

	Heuristic Approaches to CO		
ð	Problem specific	Generic methods	
Constructiv	 List scheduling Left-edge algorithm Clustering	Divide and conquerBranch and bound	
Transformational Iterative improvement	• Kernighan-Lin algorithm for graph partitioning	 Neighborhood search Simulated annealing Tabu search Genetic algorithms 	
Prof. Z.	Peng, ESLAB/LiTH, Sweden 12		

Simulated Annealing for CO					
 The SA algorithm could be applied to combinatorial optimization: 					
	Thermodynamic simulation	Combinatorial optimization			
	System states	Feasible solutions			
	Energy	Cost			
	Change of state	Moving to a neighboring solution			
	Temperature	"Control parameter"			
	Frozen state	Final solution			
Prof. Z. Peng, ESLAB/LITH, Sweden 25					

