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Design Space of ERT Systems
 Very large due to many solution parameters:

 architectures and components

 hardware/software partitioning

 mapping and scheduling

 operating systems and global control

 communication synthesis
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Design Space of ERT Systems
 Very bumpy due to the interdependence between the different 

parameters and the many design constraints (time, power, partial 
structure, ...).

Many embedded RT systems have a 
very complex design space.
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Design Space Exploration
What are needed in order to explore the complex design space 
to find a good solution:

Design space exploration should be formulated as optimization 
problems and powerful optimization techniques are needed!

 Exploration in the higher level of abstractions.

 Development of high-level analysis and estimation 
techniques.

 Employment of very fast exploration algorithms.

 Memory-less algorithms.

 Each solution needs a huge data structure to store, so we 
can’t afford to keep track of all visited solutions.
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The Optimization Problem

The majority of design space exploration tasks can be 
viewed as optimization problems:

To find
- the architecture (type and number of processors, memory 

modules, and communication mechanism, as well as their 
interconnections),

- the mapping of functionality onto the architecture 
components, and 

- the schedules of basic functions and communications,

such that a cost function (in terms of implementation 
cost, performance, power, etc.) is minimized and a 
set of constraints is satisfied.
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Mathematical Optimization
 The design optimization problems can be formulated as to

Minimize f(x)
Subject to gi(x)  bi;   i = 1, 2, ..., m;

where
x is a vector of decision variables (x  0);
f is the cost (objective) function;
gi’s are a set of constraints.

 If f and gi are linear functions, we have a linear programming 
(LP) problem. 

 LP can be solved by the simplex algorithm, which is an exact 
method.
 It will always identify the optimal solution if it exists.
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Combinational Optimization (CO)
 In many design problems, the decision variables are 

restricted to integer values.
 The solution is a set, or a sequence, of integers or other discrete 

objects.

 We have an Integer Linear Programming  (ILP) problem, which 
turns out to be more difficult to solve than the LP problems.

 Ex. System partitioning can be formulated as:
 Given a graph with costs on its edges, partition the nodes into k

subsets no larger than a given maximum size, to minimize the total 
cost of the cut edges.

 A feasible solution (with n nodes) is represented as 

xi = j; j  {1, 2, ..., k},  i = 1, 2, ..., n.

 They are called combinatorial optimization problems.
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Features of CO Problems
 Most CO problems, e.g., system partitioning with constraints, 

for ERT system designs are NP-compete.

 The time needed to solve an NP-compete problem grows 
exponentially with respect to the problem size n.

 Approaches for solving such problems are usually based on 
implicit enumeration of the feasible solutions.

 For example, to enumerate all feasible solutions for a 
scheduling problem (all possible permutation), we have: 
 20 tasks in 1 hour (assumption);

 21 tasks in 20 hour;

 22 tasks in 17.5 days;

 ...

 25 tasks in 6 centuries.
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Heuristics

 A heuristic seeks near-optimal solutions at a reasonable 
computational cost without being able to guarantee 
either feasibility or optimality.

 Motivations:
 Many exact algorithms require a huge computation effort.

 The decision variables have complicated interdependencies. 

 We have often nonlinear cost functions and constraints, even 
no mathematical functions.
• Ex. The cost function f can, for example, be defined by a 

computer program (e.g., for power estimation).

 Approximation of the model for optimization.
• A near optimal solution is usually good enough and could be 

even better than the theoretical optimum.
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Heuristic Approaches to CO
Problem specific Generic methods

• List scheduling
• Left-edge algorithm
• Clustering

• Divide and conquer
• Branch and bound
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• Kernighan-Lin      
algorithm for 
graph partitioning

• Neighborhood search
• Simulated annealing
• Tabu search
• Genetic algorithms
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Clustering for System Partitioning
 Each node initially belongs to its own cluster, and clusters 

are gradually merged until the desired partitioning is found.

 Merge operations are selected based on local information 
(closeness metrics), rather than global view of the system.
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Branch-and-Bound

 Traverse an implicit tree to find the best leaf (solution).

4-City TSP
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Total cost of this solution = 88
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Branch-and-Bound Ex
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 Low-bound on the cost function.

 Search strategy
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Neighborhood Search Method
 Step 1 (Initialization)

(A) Select a starting solution xnow  X.
(B) xbest = xnow, best_cost = c(xbest).

 Step 2 (Choice and termination)
Choose a solution xnext  N(xnow), in the neighborhood of xnow.
If no solution can be selected, or the terminating criteria apply, 

then the algorithm terminates.

 Step 3 (Update)
Re-set xnow = xnext.
If c(xnow) < best_cost, perform Step 1(B). 
Goto Step 2.
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Neighborhood Search Method
 Very attractive for many CO problems as they have a natural 

neighborhood structure, which can be easily defined and evaluated.
 Ex. Graph partitioning: swapping two nodes.
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The Descent Method

 Step 1 (Initialization)

 Step 2 (Choice and termination)
Choose xnext  N(xnow) such that c(xnext) < c(xnow), and terminate 

if no such xnext can be found.

 Step 3 (Update)

Cost

Solutions

The descent method can easily be stuck at a local optimum.



2012-03-27

10

1919Prof.  Z.  Peng,  ESLAB/LiTH, SwedenProf.  Z.  Peng,  ESLAB/LiTH, Sweden

Dealing with Local Optimality

 Enlarge the neighborhood.

Cost

Solutions

 Start with different initial solutions.

X

 To allow “uphill moves”:
 Simulated annealing

 Tabu search
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Annealing
 Annealing is the slow cooling of metallic material 

after heating:

 A solid material is heated pass its melting point.

 Cooling is then slowly done.

 When cooling stops, the material settles usually into a 
low energy state (e.g., a stable structure).

 In this way, the properties of the materials are improved.
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Annealing

 The annealing process can be viewed intuitively as:
 At high temperature, the atoms are randomly oriented due to 

their high energy caused by heat.

 When the temperature reduces, the atoms tend to line up with 
their neighbors, but different regions may have different 
directions.

 If cooling is done slowly, the final frozen state will have a near-
minimal energy state. 
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Simulated Annealing

Annealing can be simulated using computer simulation:

 Generate a random perturbation of the atom orientations and 
calculates the resulting energy change.

 If the energy has decreased, the system moves to this new 
state.

 If energy has increased, the new state is accepted according 
to the laws of thermodynamics:

At temperature t, the probability of an increase in energy of 
magnitude E is given by

e
Ep

tk
E )(

1)(




where k is called the Boltzmann’s constant.
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Probability of Accepting Higher-Energy States
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Simulated Annealing for CO

 The SA algorithm could be applied to combinatorial 
optimization:

Thermodynamic 
simulation

Combinatorial 
optimization

System states Feasible solutions

Energy Cost

Change of state Moving to a 
neighboring solution

Temperature “Control parameter”

Frozen state Final solution
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Select an initial solution xnow  X;

Select an initial temperature t > 0;

Select a temperature reduction function ;

Repeat

Repeat

Randomly select xnext  N(xnow);

 = cost(xnext) - cost(xnow);

If  < 0 then xnow = xnext

else generate randomly p in the range (0, 1) uniformly;

If p < exp(-/t) then xnow = xnext;

Until iteration_count = nrep;

Set t = (t);

Until stopping condition = true.

Return xnow as the approximation to the optimal solution.

The SA Algorithm
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The SA Algorithm

 Simulated annealing is really an optimization 
strategy rather than an algorithm  a meta heuristic. 

 To have a working algorithm, the following must be 
done:

 Selection of generic parameters.

 Problem-specific decisions must also be made.
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A HW/SW Partitioning Example
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The Cooling Schedule I

 Initial temperature (IT):

 IT must be "hot" enough to allow an almost free 
exchange of neighborhood solutions, if the final 
solution is to be independent of the starting one.

 Simulating the heating process:

• A system can be first heated rapidly until the 
proportion of accepted moves to rejected moves 
reaches a given value; 

e.g., when 80% of moves leading to higher costs will 
be accepted. 

• Cooling will then start.
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The Cooling Schedule II

 Temperature reduction scheme:
 A large number of iterations at few temperatures or a small 

number of iterations at many temperatures.

 Typically (t) = a x t, where a < 1;

a should be large, usually between 0.8 and 0.99.

 For better results, the reduction rate should be slower in 
middle temperature ranges.

 Stopping conditions:
 Zero temperature - the theoretical requirement.

 A number of iterations or temperatures has passed without 
any acceptance of moves.

 A given total number of iterations have been completed (or a 
fixed amount of execution time).
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Problem-Specific Decisions

 The neighborhood structure should be defined such that:
 All solutions should be reachable from each other.

 Easy to generate randomly a neighboring feasible solution.

 Penalty for infeasible solutions, if the solution space is strongly 
constrained.

 The cost difference between s and s0 should be able to be 
efficiently calculated.

 The size of the neighborhood should be kept reasonably 
small.

 Many decision parameters must be fine-tuned based on 
experimentation on typical data.
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Introduction to Tabu Search

 Tabu search (TS) is a neighborhood search method which 
employs "intelligent" search and flexible memories to avoid being 
trapped at local optimum.

 To de-emphasize randomization. 

 Moves are selected intelligently in each iteration (the best 
admissible move is selected).

 Use tabus to restrict the search space and avoid cyclic behavior 
(dead loop).

 The classification of tabus is based on the history of the search.

 Taking advantage of history.

 It emulates human problem solving process.
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An Illustrative Example

 A set of tests is to be scheduled to check the correctness and 
other features of a given system.

 To find an ordering of the tests that maximizes the test 
performance (fault coverage, time, and power):

 A feasible solution can be simply represented by a 
permutation of the given set of tests.

 A neighborhood move can be defined by swapping two tests. 

 The best move will be selected in each step.

 To avoid repeating or reversing swaps done recently, we 
classify as tabu all most recent swaps.
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TS Example

21 moves are possible in 
each iteration in this example

2      3      4      5      6      7

2

1

3

4

5

6

2 6 7 3 4 5 1

2 5 7 3 4 6 1
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TS Example
 Let a paired test tabu to be valid only for three iterations (tabu 

tenure):

2      3      4      5      6      7

2

1

3

4

5

6

2 5 7 3 4 6 1

2 6 7 3 4 5 1

3

1

2

 When a tabu move would result in a solution better 
than any visited so far, its tabu classification may be 
overridden (an aspiration criterion).
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2 4 7 3 5 6 1

A TS Process

3

2 5 7 3 4 6 1

Current solution

Performance = 10

2     3     4     5     6     7

2

1

3

4

5

6

Tabu structure

5, 4 6
7, 4 4
3, 6 2
2, 3 0
4, 1 -1

Top 5
candidates

Swap   Value

2 4 7 3 5 6 1

Performance = 16

2     3     4     5     6     7

2

1

3

4

5

6

3, 1 2
2, 3 1
3, 6 -1
7, 1 -2
6, 1 -4

Swap   Value
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2 4 7 1 5 6 3

A TS Process

2 4 7 1 5 6 3

Performance = 18

2     3     4     5     6     7

2
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3

4

5

6

1, 3 -2
2, 4 -4
7, 6 -6
4, 5 -7
5, 3 -9

Swap   Value

3, 1 2
2, 3 1
3, 6 -1
7, 1 -2
6, 1 -4

2

3

Top 5
candidates

Swap   Value
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Current solution
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2     3     4     5     6     7

2

1

3

4

5

6

Tabu structure
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A TS Process

4 2 7 1 5 6 3

Performance = 14

2     3     4     5     6     7
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6

4, 5 6
5, 3 2
7, 1 0
1, 3 -3
2, 6 -6

Swap   Value

1, 3 -2
2, 4 -4
7, 6 -6
4, 5 -7
5, 3 -9

1

2

2 4 7 1 5 6 3

Current solution

Performance = 18

2     3     4     5     6     7

2

1

3

4

5

6

Tabu structure Top 5
candidates

Swap   Value

2

3

3

4 2 7 1 5 6 3

Uphill moves are allowed!

Aspiration criterion applies!
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5 2 7 1 4 6 3

A TS Process

5 2 7 1 4 6 3

Performance = 20 7, 1 0
4, 3 -3
6, 3 -5
5, 4 -6
2, 6 -8

Swap   Value

4 2 7 1 5 6 3

Current solution

Performance = 16

2     3     4     5     6     7

2

1

3

4

5

6

Tabu structure Top 5
candidates

Swap   Value

1

2
3 4, 5 6

5, 3 2
7, 1 0
1, 3 -3
2, 6 -6

2     3     4     5     6     7

2

1

3

4

5

6

3

1
2

Best so far!
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Tabu Memory

 The paired test tabu makes use of recency-
based memory (short-term memory).

 It should be complemented by frequency-based 
memory (long-term memory) to diversify the 
search into new regions.

 Diversification is restricted to operate only on 
particular occasions.

 For example, we can select those occasions 
where no admissible improving moves exist.
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Tabu Memory Structure

3
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2

2      3      4      5      6      7
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(Recency-based)

1

2

3

4

5
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7
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(Frequency-based)

1 3 6 2 7 5 4

Iteration 26

Current solution

Performance = 12

1,4 3 2

2,4 -1 -6

3,7 -3 -3

1,6 -5 -5

6,5 -4 -6

Top 5
candidates

Swap  Value
Penalized
Value

P.V. = Value – Frequency_count

3

1

2

5

4

1

4

3

2
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Effects of Random Diversifications
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The Basic TS Algorithm

Step 1 (Initialization)
(A) Select a starting solution xnow  X.

(B) xbest = xnow, best_cost = c(xbest).

(C) Set the history record H empty.

Step 2 (Choice and termination)
Determine Candidate_N(xnow) as a subset of N(H, xnow). 

Select xnext from Candidate_N(xnow) to minimize c(H, x).

Terminate by a chosen iteration cut-off rule.

Step 3 (Update)
Re-set xnow = xnext.

If c(xnow) < best_cost, perform Step 1(B). 

Update the history record H.

Return to Step 2.
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Tabu and Tabu Status

 A tabu is usually specified by some attributes of the moves.

 Typically when a move is performed that contains an 
attribute , a record is maintained for its reverse attribute.

=> Preventing reversals or repetitions!

 A tabu restriction is typically activated only under certain 
condition:
 Recency-based restriction: its attributes occurred within a limited 

number of iterations prior to the present iteration;

 Frequency-based restriction: occurred with a certain frequency over 
a longer span of iterations.

 The tabu restrictions and tenure should be selected to 
achieve cycle prevention and induce vigor into the search.
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Tabu Tenure Decision

 The tabu tenure, t, must be carefully selected:
 For highly restrictive tabus, t should be smaller than for lesser 

restrictive tabus.

 It should be long enough to prevent cycling, but short enough to 
avoid driving the search away from the global optimum.

 t can be determined using static rules or dynamic rules:

 Static rule choose a value for t that remains fixed:
 t = constant (typically between 7 and 20). 

 t = f(n), where n is the problem size (typically between   0.5 n1/2 and 
2 n1/2.

 Experimentation must be carried out to choose the best 
tenure!
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Aspiration Criteria (AC)
 Used to determine when tabu restrictions can be overridden.

 They contribute significantly to the quality of the algorithm.

Examples of Aspiration Criteria:

 Aspiration by Default: If all available moves are classified as 
tabu, and are not rendered admissible by some other AC, 
then a "least tabu" move is selected.
 This is always implemented, e.g., by selecting the tabu with the 

shortest time to become inactive.

 Aspiration by Objective: 
 c(xtrial) < best_cost.

 Subdivide the search space into regions R  R, and let best_cost(R) 
denote the minimum c(x) for x found in R. If c(xtrial) < best_cost(R), a 
move aspiration is satisfied.
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Stopping Conditions
TS does not converge naturally.
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 A fixed number of iterations has elapsed in total.
 A fixed number of iterations has elapsed since the last best solution 

was found.
 A given amount of CPU time has been used.

 A fixed number of iterations has elapsed in total.
 A fixed number of iterations has elapsed since the last best solution 

was found.
 A given amount of CPU time has been used.
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TS vs. SA

 Neighborhood space exploration:
 TS emphasizes complete neighborhood evaluation to identify moves 

of high quality.

 SA samples the neighborhood solutions randomly.

 Move evaluation:
 TS evaluates the relative attractiveness of moves in relation not only 

to objective function change, but also to factors of influence.

 SA evaluates moves only in terms of their objective function change.
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TS vs. SA (Cont’d)

 Search guidance:
 TS uses multiple thresholds, reflected in the tabu tenures and 

aspiration criteria, which varies also non-monotonically.

 SA is based on a single threshold implicit in the temperature 
parameter that only changes monotonically.

 Use of memory:
 SA is memoryless.

 TS makes heavily and intelligently use of both short-term and long-
term memory.

 TS can also use the mid-term memory for intensification.
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Summary

 Design space exploration is basically an optimization 
problem.

 Due to the complexity of the optimization problem, heuristic 
algorithms are widely used.

 Many general heuristics are based on neighborhood search 
principles.

 SA is applicable to almost any combinatorial optimization 
problem, and very simple to implement.

 TS has a natural rationale: it emulates intelligent uses of 
memory.

 When properly implemented, TS often outperforms SA (the 
execution time is often one order of magnitude smaller).


