
control passes through that edge. Analysis of the CFG is equivalent to a
standard network-flow problem. Structural constraints can be derived from
the CFG from the fact that, for each node Bi, its execution count is equal to
the number of times that the control enters the node (inflow) and is also
equal to the number of times that the control exits the node (outflow). The
structural constraints extracted from this example are

d1 5 1 (2)

x1 5 d1 5 d2 (3)

x2 5 d2 1 d8 5 d3 1 d9 (4)

x3 5 d3 5 d4 1 d5 (5)

x4 5 d4 5 d6 (6)

x5 5 d5 5 d7 (7)

x6 5 d6 1 d7 5 d8 (8)

x7 5 d9 5 d10. (9)

Here, the first constraint (2) specifies that the code fragment is to be
executed once. The structural constraints do not provide any loop bound
information. This information is provided by the user by using functionality
constraints. In this example, we note that since variable k is positive before
the program control enters the loop, the loop body will be executed between
0 and 10 times each time the loop is entered. The constraints to specify this
information are

0x1 # x3 # 10x1. (10)

The functionality constraints can also be used to specify other path infor-
mation. For example, we observe that the else statement (B5) can be
executed at most once inside the loop. This information can be specified as

x5 # 1x1. (11)

All of these constraints— (2) through (11)— are passed to the ILP solver
with the goal of maximizing the cost function (1). The ILP solver returns a
bound on the worst-case execution time and the execution counts of the
basic blocks.
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4. DIRECT-MAPPED INSTRUCTION CACHE ANALYSIS

To incorporate cache memory analysis into our ILP model, shown in the
previous section, we need to modify the cost function (1) and add a list of
linear constraints, denoted cache constraints, representing cache memory
behavior. These are described in the following sections.

4.1 Modified Cost Function

With cache memory, each instruction fetch will result in either a cache hit
or a cache miss, which may in turn result in two very different instruction
execution times. The simple microarchitecture model that each instruction
takes a constant time to execute no longer models this situation accurately.
We need to subdivide the original instruction counts into counts of cache
hits and misses. If we can determine these counts, and the hit and miss
execution times of each instruction, then a tighter bound on the execution
time of the program can be established.

As in the previous section, we can group adjacent instructions together.
We define a new type of atomic structure for analysis, the line-block or
simply l-block. An l-block is defined as a contiguous sequence of code within
the same basic block that is mapped to the same cache set in the instruc-
tion cache. In other words, the l-blocks are formed by the intersection of
basic blocks with the cache set line size. All instructions within a l-block
are always executed together in sequence. Further, since the cache control-
ler always loads a line of code into the cache, these instructions are either

Fig. 1. An example code fragment showing how the structural and functionality constraints
are constructed.
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in the cache completely or not in the cache at all. These are denoted as a
cache hit or a cache miss, respectively, of the l-block.

Figure 2(i) shows a CFG with 3 basic blocks. Suppose that the instruction
cache has 4 cache sets. Since the starting address of each basic block can be
determined from the program’s executable code, we can find all cache sets
that each basic block is mapped to, and add an entry on these cache lines in
the cache table (Figure 2(ii)). The boundary of each l-block is shown by the
solid line rectangle. Suppose a basic block Bi is partitioned into ni l-blocks.
We denote these l-blocks Bi.1, Bi.2, . . . , Bi.ni.

For any two l-blocks that are mapped to the same cache set, they will
conflict with each other if they have different address tags. The execution
of one l-block will displace the cache content of the other. For instance,
l-block B1.1 conflicts with l-block B3.1 in Fig.ure 2. There are also cases
where two l-blocks do not conflict with each other. This situation happens
when the basic block boundary is not aligned with the cache line boundary.
For instance, l-blocks B1.3 and B2.1 in Figure 2, each occupies a partial
cache line and they do not conflict with each other. They are called
nonconflicting l-blocks.

Since l-block Bi.j is inside the basic block Bi, its execution count is equal
to xi. The cache hit and the cache miss counts of l-block Bi.j are denoted xi.j

hit

and xi.j
miss ,respectively, and

xi 5 xi.j
hit 1 xi.j

miss, j 5 1,2, . . . , ni. (12)

The new total execution time (cost function) is given by

Fig. 2. An example showing how the l-blocks are constructed. Each rectangle in the cache
table represents a l-block.
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Total execution time 5 O
i51

N O
j51

ni

~ci.j
hitxi.j

hit 1 ci.j
missxi.j

miss! (13)

where ci.j
hit and ci.j

miss are, respectively,the hit cost and the miss cost of the
l-block Bi.j .

Equation (12) links the new cost function (13) with the program struc-
tural constraints and the program functionality constraints, which remain
unchanged. In addition, the cache behavior can now be specified in terms of
the new variables xi.j

hit’s and xi.j
miss’s.

4.2 Cache Constraints

These constraints are used to constrain the hit/miss counts of the l-blocks.
Consider a simple case. For each cache line, if there is only one l-block Bk.l

mapped to it, then once Bk.l is loaded into the cache it will permanently
stay there. In other words, only the first execution of this l-block may cause
a cache miss and all subsequent executions will result in cache hits. Thus,

xk.l
miss # 1. (14)

A slightly more complicated case occurs when two or more nonconflicting
l-blocks are mapped to the same cache line, such as B1.3 and B2.1 in Fig.ure
2. Since the cache controller always fetches a line of code into the cache, the
execution of any of the l-blocks will result in the cache controller loading all
of them into the cache line. Therefore, the sum of their cache miss counts is
at most one. In this example, the constraint is

x1.3
miss 1 x2.1

miss # 1. (15)

When a cache line contains two or more conflicting l-blocks, the hit/miss
counts of these l-blocks will be effected by their execution sequence. An
important observation is that the execution of any other l-blocks mapped to
other cache sets will have no effect on these counts. This leads us to
examine the control flow of l-blocks mapped to a particular cache set by
using a cache conflict graph.

4.3 Cache Conflict Graph

A cache conflict graph (CCG) is constructed for every cache set containing
two or more conflicting l-blocks. It contains a start node ‘s ’, an end node ‘e ’,
and a node ‘Bk.l’ for every l-block Bk.l mapped to the cache set. The start
node represents the start of the program and the end node represents the
end of the program. For every node ‘Bk.l’, a directed edge is drawn from
node Bk.l to node Bm.n if there exists a path in the CFG from basic block Bk

to basic block Bm without passing through the basic blocks of any other
l-blocks of the same cache set. If there is a path from the start of the CFG
to basic block Bk without going through the basic blocks of any other
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l-blocks of the same cache set, then a directed edge is drawn from the start
node to node Bk.l. The edges between nodes and the end node are con-
structed analogously. Suppose that a cache line contains only two conflict-
ing l-blocks Bk.l and Bm.n, a possible CCG is shown in Figure 3. The
program control begins at the start node. After executing some other
l-blocks from other cache lines, it will eventually reach node Bk.l, node Bm.n,
or the end node. Similarly, after executing Bk.l, the program control may
pass through some l-blocks from other cache lines and then reach node Bk.l

again, or it may reach node Bm.n or the end node.
For each edge from node Bi.j to node Bu.v, , we assign a variable p ~i.j, u.v!

to count the number of times that the program control passes through that
edge. At each node Bi.j, the sum of control flow going into the node must be
equal to the sum of control flow leaving the node, and it must also be equal
to the execution count of l-block Bi.j. Therefore, two constraints are con-
structed at each node Bi.j:

xi 5 O
u.v

p~u.v, i.j! 5 O
u.v

p~i.j, u.v!, (16)

where ‘u.v ’ may also include the start node ‘s ’ and the end node ‘ e ’. This
set of constraints is linked to the program structural and functionality
constraints via the x-variables.

The program is executed once, so at start node:

O
u.v

p~s, u.v! 5 1. (17)

The variable p ~i.j, i.j! represents the number of times that the control flows
into l-block Bi.j after executing l-block Bi.j without entering any other
l-blocks of the same cache line in between. For a direct mapped cache, each
cache set has one cache line. Therefore, the contents of l-block Bi.j are still
in the cache every time the control follows the edge ~Bi.j, Bi.j! to reach node

Fig. 3. A general cache conflict graph containing two conflicting l-blocks.
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Bi.j, and it will result in a cache hit. Thus, there will be at least p ~i.j, i.j!

cache hits for l-block Bi.j. In addition, if both edges ~Bi.j, e! and ~s, Bi.j!
exist, then the contents of Bi.j may already be in the cache at the beginning
of program execution, as its content may be left by the previous program
execution. Thus, variable p ~s, i.j! may also be counted as a cache hit. Hence,

p~i.j, i.j! # xi.j
hit # p~s, i.j! 1 p~i.j, i.j!. (18)

Otherwise, if any of edges ~s, Bi.j! and ~Bi.j, e! does not exist, then

xi.j
hit 5 p~i.j, i.j!. (19)

Equations (14) through (19) are the possible cache constraints for bound-
ing the cache hit/miss counts. These constraints, together with (12), the
structural constraints, and the functionality constraints, are passed to the
ILP solver with the goal of maximizing the cost function (13). Because of
the cache information, a tighter estimated WCET is returned. Further,
some path-sequencing information can be expressed in terms of p-variables
as extra functionality constraints. The CCGs are network flow graphs, and
thus the cache constraints are typically solved rapidly by the ILP solver. In
the worst case, there is one CCG for each cache set.

The above constraints can also be used to solve the best-case execution
time. The objective is to minimize cost function (13), subject to the same
structural constraints, functionality constraints, and cache constraints. In
this case the ILP solver will try to increase the value of xi.j

hit as much as
possible. If p ~i.j, i.j! (self-edge variable) exists, then the ILP solver may set
p ~i.j, i.j! 5 xi.j

hit 5 xi. However, this is not possible in any execution trace.
Before this path can occur, the program control must first flow into node
Bi.j from some other node. To handle this problem, an additional constraint
is required for all nodes Bi.j with a self-edge:

xi # Z O
u.v, u.vÞi.j

p~u.v, i.j!, (20)

where Z is a large positive integer constant. The addition of this kind of
constraints may generate some nonintegral optimal variable values when
the whole constraint set is passed to an LP solver. If the ILP solver uses
branch and bound techniques for solving the ILP problem, the computa-
tional time may be lengthened significantly.

4.4 A Simple Example

Section 3 shows how the structural constraints and functionality con-
straints are constructed for the example shown in Figure 1. For simplicity,
assume that each basic block will only be partitioned into one l-block.
Consider the cases where the if statement (B4.1) and else statement (B5.1)
conflict with each other and the loop preheader (B1.1) conflicts with the loop
body statement (B6.1).
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Figure 4 shows the CCGs for these two cases. For l-blocks, B4.1 and B5.1

(Figure 4(i)), the constraints for the worst-case execution estimation are

x4 5 x4.1
hit 1 x4.1

miss (21)

x5 5 x5.1
hit 1 x5.1

miss (22)

x4 5 p~s, 4.1! 1 p~4.1,4.1! 1 p~5.1,4.1! 5 p~4.1, e! 1 p~4.1,4.1! 1 p~4.1,5.1! (23)

x5 5 p~s, 5.1! 1 p~5.1,5.1! 1 p~4.1,5.1! 5 p~5.1, e! 1 p~5.1,5.1! 1 p~5.1,4.1! (24)

p~s, 4.1! 1 p~s, 5.1! 1 p~s, e! 5 1 (25)

p~4.1,4.1! # x4.1
hit # p~s, 4.1! 1 p~4.1,4.1! (26)

p~5.1,5.1! # x5.1
hit # p~s, 5.1! 1 p~5.1,5.1!. (27)

Some further path information can be provided here by the user. We note
that if the if statement is executed, it implies that variable ok is true, and
therefore the else statement will never be executed again. So there will
never be a control flow from basic block B4 to basic block B5. This
information can be expressed as

p~4.1,5.1! 5 0. (28)

The cache constraints for the second case are

x1 5 x1.1
hit 1 x1.1

miss (29)

x6 5 x6.1
hit 1 x6.1

miss (30)

x1 5 p~s, 1.1! 5 p~1.1,6.1! 1 p~1.1, e! (31)

Fig. 4. The two CCGs of the example shown in Figure 1.
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x6 5 p~1.1,6.1! 1 p~6.1,6.1! 5 p~6.1, e! 1 p~6.1,6.1! (32)

p~s, 1.1! 5 1 (33)

x1.1
hit # p~s, 1.1! (34)

x6.1
hit 5 p~6.1,6.1!. (35)

Since all other l-blocks are nonconflicting l-blocks, their cache constraints
are

x2 5 x2
hit 1 x2

miss (36)

x3 5 x3
hit 1 x3

miss (37)

x7 5 x7
hit 1 x7

miss (38)

x2
miss # 1 (39)

x3
miss # 1 (40)

x7
miss # 1. (41)

4.4.1 Bounds on p-Variables. In this section, we discuss bounds on the
p-variables. Without the correct bounds, the ILP solver may return an
infeasible l-block count and an overly pessimistic estimated WCET. This is
demonstrated by the example in Figure 5. In this example, the CFG
contains two nested loops. Suppose that there are two conflicting l-blocks,
B4.1 and B7.1. A CCG will be constructed (Figure 5(ii)) and the following
cache constraints generated:

x4 5 p~s, 4.1! 1 p~4.1,4.1! 1 p~7.1,4.1! 5 p~4.1, e! 1 p~4.1,4.1! 1 p~4.1,7.1! (42)

x7 5 p~s, 7.1! 1 p~7.1,7.1! 1 p~4.1,7.1! 5 p~7.1, e! 1 p~7.1,7.1! 1 p~7.1,4.1! (43)

p~s, 4.1! 1 p~s, 7.1! 1 p~s, e! 5 1 (44)

p~4.1,4.1! # x4.1
hit # p~s, 4.1! 1 p~4.1,4.1! (45)

p~7.1,7.1! # x7.1
hit # p~s, 7.1! 1 p~7.1,7.1!. (46)

Suppose that the user specifies that both loops will be executed 10 times
each time they are entered and that basic block B4 will be executed 9 times
each time the outer loop is entered. The functionality constraints for this
information are

x3 5 10x1, x7 5 10x5, x4 5 9x1. (47-49)
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If we feed the above constraints and the structural constraints into the
ILP solver, it will return a worst-case solution in which the counts are
shown on the upper left corner of the variables in the figure.

From the CCG, we observe that these p-values imply that l-blocks B4.1

and B7.1 will be executed alternately, with l-block B7.1 executed first. This
execution sequence generates the maximum number of cache misses, and
hence the WCET. However, if we look at the CFG, we know that this
sequence is impossible because the inner loop is entered only once. Once
the program control enters the inner loop, l-block B7.1 must be executed 10
times before the program control exits the inner loop. Hence, there must be
at least 9 cache hits for l-block B7.1. The ILP solver overestimates the
number of cache misses based on the given constraints. Upon closer
investigation, we find that the correct solution also satisfies the above set
of constraints. This implies that some constraints for tightening the solu-
tion space are missing.

The reason for producing such pessimistic worst-case solution is that the
p-variables are not properly bounded. The flow equations (16) generated
from the CCG implicitly bound the p-variables as follows: For any variable
p ~i.j, u.v!, its bounds are

0 # p~i.j, u.v! # min~xi, xu!. (50)

Consider the case where two conflicting l-blocks Bi.j and Bu.v are in the
same loop and at the same loop nesting level. In this case, the maximum
control flow allowed between these two l-blocks is equal to the total number

Fig. 5. Example showing two conflicting l-blocks (B4.1 and B7.1) from two different loops.
Italicized numbers on the left of the variables are the pessimistic worst-case solution returned
from ILP solver.
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of loop iterations. This is the upper bound on p ~i.j, u.v!. Since l-blocks Bi.j and
Bu.v are inside the loop, xi and xu can at most be equal to the total number
of loop iterations. Therefore, (16) is bound p ~i.j, u.v! correctly.

Suppose that there are two nested loops such that l-block Bi.j is in the
outer loop while Bu.v is in the inner loop. If edge ~Bi.j, Bu.v! exists, all paths
represented by this edge go from basic block Bi to basic block Bu in the
CFG. They must pass through the loop preheader,1 say basic block Bh, of
the inner loop. Since the execution count of basic block Bh, xh, may be
smaller than xi and xu, a constraint

p~i.j, u.v! # xh (51)

is needed to properly bound p ~i.j, u.v!.
In general, a constraint is constructed at each loop preheader. All paths

going from outside the loop to inside the loop must pass through the loop
preheader. Therefore, the sum of these flows can at most be equal to the
execution count of the loop preheader. In our example, a constraint at loop
preheader B5 is needed:

p~s, 7.1! 1 p~4.1,7.1! # x5. (52)

With this constraint, the ILP solver will generate a correct solution.

5. INTERPROCEDURAL CALLS

So far, our cache analysis discussion has been limited to a single function.
In this section we show how cache analysis is performed when there are
function calls in the program.

A function may be called many times from different locations of the
program. The variable xi represents the total execution count of the basic
block Bi when the whole program is executed once. Similarly, xi.j

hit and xi.j
miss

represents the total hit and miss counts, respectively, of the l-block Bi.j.
Equation (12) is still valid and (13) still represents the total execution time
of the program.

In performing cache analysis, we need to consider the cache conflicts
among l-blocks from different functions and the bounds of the p-variables.
For these reasons, every function call is treated as if it were inlined. During
the construction of CFG, when a function call occurs, an f-edge that
contains an instance of the callee function’s CFG is used. The edge has a
variable fk that represents the number of times that a particular instance
of the callee function is executed. Each variable and name in the callee

1A loop preheader is the basic block just before entering the loop. For instance, in the example
shown in Figure 5, basic block B1 is the loop preheader of the outer loop and basic block B5 is
the loop preheader of the inner loop.

270 • Y.-T. S. Li et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 3, July 1999.



function has a suffix ’.fk’ to distinguish it from other instances of the same
callee function.

Consider the example in Figure 6. Here, function inc is called twice in
the main function. The CFG is shown in Figure 6(ii), where two instances of
function inc ’s CFG are created. The structural constraints are

d1 5 1 (53)

x1 5 d1 5 f1 (54)

x2 5 f1 5 f2 (55)

d2.f1 5 f1 (56)

x3.f1 5 d2.f1 5 d3.f1 (57)

d2.f2 5 f2 (58)

x3.f2 5 d2.f2 5 d3.f2 (59)

x3 5 x3.f1 1 x3.f2. (60)

The last equation above links the total execution counts of basic block B3

with its counts from two instances of the function. Based on these vari-
ables, the user can provide path information among different functions. The
user can also provide path information on any instance of the function.

The CCG is constructed as before, by treating each instance of the l-block
Bi.j.fk as independent from other instances of the same l-block. In the
example shown in Figure 6, if l-block B1.1 conflicts with l-block B3.1, then,
since l-block B3.1 has 2 instances (B3.1.f1 and B3.1.f2), there will be 5 nodes
in the CCG (Figure 6(iii)).

The cache constraints and the bounds on p variables are constructed as
before, except that the hit constraints are modified slightly. In addition to
the self edges, the edge going from one instance of a l-block (say Bi.j.fk) to

Fig. 6. An example code fragment showing how function calls are handled.
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another instance of the same l-block (Bi.j.fl) represents cache hits of the
l-block Bi.j, as it represents the execution of l-block Bi.j at fl after the same
l-block has just been executed at fk. The cache constraints derived from the
example’s CCG are

x1 5 x1.1
hit 1 x1.1

miss (61)

x2 5 x2.1
hit 1 x2.1

miss (62)

x3 5 x3.1
hit 1 x3.1

miss (63)

x2.1
miss # 1 (64)

x1 5 p~s, 1.1! 5 p~1.1,3.1.f1! (65)

x3.f1 5 p~1.1,3.1.f1! 5 p~3.1.f1, 3.1.f2! (66)

x3.f2 5 p~3.1.f1, 3.1.f2! 5 p~3.1.f2, e! (67)

x1.1
hit 5 0 (68)

x3.1
hit 5 p~3.1.f1, 3.1.f2! (69)

p~s, 1.1! 5 1. (70)

6. IMPLEMENTATION AND HARDWARE MODELING

The above cache analysis method has been integrated into our original tool
cinderella , which estimates the WCET of programs running on an Intel
QT960 development board [Intel Corporation 1990] containing a 20MHz
Intel i960KB processor, 128KB of main memory, and several I/O peripher-
als. The i960KB processor is a 32-bit RISC processor used in many
embedded systems (e.g., in laser printers). The processor contains an
on-chip 512-byte direct-mapped instruction cache organized as
32 3 16-byte lines. It also features a floating point unit, a 4-stage instruc-
tion pipeline, and 4 register windows for faster execution of function
call/return instructions [Intel Corporation 1991; Myers and Budde 1988].

The hit cost ci.j
hit of a l-block Bi.j is determined by adding up the effective

execution times of the instructions in the l-block. Since the effective
execution times of some instructions, especially the the floating point
instructions, are data-dependent, a conservative approach is taken by
assuming the worst-case effective execution time. This may induce some
pessmism in the final estimated WCET. Additional time is also added to
the last l-block of each basic block to ensure that all buffered load/store
instructions [Intel Corporation 1991] are completed when the program
control reaches the end of the basic block. Note that the instruction
boundary may not be aligned with the cache line boundary, i.e., an
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instruction may span two cache sets, and consequently may span two
l-blocks. When this happens, the effective execution time of this instruction
is counted in the hit cost of the second l-block. Since these two l-blocks
must come from the same basic block, they have the same total execution
count. Therefore, the total execution time spent on this instruction is
correctly accounted for. The miss cost ci.j

miss of the l-block is equal to the hit
cost ci.j

hit, plus the time needed to load the line of code into the cache
memory.

Cinderella 2 now contains about 20,000 lines of C11 code. The tool
reads the subject program’s executable code and constructs the CFGs and
the CCGs. It then outputs the annotation files in which the xs and fs are
labeled along with the program’s source code. The user is then asked to
provide loop bounds. A WCET bound can be computed at this point. The
user can provide additional path information, if available, to tighten this
bound. We use a public domain ILP solver lp_solve 3 to solve the con-
straints generated by cinderella . The solver uses the branch and bound
procedure to solve the ILP problem.

An optimization implemented in cinderella actually reduces the num-
ber of variables and CCGs. If two or more adjacent cache lines hold
instructions from the same set of basic blocks, e.g., cache lines 0 and 1 in
Figure 2(ii), then the corresponding l-blocks can be combined together and
only one CCG is drawn for those cache lines.

7. EXPERIMENTAL RESULTS

In this section,we evaluate the accuracy and performance of our cache
analysis method. Since there are no standard benchmark programs, we
selected a set of benchmark programs from a variety of sources. They
included programs from academic sources, DSP routines, standard software
benchmarks, and a JPEG decompression program, which is the largest and
most complicated one used in this kind of analysis. Table I shows for each
program, its name, description, source code line size, and i960KB binary
code size in bytes.

7.1 Measurement Methods

Ideally, we would like to compare each program’s estimated WCET with its
actual WCET. But since it is impractical to simulate every possible input
data set and every initial system state, a program’s actual WCET may not
be determined. In fact, if we can determine a program’s actual WCET, then
we do not need its estimated WCET anymore!

To resolve this problem, we tried to identify each program’s worst-case
input data set and compared its execution time, denoted measured WCET,

2Details of this tool can be obtained via
http://www.ee.princeton.edu/nyauli/cinderella-3.0/ .

3lp_solve is written by Michel Berkelaar and can be retrieved from
ftp://ftp.es.ele.tue.nl/pub/lp_solve .
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with the estimated WCET. We assumed that the worst-case initial system
state was the one with empty cache contents, since this generates the
maximum number of cache misses. For most programs, the worst-case
input data set could be determined. For instance, the worst-case input data
set for the sorting programs is an array of descending elements. For these
programs, the measured WCET should be very close to the actual WCET.
But for more complicated programs, this became a nontrivial task. These
programs have instructions whose execution times are data-dependent,
such as the floating point instructions presented in programs fft and
fdct , and/or complicated input data-dependent execution paths, such as
programs des and djpeg . For these four programs, the worst-case data
input sets are unknown. We generated a series of random input data sets,
measured their corresponding execution times, and picked the longest one
as the measured WCET of the program. In this case, the difference between
the measured WCET and the actual WCET may be larger. To determine
the measured WCET accurately, we executed each program on the Intel
QT960 evaluation board and used a logic analyzer to measure its execution
time. The difference between a program’s estimated WCET and its mea-
sured WCET was equal to the difference between the estimated WCET and
the actual WCET, due to pessimism in path analysis, cache modeling, and
execution unit modeling, plus the difference between the actual WCET and
the measured WCET.

Table I. Benchmark Examples: Descriptions, Source File Line and i960KB Binary Code
Sizes

Program Description Lines Bytes

check data Check if any of the elements in an array is negative,
from Park [1992]

23 88

circle Circle drawing routine, from Gupta [1993] 100 1,588
des Data Encryption Standard 192 1,852
dhry Dhrystone benchmark 761 1,360
djpeg Decompression of 128 3 96 color JPEG image 857 5,408
fdct JPEG forward discrete cosine transform 300 996
fft 1024-point Fast Fourier Transform 57 500
line Line drawing routine, from Gupta [1993] 165 1,556
matcnt Summation of 2 100 3 100 matrices, from Arnold

[Arnold, Mueller, Whalley, and Harmon 1994]
85 460

matcnt2 Matcnt with inlined functions 73 400
piksrt Insertion sort of 10 elements 19 104
sort Bubble sort of 500 elements, from Arnold [Arnold,

Mueller, Whalley, and Harmon 1994]
41 152

sort2 Sort with inlined functions 30 148
stats Calculate the sum, mean and variance of two 1,000-

element arrays, from Arnold [Arnold, Mueller,
Whalley, and Harmon 1994]

100 656

stats2 Stats with inlined functions 90 596
whetstone Whetstone benchmark 196 2,760
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7.2 Results

Table II shows the results of our experiments. The second and third
columns show, respectively, the measured WCET and estimated WCET
with cache analysis . The fourth column shows the ratio of the estimated
WCET to the measured WCET. All ratios are larger than one, meaning that
all estimated WCETs bound their corresponding measured WCETs.
Smaller ratios mean tighter estimates.

For small programs like check data and piksrt , the estimated WCETs
are very close to their corresponding measured WCETs. Programs sort ,
matcnt , and stats have larger than expected pessimism. This is because
we did not model the register windows featured in the i960KB processor.
We conservatively assumed that the register window overflowed (under-
flowed) on each function call (return). This pessimism incurred about 50
clock cycles on each function call and function return. Since the above
programs had lots of small function calls, a large amount of pessimism
resulted. In order to factor out this pessimism, we inlined the frequently
called functions in these programs. The modified programs are sort2 ,
matcnt2 , and stats2 . Their estimated WCETs are much tighter than the
original ones. We are currently working on this problem to reduce the
pessimism.

The pessimism for programs with floating point instructions, such as fft
and whetstone , is also higher. The reason is that the execution time of an
i960KB floating point instruction is data-dependent. For our worst-case
estimation, we conservatively assumed that each floating point instruction
took its worst-case execution time to complete, which is typically 30%–40%
more than its average execution time [Intel Corporation 1991].

Finally, the reason for large pessimism in program djpeg is due to the
loose measured WCET. For the worst-case estimation, we assumed that the

Table II. Estimated WCETs of Benchmark Programs. Estimated WCETs and Measured
WCETs In Units of Clock Cycles

Program Measured WCET Estimated WCET Ratio

check data 4.30 3 102 4.91 3 102 1.14
circle 1.45 3 104 1.54 3 104 1.06
des 2.44 3 105 3.70 3 105 1.52
dhry 5.76 3 105 7.57 3 105 1.31
djpeg 3.56 3 107 7.04 3 107 1.98
fdct 9.05 3 103 9.11 3 103 1.01
fft 2.20 3 106 2.63 3 106 1.20
line 4.84 3 103 6.09 3 103 1.26
matcnt 2.20 3 106 5.46 3 106 2.48
matcnt2 1.86 3 106 2.11 3 106 1.13
piksrt 1.71 3 103 1.74 3 103 1.02
sort 9.99 3 106 27.8 3 106 2.78
sort2 6.75 3 106 7.09 3 106 1.05
stats 1.16 3 106 2.21 3 106 1.91
stats2 1.06 3 106 1.24 3 106 1.17
whetstone 6.94 3 106 10.5 3 106 1.51

Performance Estimation of Embedded Software • 275

ACM Transactions on Design Automation of Electronic Systems, Vol. 4, No. 3, July 1999.



input image was so random that no compression was achieved in the
Huffman encoding process. Therefore, the Huffman decoding function in
djpeg needs to loop more in reading and decoding the Huffman symbols.
But for all random images we generated for determining the measured
WCET, some sort of compression was still achieved. The larger differences
between the loop bounds in the estimation and the actual loop iterations in
measurements accounted for this pessimism. In this program, the mea-
sured WCET might not be as close to its actual WCET as other programs
are. This illustrates that the actual WCET is in some cases very hard to be
attained through simulation, whereas static analysis always guarantees
bounding the actual WCET.

A few simple programs were also used by Arnold et al. [1994] and Lim et
al. [1994]. It is natural to compare our estimated WCETs to theirs.
However, the above researchers used different hardware platforms for
modeling. Arnold et al. used a Sparc simulator and Lim et al. used a MIPS
R3000 evaluation board. Since the binary codes were different and the
model of each processor was different, there is no direct way to compare the
results. One main drawback of the above researchers’ methods is that they
cannot accept path information other than loop bounds. Therefore, for
programs like sort and fft , which have nested loops in which the loop
iteration of the inner loop depends on the loop index of the outer loop, they
reported estimated WCETs that are roughly two times the measured
WCETs. Our analysis method is superior in that it accepts path informa-
tion even in the presence of instruction cache analysis. This results in
much tighter estimation, and our method can analyze more complicated
programs.

Since a large amount of pessimism shown in Table II is due to the
pessimism in modeling the execution unit, we would like to factor it out.
For programs whose code size is greater than 512-bytes, we executed each
program with its worst-case input data set to generate the instruction
address trace. This was passed to a cache simulator DineroIII to deter-
mine the number of cache misses. We then used cinderella to estimate
the program’s worst-case cache misses by using a hardware model in which
a cache miss incurs one unit of time and a cache hit and other execution
times incur zero execution times. Table III shows the results. For many
programs, the simulator and cinderella reported the same number of
cache misses. The pessimism in other programs is mainly due to inaccuracy
in path analysis. In particular, program djpeg has exceptionally large
pessimism because the Huffman decoding function contains conflicted code.
Since the execution count of this function is conservatively overestimated, a
large number of cache misses resulted.

7.3 Performance Issues

The structural and cache constraints are derived from the CFG and CCGs
that are very similar to network flow graphs. We therefore expect that the
ILP solver can solve the problem efficiently. Table IV shows, for each
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program, the number of variables and constraints, the number of branches
in solving the ILP problem, and the CPU time required to solve the
problem. Since each program may have more than one set of functionality
constraints [Li and Malik 1995], a 1 symbol is used to separate the number
of functionality constraints in each set. For a program having n sets of
functionality constraints, the ILP is called n times. The 1 symbol is used
again to separate the number of ILP branches and the CPU time for each
ILP call.

We found that even with thousands of variables and constraints, the
branch and bound ILP solver could still find an integer solution within the
first few calls to the linear programming solver. The time taken to solve the
problem ranged from less than a second to a few minutes on a SGI Indigo2

Table III. Estimated Worst-Case Number of Cache Misses of Benchmark Programs. The
instruction cache is 512–byte direct-mapped, its line size is 16 bytes

Program DineroIII simulation
Est. worst case cache

misses Ratio

circle 443 458 1.03
des 3,872 4,188 1.08
dhry 8,304 8,304 1.00
djpeg 230,861 316,394 1.37
fdct 63 63 1.00
line 99 101 1.02
stats 47 47 1.00
stats2 44 44 1.00
whetstone 18,678 18,678 1.00

Table IV. Performance Issues in Cache Analysis

Program

No. of Variables No. of Constraints
ILP

branches
Time
(sec.)d ’s f ’s p ’s x ’s Struct. Cache Funct.

check data 12 0 0 40 25 21 515 111 010
circle 8 1 81 100 24 186 1 1 0
des 174 11 728 560 342 1,059 16116 13113 1711197
dhry 102 21 503 504 289 777 243412634 138 0331210

113214
djpeg 296 20 1,816 416 613 2,568 64 1 87
fdct 8 0 18 34 16 49 2 1 0
fft 27 0 0 80 46 46 11 1 0
line 31 2 264 231 73 450 2 1 3
matcnt 20 4 0 106 59 61 4 1 0
matcnt2 20 2 0 92 49 54 4 1 0
piksrt 12 0 0 42 22 26 4 1 0
sort 15 1 0 58 35 31 6 1 0
sort2 15 0 0 50 30 27 6 1 0
stats 28 13 75 180 99 203 4 1 0
stats2 28 7 41 144 75 158 4 1 0
whetstone 52 3 301 388 108 739 14 1 2
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workstation. With a commercial ILP solver, CPLEX, the CPU time reduced
significantly to a few seconds.

In order to evaluate how the cache size affects solving time, we doubled
the number of cache lines (and hence the cache size) from 32 lines to 64
lines and determined the CPU time needed to solve the ILP problems.
Table V shows the results. From the table, we determined that the number
of variables and constraints changed little when the number of cache lines
is doubled. The time to solve the ILP problem is of the same order as before.
The primary reason is that although increasing the number of cache lines
increases the number of CCGs, and hence more cache constraints are
generated, each CCG has fewer nodes and edges. As a result, there are
fewer cache constraints in each CCG. These two factors roughly cancel each
other out.

8. CONCLUSIONS AND FUTURE WORK

In this paper we presented a method to determine a tight bound on the
worst-case execution time of a given program. The method includes a
direct-mapped instruction cache analysis and uses an integer linear pro-
gramming formulation to solve the problem. This approach avoids enumer-
ation of program paths. Furthermore, it allows the user to provide addi-
tional program path information so that a tighter bound may be obtained.
The method is implemented in cinderella , and the experimental results
show that the estimated WCETs tightly bound the corresponding measured
WCETs. Since the linear constraints are mostly derived from the network
flow graphs, the ILP problems are typically solved efficiently.

We extended this method to analyze a set-associative instruction cache.
Cinderella has been ported to model the Motorola M68000 architecture.
We are now working on data cache modeling, as well as refining our
microarchitecture modeling to model register windows and other advanced
microarchitecture features.
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Table V. Complexity of the ILP Problem: Number of Cache Lines Doubled to 64

Program

No. of variables No. of constraints
ILP

branches
Time
(sec.)d ’s f ’s p ’s x ’s Struct. Cache Funct.

des 174 11 809 524 342 1,013 16116 7110 901145
whetstone 52 3 232 306 108 559 14 1 1
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