
ADVANCES IN deep-submicron technologies

have enabled system-on-chip (SOC) designs in

which a system’s entire functionality rests on a

single chip. SOCs are embedded in various elec-

tric products, such as portable information ter-

minals, digital audio systems, and automobiles.

Many of these products are real-time systems

with timing constraints. An important consider-

ation in SOC design is minimizing power con-

sumption. Heat due to high power consumption

often prevents realization of high-performance

SOCs with high transistor density. Moreover,

portable systems require a small battery. Thus,

design technology for high-performance SOCs

with low energy consumption is an important

research issue in real-time system design.

The problem is realizing both high-speed

computation and low energy consumption.

Employing a high-performance processor core

may satisfy timing constraints, but will proba-

bly not foster low energy consumption. Ishihara

et al. have proposed a variable-voltage proces-

sor that can vary its supply voltage dynamically

to solve this problem.1 Using the variable-volt-

age processor, tasks with severe real-time con-

straints can execute at high supply

voltages—and, therefore, high execution

speeds—and tasks with loose time constraints

can execute at low supply voltages. Reducing

the supply voltage leads to drastic energy

reduction because energy consumption in

CMOS circuits typically increases quadratical-

ly with supply voltage. Energy consumption

integrates power consumption in the time

domain. The energy consumption per clock

cycle for a task is

(1)

where M is the number of gates in the circuit, LCk

is the load capacitance of gate gk, SWk is the

switching count of gk per clock cycle for the task,

and VDD is the supply voltage. Now, consider a

task with total number of execution cycles CYtask.

The energy consumption for this task is

(2)

We can reduce the energy consumption for

the task by lowering VDD. However, this step

E CY LC SW Vk

k

M

ktask task DD= ⋅ ⋅ ⋅
=

∑
1

2

E LC SW Vk k

k

M

cycle DD= ⋅ ⋅
=

∑ 2

1

Software Energy Reduction
Techniques for Variable-
Voltage Processors

Energy Reduction for Processors

2

A processor consumes far less energy running

tasks requiring a low supply voltage than it does

executing high-performance tasks. Effective

voltage-scheduling techniques take advantage of

this situation by using software to dynamically

vary supply voltages, thereby minimizing energy

consumption and accommodating timing

constraints.

Takanori Okuma

Hiroto Yasuura
Kyushu University

Tohru Ishihara
University of Tokyo

0740-7475/01/$10.00 © 2001 IEEE IEEE Design & Test of Computers

increases the execution time. The circuit delay

τ is

(3)

and execution time Ttask is

(4)

where VT is the threshold voltage, and VG (~VDD)

is the input-gate voltage. The α factor depends

on the carrier velocity saturation and in

advanced MOSFETs is about 1.3.

Using the variable-voltage processor, the

application programs or operating systems

control the supply voltage. In real-time sys-

tems, effective compiler and operating system

techniques can manage this function in a way

that minimizes energy.2 If a system includes

only one task, finding the optimal supply volt-

age is easy.1 However, in a multiple-task sys-

tem, determining the optimal supply voltage

assignment that minimizes total energy con-

sumption without violating real-time con-

straints is not so simple.

Here, we propose voltage scheduling tech-

niques for real-time applications using a variable-

voltage processor. Our proposed techniques

always guarantee satisfaction of a system’s real-

time constraints if the system meets those con-

straints under the highest supply voltage.

Dynamically controlled
variable-voltage processors

A variable-voltage processor employs special

instructions for controlling supply voltage. These

instructions can change the supply voltage at any

clock cycle. The CPU clock is adjusted to the fre-

quency suitable for the present supply voltage.

Software can dynamically control the supply volt-

age and the clock frequency. Therefore, both

application programs and operating systems can

manage the processor’s power consumption.

For variable voltage systems, the time and

power overhead to change the supply voltage

can be important. However, we will ignore

this issue here because Lee and Sakurai have

already discussed it,3 and extending our

problem to consider these overheads would

not be difficult. Instead, we will concentrate

on methods for variable voltage scheduling.

Motivational examples
We illustrate our basic idea with a simple

example. Assume a given program’s energy con-

sumptions are 10 nJ/cycle at 2.5 V, 25 nJ/cycle at

4.0 V, and 40 nJ/cycle at 5.0 V. The processor’s

corresponding computational speeds are 25 ×
106, 40 × 106, and 50 × 106 clock cycles/second.

This assumption roughly accords with Equations

2 and 3. Figure 1 shows three voltage assign-

ments for the given program, which has 1 billion

execution cycles. In Figure 1a, the total energy

consumption is 40 J, because the processor uses

only a 5.0-V supply voltage. Given a time con-

straint of 25 seconds, voltage scheduling with 2.5

V and 5.0 V reduces the energy consumption

from 40 J to 32.5 J, as shown in Figure 1b. Figure

1c shows the lower-bound case of this example.

A processor using a single supply voltage that fits

the execution time only with the given time con-

straint minimizes total energy consumption.

 T CYtask task= ⋅τ

τ αα∝ <V

V V V

DD

G T DD−()
≤()~

1
1 2

3March–April 2001

1 billion cycles

40 MHz

Time constraint

2.52

5.02

50MHz

25 J

32.5 J

2510 201550

2510 201550

2510 201550 Time
(seconds)

Time
(seconds)

Time
(seconds)

4.02

40 J

50 MHz

750 million
cycles

1 billion cycles

5.02

(a)

(b)

(c)

5.02

25 MHz

250 million
cycles

E
ne

rg
y

co
m

su
m

pt
io

n
(∝

 V
D

D
)

2

Figure 1. Power-delay optimization for a program with 1 billion

execution cycles when (a) the processor uses only 5.0 V. Compare

this with (b) voltage scheduling with 2.5 V and 5.0 V, and (c) when

the processor uses a single supply voltage that fits the execution

time with the given time constraint.

Up to this point, we have not discussed load

capacitances, which are charged and dis-

charged by the tasks. Capacitances for an addi-

tion operation, for example, are quite different

from the capacitive load for a multiply opera-

tion. Moreover, because of load capacitance,

processing the program with a single voltage that

adjusts the execution time to the timing deadline

does not always minimize energy consumption.

The average capacitive load per cycle of taskj is

(5)

where the jth task (taskj) is {Xj, Cj}, Xj is the num-

ber of execution cycles of the jth task (1≤ j ≤ N),

Cj is the average capacitive load for the jth task,

M is the number of gates in the processor, LCk

is the load capacitance of a gate gk, and SWkij is

the switching count of gk while the ith cycle of

taskj executes.

If the Cjs differ considerably from one anoth-

er, voltage scheduling with multiple voltages

may minimize the energy consumption. For a

given task set {task1, task2}, the voltage sched-

uling with 2.5 V and 5.0 V, as shown in Figure

2b, reduces more energy than a voltage sched-

ule with a single voltage (4.0 V), as shown in

Figure 2a. For both voltage schedules, a proces-

sor completes the program’s 1 billion cycles

only at the timing constraint. The x-, y-, and z-

axes of the graphs in Figure 2 indicate the exe-

cution cycles, the square of supply voltage, and

the capacitive loads. The volume of cubes indi-

cates the energy consumption for processing.

Therefore, minimizing the total volume of

cubes can help voltage scheduling.

Related work
Lee and Sakurai have proposed a runtime

dynamic voltage-scaling scheme for low-power

real-time systems.3,4 This scheme employs a

power control chip with an on-chip DC-to-DC

converter and a frequency synthesizer, as well

as an embedded runtime power control algo-

rithm using the software feedback loop. The

scheme avoids interface problems by exploit-

ing discrete levels of clock frequency as fCLK,

fCLK/2, fCLK/3, …, where fCLK is the master (high-

est) system clock frequency.

Transmeta has announced the Crusoe

processor and proposed LongRun technology:

the first commercial variable-voltage proces-

sor.5 This technology can save power by reduc-

ing clock speed and voltage when an

application doesn’t need peak processor per-

formance. Using LongRun power management

C
LC SW

X
j

k kij
k

M

i

X

j

j

=
⋅

== ∑∑ 11

Energy Reduction for Processors

4 IEEE Design & Test of Computers

1000400 8006002000

1000400 8006002000

14.0 nJ

12.5 nJ
50 MHz25 MHz

Cap
ac

itiv
e

loa
d

Task1

Task2
Task1 Task2

Task1
40 MHz

Task2

2.52

5.02

4.02

5.02

(a)

(b)
E

ne
rg

y
co

m
su

m
pt

io
n

(∝
 V

D
D
)

2

Million cycles

Million cycles

C2

X2

0.5 F
750 million
cycles

C1

X1

2.0 F
250 million
cycles

Figure 2. Power-delay optimization, considering the capacitive loads: voltage scheduling

(a) with a single voltage of 4.0 V; and (b) with two voltages, 2.5 V and 5.0 V.

technology, software continuously monitors

processor demands, dynamically and smooth-

ly adjusting the processor’s speed to what is

exactly needed to run the application.

Hong et al. describe a design methodology

for a real-time system on a chip that uses a

dynamically variable-voltage-processor core.

This methodology provides an offline schedul-

ing heuristic to handle nonpreemptive, hard

real-time tasks and select the processor core. It

also determines the configuration and size of

the instruction and data caches.6 Also, Hong

and other colleagues have proposed an online

preemptive scheduling algorithm for on- and

offline tasks on a variable-voltage processor to

optimize energy consumption while ensuring

that all offline tasks meet their deadlines. They

also designed the algorithm to accept the high-

est possible number of online tasks that can be

guaranteed to meet their deadlines.7

Shin et al. proposed a power-efficient ver-

sion of fixed-priority preemptive scheduling,

which is widely used in hard real-time system

design.8 Their method reduces energy con-

sumption in the processor by exploiting system-

inherent slack times, as well as slack times

arising from dynamic variations of execution

times for the task.

Pering et al. presented an online scheduling

algorithm for soft real-time systems.9 This algo-

rithm relaxes the deadline constraints and

allows application frames to complete after their

deadlines. The scheduler can then absorb the

effects of high frame-to-frame application vari-

ance, which might otherwise increase energy.

Burd et al. have demonstrated dynamic volt-

age scaling on a complete embedded proces-

sor system.10 This prototype system contains

four custom chips in 0.6-µm three-metal CMOS:

a battery-powered DC-to-DC voltage converter,

a microprocessor (ARM8 core with 16-Kbyte

cache), SRAM memory chips, and an interface

chip for connecting to commercial I/O devices.

The entire system can operate from 1.2 to 3.8 V

and 580 MHz, and energy consumption varies

from 0.54 to 5.6 mW/MIP.

Software techniques
Voltage scheduling for real-time applications

is complex for several reasons:

� A real-time application consists of two or

more tasks. In certain applications, prece-

dence relations exist among tasks.

� A variable-voltage processor uses only a few

discrete voltages (or frequencies) because

preparing a lot of discrete voltages makes

the test difficult. Therefore, the scheduler

might not be able to assign an ideal voltage

to a task.

� The load capacitance is different for each

task. It depends on input data and does not

remain constant during a task’s execution.

Because the gated clock scheme is popular,

disregarding the change in load capacitance

is not possible.

� Tasks typically end earlier than they would

in worst-case execution cycles. However,

the scheduler can’t know the execution

cycle of the next executed task before that

task executes.

� The scheduler can’t execute a task until it’s

ready for execution—the arrival time. When

the scheduler doesn’t know a task’s arrival

time, assigning the lower voltage to tasks for

which the arrival time is known is dangerous.

Using a variable-voltage processor, we pro-

pose some voltage-scheduling techniques for

real-time applications: Static voltage schedul-

ing addresses the first three problems listed,

and dynamic voltage scheduling addresses the

last two.

Static voltage scheduling
If a processor employs only a few discrete vari-

able voltages, a single voltage might not minimize

energy consumption. However, supporting sev-

eral different supply voltages can be costly, so

any feasible voltage-scheduling technique must

use only a few different supply voltages.

If the processor cannot supply a single ideal

voltage, voltage scheduling with processor-sup-

plied multiple voltages can minimize energy con-

sumption. Consequently, voltage scheduling with

a single voltage that adjusts the execution time to

the timing deadline does not always minimize

energy consumption. In a formulation of static

voltage scheduling that supports instruction-level

parallelism (ILP), we target a processor that

employs just a few discretely variable voltages.

5March–April 2001

Target systems. In a simplified static voltage-

scheduling problem, we target real-time,

processor-based systems where the processor

� can vary its supply voltage dynamically and

at any clock cycle,

� uses only one supply voltage at a time,

� employs only a few discrete voltages, and

� has an adaptive clock scheme that closely

tracks the supply voltage.

In addition, the target system must be one in

which

� time overhead for changing the supply volt-

age and clock frequency is negligible,

� power loss for the DC-to-DC level converter

is negligible, and

� the given program’s worst-case execution

cycles can be estimated statically.

Notation. We define the variables used in the

formulation as follows:

� N is the number of tasks: N = |{taskj}|.

� Taskj is the jth task: taskj = (Xj, Cj).

� Xj is the number of execution cycles of the

jth task, such that 1≤ j ≤ N.

� Cj is the average capacitive load for the jth

task.

� L is the number of variable voltages of the

target processor: L = |{modei}|.

� Modei is the processor’s ith execution mode:

modei = (Vi, Fi).

� Vi is the ith voltage, such that 1 ≤ i ≤ L.

� Fi is the clock frequency when supply volt-

age is Vi, where Equation 3 calculates Fi.

� T is the time constraint during which all

given tasks must be completed.

� xij is the number of cycles of task j executed

with voltage Vi.

ILP formulation. We formulate the voltage-

scheduling problem as follows:

Minimize

(6)

subject to

(7)

We formally define the voltage-scheduling

problem as

for the given {taskj} and {modei}, find xij

that minimizes E and satisfies time con-

straint T.

Both the objective function and the con-

straint are linear functions of variable xij. The

computation time to solve the voltage-sched-

uling problem strongly depends on N × L.

When all Cjs are the same value, the problem is

far simpler. In this situation, obtaining an opti-

mal solution requires solving only the problem

of a single task (N = 1).

Dynamic voltage scheduling
These techniques extend voltage scheduling

to tasks for which it is difficult to predict start or

completion times.

Target systems. A real-time system generally

includes both application programs and an

operating system to execute those applications.

Application programs are divided into several

tasks to satisfy real-time constraints. A system

designer must estimate each task’s worst-case

execution time. When external events are

detected, the operating system schedules these

tasks to satisfy the real-time constraints.

In our dynamic voltage-scheduling tech-

niques, we assume a single-processor system,

which uses a variable-voltage processor as a

processor core. The variable-voltage processor

can discretely change its supply voltage using

special instructions for voltage control. Only the

operating system—not the applications pro-

gram—can use these instructions. Thus, switch-

ing tasks can vary the supply voltage.

Notation. We assume the voltage is assigned to

each real-time task in task set {J1, …, Jn}. These

parameters characterize a real-time task Ji:

� ai is the arrival time,

x X
x

F
T

x X

ij

i

L

j

ij

ii

L

j

N

ij j

= ==
∑ ∑∑=

1 11

0

, ≤

≤ ≤

E C x Vj ij

i

L

j

N

i= ⋅ ⋅
==

∑∑
11

2

Energy Reduction for Processors

6 IEEE Design & Test of Computers

� Oi is the worst-case execution time,

� di is the deadline time,

� si is the execution start time,

� ei is the execution completion time, and

� Li is the remaining time from completion

time to deadline, where Li = di – ei

We also define the following parameters

regarding the task’s energy consumption:

� Xi represents the worst-case execution cycle.

� Fi is the clock frequency when Ji executes.

� Oi, Xi, and Fi have the relation Oi = Xi/Fi.

� Vi is the supply voltage when Ji executes.

� Ci is the average capacitive load.

� Ei is the worst-case energy consumption.

� Ei, Ci, Xi, and Vi have the relation Ei = Ci ⋅ Xi ⋅ Vi
2

Figure 3 illustrates some of these parameters.

We assume that Fi and Vi do not change dur-

ing the execution of Ji. However, the supply

voltage and clock frequency can change when

another task preempts Ji, which resumes after

the preemption.

The following parameters characterize the

variable-voltage processor:

� (vj, fj) is the processor mode. When the

processor’s supply voltage is vj, its clock fre-

quency is fj.

� m = |{(vj, fj)}| is the processor’s mode num-

ber.

� Vmax = max(vj) indicates the largest supply

voltage.

For example, when task J3 executes with

processor mode 2 (j = 2), we define V3 and F3

as V3 = v2, and F3 = f2.

Dynamic voltage-scheduling algorithm.
Dynamic voltage-scheduling time should be

short to accommodate online scheduling. In

our dynamic voltage-scheduling techniques,

we assume the scheduler assigns a supply

voltage to only the next executed task just

before task execution. Then, the scheduler

must assign supply voltage so that all tasks

executed later will not violate these real-time

constraints.

We define a time slot for each task. A time

slot’s start time is when the task execution start-

ed. The end time is the maximum time that can

guarantee that all future tasks will not violate

these real-time constraints. Thus, if the next exe-

cuted task’s supply voltage lets it finish within

the time slot that the scheduler gives it, satis-

faction of the real-time constraints is always

guaranteed.

In our techniques, the scheduler’s main

work is to determine the time slot’s length for

each task. The scheduler’s remaining work is to

assign the minimum voltage to the task so that it

can finish within its time slot. Two algorithms

determine the length of the time slot:

� The SD algorithm assumes every task’s

arrival time is known.

� The DD algorithm assumes every task’s

arrival time is unknown.

Figures 4 and 5 (next page) show the SD and

DD algorithms.

SD and DD algorithms have three main

steps:

1. CPU time allocation. Assign the task set CPU

time under the condition that all tasks exe-

cute on Vmax and that the execution cycle

for each task is the worst case. Divide the

work of the preempted task into other tasks

to simplify the problem in the SD algorithm.

2. End-time prediction. Determine the time

slot’s end time for the next executed task,

considering real-time constraints of all later-

executed tasks.

3. Start-time assignment. Determine the time

slot’s start time. The finished time of the pre-

viously executed task dynamically moves

the start time; the time slot can be length-

ened if the previous task finishes ahead of

schedule.

7March–April 2001

t

Oi

Ji
ai si ei di

LiTask

Figure 3. Parameters of a real-time task.

The SD algorithm performs steps 1 and 2 sta-

tically, and step 3 dynamically. The DD algo-

rithm performs all three steps dynamically.

Experimental results
We demonstrated the effectiveness of our

proposed static or dynamic scheduling tech-

niques. We used the virtual variable-voltage

processor in the experiments, and applied the

techniques to an easy task set.

Static scheduling
We use the following set of tasks: task set =

task1, task2, task3. The average capacitive loads

and the number of execution cycles of these

three tasks are {C1, X1} = {50 pF, 50 × 109}, {C2,

X2} = {100 pF, 50 × 109} , and {C3, X3} = {150 pF,

50 x 109}. These three tasks are sequentially

processed under a time constraint. In this

Energy Reduction for Processors

8
IEEE Design & Test of Computers

Initialize (static phase)
R := Ø
ts := 0
Jexe := Jidle

Input
Current execution task: Jexe
Current time: t

Output
Next execution task: Jne
Occupation period for Jne: Tne

Dynamic process
if new task arrived then

Jar := arrival task
if priority(Jar) > priority(Jexe) then

R := {Jexe} ∪ R
if Jexe ≠ Jidle then

Xexe := the rest of Xexe
end if
ts := t + Oar|Vmax
Jne := Jar
Tne := ts – t

else
R := {Jar} ∪ R
Jne := Jexe
supply voltage is unchanged

end if
else if Jexe finished then

Jhi := the task with maximum priority in R
R := R – {Jhi}
ts := ts + Ohi|Vmax
Jne := Jhi
Tne := ts – t

end if

Figure 5. DD algorithm for dynamic voltage

scheduling.

Initialize (static phase)
Assign task set {J1, …, Jn} CPU time under the condition that all tasks execute
on Vmax. Determine si, ei, and Li for each task. Divide, into several subtasks, a
task preempted by another task, and treat those subtasks as different tasks. If
task Ji is divided into l tasks, Ji.1, …, Ji.l, then the arrival time, deadline, and
remaining time of task Ji.j are

ai.1 = ai di.n = di

ai.j = ei.j–1 di.j = si.j+1

Li.j = di.j – ei.j

The following equation gives the worst-case execution cycles Xi.j:

Sorting according to the early order at the deadline, the task set becomes

If tsei is the time slot’s end time for task Ji, then the tsei for each task in
{J1,…,Jn′} is

Input
Next executed task: Ji
Current time: t

Output
The length of the time slot for Ji: TSi

Dynamic process
TSi = tsei – t

tse e Li i
k

k= + ()
≥

min
1

 J J n n d dn i i1 1, , ,K ′ +{ } ′ ≥ ≤()

X
e s

e s
Xi j

i j i j

i k i k
k

n i.
. .

. .

=
−

−()
⋅

=∑ 1

Figure 4. SD algorithm for dynamic voltage scheduling.

Table 2. Specification of sample programs.

Task No. of cycles for Capacitive loads

sets X1, X2, X3 (billions) for C1, C2, C3 (pF)

1 50, 50, 50 100, 100, 100

2 50, 50, 50 80, 100, 120

3 50, 50, 50 40, 100, 160

4 50, 50, 50 20, 40, 240

Table 1. Variable supply voltages.

Cases Variable supply voltages (volts)

Processor1 Only 3.3

Processor2 3.3 and 0.9

Processor3 3.3, 2.5, and 0.9

Processor4 3.3, 2.5, 1.7, and 0.9

Processor5 Any voltage between 3.3 and 0.9

experiment, we target five kinds of variable-volt-

age processors, as shown in Table 1. We

assume that processors can dynamically vary

the supply voltage but can support only one

voltage at a time. We obtain the results shown

in Figure 6 by solving the ILP problem

described in the previous section.

The energy consumption of processor1 is

constant even if the time constraint is relaxed,

because the total number of tasks remains con-

stant. The more variable voltages there are, the

more energy consumption can be reduced.

Selecting suitable voltages for the time con-

straint leads to drastic energy reduction even if

the number of variable voltages is small.

Therefore, determining the variable voltages

that the processor uses is the most important

step for optimizing variable voltage scheduling.

Next, we show the experimental results (using

processor2) for four kinds of task sets: task set =

{task1, task2, task3}), as shown in Table 2. For each

set, the processor sequentially processed three

tasks. In this experiment, both the total number

of execution cycles and the sum of capacitive

loads remained the same for each task set. Figure

7 (next page) shows experimental results.

The results demonstrate that the deviation

of Cjs strongly affects energy reduction.

Comparing task set 1 with task set 4, we see a

30% reduction in energy consumption even

when the time constraint remains the same. If

the tasks’ Cjs differ, assigning the lower voltage

to the tasks with the larger Cjs, and the higher

voltage to the tasks with the smaller Cjs, drasti-

cally reduces energy consumption. Of course,

energy consumption also decreases according

to how much the time constraint is relaxed.

From the results, we observe the following:

� Increasing the number of variable voltages

may greatly reduce energy consumption.

However, having more than three variable

voltages will saturate energy reduction.

� Selecting suitable voltages for the time con-

straint significantly reduces energy con-

sumption even if the number of variable

voltages is very small.

� Even if the time constraint is constant,

assigning lower voltage to the tasks with the

larger Cjs, and higher voltage to the tasks

with the smaller Cjs, reduces total energy

consumption by 30%. Voltage scheduling is

9March–April 2001

0

0.2

0.4

0.6

0.8

1.0

× 5 × 10 × 15 × 20 × 25

N
or

m
al

iz
ed

 e
ne

rg
y

Time constraint

× 1

Processor5

Processor4

Processor1

Processor2

Processor3

1
2

1
10

Figure 6. Results for static scheduling, from solving the ILP problem presented earlier.

Three tasks are sequentially processed under a time constraint for five kinds of variable-

voltage processors, as shown in Table 1. If we relax the time constraint to ×10, we can

reduce the energy consumption to 1/10 with an ideal processor (processor5); or we can

halve the energy consumption for a processor with only two voltages (processor2).

very effective for the application program

whose capacitive load is widely biased.

Dynamic scheduling
We assume a preemptive real-time system

where the five tasks of Table 4 execute on a vari-

able-voltage processor. Table 3 shows the proces-

sor’s modes. We observe the behavior of the

energy consumption for two scenarios of task

execution, as shown in Table 5. Each task has an

earlier deadline in scenario 1 than in scenario 2.

We scheduled the order and voltage of tasks

Energy Reduction for Processors

10 IEEE Design & Test of Computers

Figure 7. Results for static scheduling that considers the capacitive load. Three tasks are

sequentially processed for the four task sets shown in Table 2.

0

0.2

0.4

0.6

0.8

1.0

× 5 × 10 × 15 × 20 × 25

N
or

m
al

iz
ed

 e
ne

rg
y

Time constraint

× 1

Task set 1

Task set 2

Task set 3
Task set 4

Table 3. Processor mode.

Supply voltage Clock frequency

(volts) (MHz)

5.0 50

4.0 44

2.5 32

Table 4. Task set.

Xi Capacitive

Task (cycles × 106) load Ci (pF)

J1 10 1.000

J2 8 1.875

J3 15 1.333

J4 5 1.000

J5 4 7.500

Table 5. Arrival time and deadline time for two scenarios of task execution.

 Scenario 1 Scenario 2 Actual

Arrival Deadline Arrival Deadline execution time

Task time ai (s) time di(s) time ai (s) time di(s) (million cycles)

J1 0.0 0.2 0.0 0.5 9.3

J2 0.0 0.4 0.0 0.7 7.0

J3 0.0 0.8 0.0 0.9 14.0

J4 0.4 0.5 0.4 0.7 3.0

J5 0.5 1.2 0.5 1.4 3.0

using the following methods:

� Normal. Assign the maximum

supply voltage to all tasks.

� SD. Use the SD algorithm to

dynamically assign each task a

supply voltage after statically

scheduling the execution order.

� DD. Use the DD algorithm to

dynamically assign each task a

CPU time and supply voltage.

We assume that ai and di are

known in advance for the SD algo-

rithm, and unknown for the DD

algorithm. The SD algorithm has an advantage in

this assumption because the scheduler in the SD

algorithm knows more information than the DD

algorithm. For each scheduling method, the

scheduler scheduled tasks in the order J1 → J2 →
J3 → J4 → J3 → J5, where J3 was preempted by J4.

Table 6 shows the energy estimation results

for scenarios 1 and 2. In scenario 1, the energy

reduction rate was 38% for SD and 32% for DD,

compared with the normal case. In scenario 2,

the energy reduction rate was 62% for SD and

32% for DD, compared with normal.

From the experimental results, we observe

the following:

� SD and DD always give better results than

the normal case.

� In SD, looser deadline constraints lead to

better energy reduction rates because the

scheduler has more time to lower the supply

voltage.

� In contrast to SD, power consumption using

the DD scheduler is independent of dead-

line constraints.

EXPERIMENTAL RESULTS demonstrate that

using software to control processor supply volt-

age can significantly reduce energy consump-

tion. Voltage scaling is far more effective than

the shutdown approach, which simply stops

the power supply when the system is inactive.

Moreover, because of the tasks’ capacitive

loads, the reduction in energy consumption is

even better. Dynamic approaches can drasti-

cally reduce energy consumption, depending

on the input data. In our approach, time over-

head to compute the optimal supply voltage is

negligible because the SD and DD algorithms

optimize voltages within a few clock cycles.

Our approach is important for complex and

low-power SOC design. Current semiconductor

technology enables integrating a large system

on a single chip. Several application programs

require high clock frequency (more than 1

GHz), yet low-performance applications still

play an important role in many of today’s sys-

tems. As this trend continues, some application

programs will require extremely high perfor-

mance, while others will require only low per-

formance. As system size increases, this gap will

widen. Sophisticated energy management will

therefore be crucial in future SOC designs.

Acknowledgment
This work is partly supported by Grant-in-Aid

for Scientific Research 12558029, 11003357, and

STARC 987.

References
1. T. Ishihara and H. Yasuura, “Voltage Scheduling

Problem for Dynamically Variable-Voltage Proces-

sors,” Proc.1998 Int’l Symp. Low Power Electron-

ics and Design (ISPLED 98), ACM Press, New

York, 1998, pp. 197-202.

`2. T. Okuma, T. Ishihara, and H. Yasuura, “Real-

Time Task Scheduling for a Variable-Voltage

Processor,” Proc. 12th Int’l Symp. System Synthe-

sis (ISSS 98), IEEE CS Press, Los Alamitos,

Calif., 1999, pp. 25-29.

11March–April 2001

Table 6. Energy-consumption estimation results in scenarios 1 and 2 for normal (always

maximum), SD-, and DD-assigned supply voltages.

 Scenario 1 Scenario 2

Normal SD DD SD DD

Task (volts) (volts) (volts) (volts) (volts)

J1 5.0 5.0 5.0 4.0 5.0

J2 5.0 5.0 5.0 4.0 5.0

J3 5.0 2.5 5.0 2.5 5.0

J4 5.0 5.0 5.0 2.5 5.0

J3 5.0 4.0 4.0 2.5 4.0

J5 5.0 2.5 2.5 2.5 2.5

Energy (Joules) 1,665 1,036 1,130 634 1,130

3. S. Lee and T. Sakurai, “Run-Time Power Control

Scheme Using Software Feedback Loop for Low-

Power Real-Time Application,” Proc. 2000 Asia

and South Pacific Design Automation Conf. (ASP-

DAC 2000), ACM Press, New York, 2000, pp.

381-386.

4. S. Lee and T. Sakurai, “Run-Time Voltage

Hopping for Low-Power Real-Time Systems,”

Proc. 37th Design Automation Conf. (DAC 00),

ACM Press, New York, 2000, pp. 806-809.

5. “Crusoe Processor,” Transmeta Corp., Santa

Clara, Calif., http://www.transmeta.com/crusoe/.

6. I. Hong et al., “Power Optimization of Variable

Voltage Core-Based Systems,” Proc. 35th Design

Automation Conf. (DAC 98), ACM Press, New

York, 1998, pp. 176-181.

7. I. Hong, M. Potkonjak, and M.B. Srivastava, “On-

Line Scheduling of Hard Real-Time Tasks on Vari-

able-Voltage Processor,” Proc. IEEE/ACM Int’l

Conf. Computer-Aided Design (ICCAD 98), ACM

Press, New York, 1998, pp. 653-656.

8. Y. Shin and K. Choi, “Power Conscious Fixed Pri-

ority Scheduling for Hard Real-Time Systems,”

Proc. 36th Design Automation Conf. (DAC 99),

ACM Press, New York, 1999, pp. 134-139.

9. T. Pering, T. Burd, and R. Brodersen, “Voltage

Scheduling in the lpARM Microprocessor

System,” Proc. Int’l Symp. Low Power Electronics

and Design (ISPLED 00), ACM Press, New York,

2000, pp. 96-101.

10. T. Burd et al., “A Dynamic Voltage Scaled Micro-

processor System,” Proc. IEEE Int’l Solid-State

Circuits Conf. (2000 ISSCC), IEEE Press, Piscat-

away, N.J., 2000, pp. 294-295.

Takanori Okuma is a PhD
candidate in the Department
of Computer Science and
Communication Engineering
at Kyushu University, Fukuo-
ka, Japan. His research inter-

ests include real-time operating systems,
system-level design, and low power design.
Okuma has a ME in computer science and com-
munication engineering, from Kyushu University,
Fukuoka, Japan. Contact him at okuma@c.csce.
kyushu-u.ac.jp.

Hiroto Yasuura is a pro-
fessor in the Department of
Computer Science and Com-
munication Engineering at
Kyushu University, Fukuoka,
Japan, and a research direc-

tor of the Institute of Systems and Information
Technologies, Kyushu, Fukuoka, Japan. His
research interests include parallel computer
architectures, VLSI CAD, hardware algorithms
for VLSI, and system design methodology.
Yasuura has a PhD in computer science from
Kyoto University, Kyoto, Japan. Contact him at
yasuura@c.csce.kyushu-u.ac.jp.

Tohru Ishihara is a
research associate at the
VLSI Design and Education
Center, University of Tokyo.
His interests include low-
power VLSI system design.

He has a PhD in computer science and commu-
nication engineering from Kyushu University,
Fukuoka, Japan. He is a member of the IEEE.
Contact him at ishihara@silicon.u-tokyo.ac.jp.

Energy Reduction for Processors

12 IEEE Design & Test of Computers

