
Petru Eles, IDA, LiTH

Hardware/Software Codesign Modeling - 1

Models of Computation

1. Models of Computation: What’s that?

2. Synchronous FSMs and GALS models

3. Dataflow Models
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Models of Computation

☞ The model of computation deals with the set of theoretical choices
that build the execution model of the language.

• A design is represented as a set of components, which can be
considered as isolated monolithic modules (often called
processes or tasks), interacting with each other and with the
environment.

The model of computation defines the behavior and interaction
mechanisms of these modules.
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Models of Computation (cont’d)

• Models of computation usually refer to:
- how each module (process or task)

performs internal computation

- how the modules transfer
information between them

- how they relate in terms of
concurrency

• Some models of computation do not
refer to aspects related to the internal
computation of the modules, but only
to module interaction and concurrency.
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Models of Computation (cont’d)

The main aspects we are interested in:

• Concurrency

• Communication&Synchronization

• Time

• Hierarchy
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Common Models of Computation

Some of the models of computation commonly used to describe
embedded systems:

• (Synchronous) Finite State Machines

• GALS Models

• Dataflow Models

• Petri Nets

• Discrete Event

• Timed Automata
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Finite State Machines

• The system is characterised by explicitly depicting its states as
well as the transitions from one state to another.

• One particular state is specified as the initial one

• States and transitions are in a finite number.

• Transitions are triggered by input events.

• Transitions generate outputs.

• FSMs are suitable for modeling control dominated reactive
systems (react on inputs with specific outputs; not much
computation)
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FSM Example

Elevator controller

• Input events {r1, r2, r3}
- ri: request from floor i.

• Outputs {d2, d1, n, u1, u2}
- di: go down i floors
- ui: go up i floors
- n: stay idle

• States {S1, S2, S3}
- Si: elevator is at floor i.

S1

S3

S2

r2/u1

input event output

r1/d1

r2/n

r3/n

r1/n

r 2
/d 1

r 3
/u 1

r3 /u
2r1 /d

2initial state
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State Explosion

• Complex systems tend to have very large number of states. This
particularly is the case in the presence of concurrency.
The fenomen is called state explosion.

• Every global state of a concurrent system must be represented
individually ⇒  interleaving of independent actions leads to an
exponential number of states.

• Expressing such a system as a FSM (or extended FSM) is very
difficult.
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State Explosion (cont’d)
Example
After starting the system, it waits simultaneously for event a followed by
x, and event b followed by y. Events can arrive in any order, except that
x follows a and y follows b. Once the events are received, output o is
emitted. Then the system waits for the reset signal r to return into the
initial state.

• Input events {a, b, x, y, r}

• Output {o}

• States {S0, S1, ..., S8}

wait for a
wait for x

wait for b
wait for y

emit o
wait for r
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State Explosion (cont’d)

S0

S1 S2

S4 S5
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S6 S7
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Hierarchical Concurrent Finite State Machines

The same example using concurrent FSMs (in Statecharts):

A B
T

U

[in V & in Z]/o

b

V

X

Y

Z

C

a

x y

r
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FSMs: Time and Synchrony

☞ FSMs are synchronous models.

• The synchrony hypothesis:
The time is a sequence of instants (clock ticks) between which
nothing interesting occurs. In each instant, some events (inputs)
occur in the environment, and a reaction (output) is computed
instantly by the modelled design.

- Computation and internal communication take no time.

- Events are either simultaneous (occur at the same clock tick)
or one strictly precedes the other (as opposed to dataflow and
Petri Nets where we only have a partial order of events).
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FSMs: Time and Synchrony (cont’d)

input events output eventsinternal events

synchronized: input events are at the
same time with the internal and output
events generated as response.

FSM1 FSM2
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FSMs: Time and Synchrony (cont’d)

Question
Is the synchronous model sufficiently realistic to be used in practice?

Answer
For some applications yes!
It is the case when the following assumption is true:

The reaction time of the system (including internal communication)
is neglectable compared to the rate of external events.
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Why Do We Like Synchronous Models?

• A set of communicating, concurrent FSMs behaves exactly like
one equivalent FSM.

Models are deterministic.
It is possible to formally reason about models and to formally
check certain properties of the model. This is important for certain
class of applications (e.g. safety critical systems)

• It is possible to efficiently synthesise (compile) synchronous
models to hardware or software.
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Why Do We Not Like Synchronous Models?

• Reasoning, verification and synthesis based on synchronous
models are meaningful and correct only as long as:

1. A completely synchronous implementation of the whole
system is possible (the whole system acts similar to one
single FSM).

2. We are sure that for the implemented system the assumption
on slide 14 is true.

• Implementing large models as synchronous systems is expensive
and often technically impossible.
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Globally Asynchronous Locally Synchronous Systems

Globally asynchronous and locally synchronous (GALS) models:

FSM1

FSM3

FSM4

FSM2

FSM5

• Each FSM individually
behaves like a
synchronous systems ⇒
reacts instantaneously on
a set of available inputs
and generates output.

• The global system is
asynchronous ⇒
communication time is
finite and non-zero;
reaction time of each FSM,
as viewed by other FSMs
is finite and non-zero.

• With global asynchrony,
buffering of signals could
be needed.
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Globally Asynchronous Locally Synchronous Systems (cont’d)

☞ With a GALS model, the set of FSMs is not any more equivalent
with a single FSM (as was the case for the synchronous model).

Several nice features are gone:
• With synchronous FSMs we had the nice theoretical

background and the possibility of formal verification of the
whole system. Not the case with GALS.

• Every implementation of a synchronous FSM model is
guaranteed to be functionally equivalent to the initial model
and behave exactly and deterministically like the model (in the
case we are able to produce an implementation!). Not the
case with GALS.
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Globally Asynchronous Locally Synchronous Systems (cont’d)

☞ The GALS model is not deterministic, in the sense that its behavior
depends on the amount of time taken for a certain communication
or transition.

Two different implementations of the same GALS model can behave
differently.
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Globally Asynchronous Locally Synchronous Systems (cont’d)

• A GALS model in which FSM1 and FSM2 communicate through a
single-slot buffer.

• FSM1 outputs a signal (writes into the buffer) every 2 ms (we
neglect communication time).

1. If the reaction time of FSM2 is 6ms, every third signal from
FSM1 will be reacted on.

2. If we have a faster implementation of FSM2, with reaction time
2ms, every signal from FSM1 will be captured.

FSM1 FSM2
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Globally Asynchronous Locally Synchronous Systems (cont’d)

• Each individual FSM can be still verified and even formal methods
can be used.

• However, individual correctness of each FSM does not guarantee
the correctness of the whole system. The system behaves
correctly only if, in addition, certain assumptions regarding the
timing of components and of communications are satisfied.

Example on previous slide:
• Each FSM can be functionally verified individually.
• The global system will be correct (no signal is lost) if FSM2

has a reaction time which is smaller than the production rate
of FSM1.

• Estimation and simulation can be used in order to verify that a
certain implementation (like FSM1 as software on a certain
µprocessor, and FSM2 as an ASIC) satisfies this assumption.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Modeling - 22

GALS System Models

☞ A GALS system is modelled as a network of FSMs:

• Each FSM has a locally synchronous behavior: it executes a
transition by producing a single output reaction based on a
single, snap-shot input assignment in zero time.

• A System has a globally asynchronous behavior: each FSM
reads inputs, executes a transition, and produces outputs in a
finite amount of time as seen by the rest of the system.
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Dataflow Models

☞ Systems are specified as directed graphs where:

- nodes represent computations (processes);
- arcs represent totally ordered sequences (streams) of

data (tokens).

☞ Depending on their particular semantics, several models of
computation based on dataflow have been defined:

• Kahn process networks
• Dataflow process networks
• Synchronous dataflow
• - - - - - - -
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Dataflow Models (cont’d)

☞ Dataflow models are suitable for signal-processing algorithms.
- Code/decode, filter, compression, etc.

• Streams of periodic and regular data samples

• Typically signal-processing algorithms are expressed as block
diagrams; this naturally fits to dataflow semantics.
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Dataflow Models (cont’d)

Process p1( in int a, out int x, out int y) {..........
}

Process p2( in int a, out int x) {..........
}

Process p3( in int a, out int x) {..........
}

Process p4( in int a, in int b, out int x) {..........
}

channel int I, O, C1, C2, C3, C4;

p1(I, C1, C2);
p2(C1, C3);
p3(C2, C4);
p4(C3, C4, O);

p2

p4

p1

p3

I

O

C1 C2

C3 C4

☞ The internal computation of a
process can be specified in any
programming language (e.g. C).

This is called the host language.
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Kahn Process Networks

• Processes communicate by passing data tokens through
unidirectional FIFO channels.

• Writes to the channel are non-blocking.
• Reads are blocking:

- the process is blocked until there is
sufficient data in the channel

Non-blocking communication

A process that tries to read from an empty
channel waits until data is available. It cannot
ask whether data is available before reading
and, for example, if there is no data, decide
not to read that channel.

DETERMINISM
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Kahn Process Networks (cont’d)

☞ Kahn process networks are deterministic:

• For a certain sequence of inputs, there is only one possible
sequence of outputs (regardless, for example, how long time it
takes for a certain computation or communication to finish).

Looking only at the specification (and not knowing anything
about implementation) you can exactly derive the output
sequence corresponding to a certain input sequence.
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Kahn Process Networks (cont’d)

Process p1( in int a, out int x, out int y) {
int k;
loop

k = a.receive();
if k mod 2 = 0 then

x.send(k);
else

y.send(k);
end if;

end loop; }

Process p2( in int a, out int x) {
int k;
loop

k = a.receive();
x.send(k);

end loop; }

Process p3(in int a, in int b, out int x) {
int k; bool sw = true;
loop

if sw then
k = a.receive();

else
k = b.receive();

end if;
x.send(k);
sw = !sw;

end loop; }

channel int I, O, C1, C2, C3, C4;
p1(I, C1, C2);
p2(C1, C3);
p2(C2, C4);
p3(C3, C4, O);

p2

p3

p1

p2

I

O

C1 C2

C3 C4

7
3
0
16
8
5
11
21
8
5

5
0
11
16
21
8
5
8

7
3
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Process q3(in int a, in int b, out int x) {
int k; bool sw = true;
loop

if sw then
k = a.receive() on timeout(d) do

select on a,b
a: k = a.receive();

or
b: k = b.receive();

end select;
else

k = b.receive() on timeout(d) do
select on a,b

a: k = a.receive();
or

b: k = b.receive();
end select;

end if;
x.send(k);
sw = !sw;

end loop; }

☞ Consider q3 instead of p3:

• Process q3 first tries channel
a or b, depending on sw, like
in the previous version.

• But, instead of blocking, if
nothing comes after a timeout
period d, q3 will read from any
of the two channels, taking the
token which is available first.

• With q3 we do not have a Kahn
process network

• The system is not deterministic.
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Kahn Process Networks (cont’d)

p2

q3

p1

p2

I

O

C1 C2

C3 C4

4
11
21
8
5

11
21
5
4
8

p2

q3

p1

p2

I

O

C1 C2

C3 C4

4
11
21
8
5

4
8
11
21
5

With an implementation
such that channel C3 is very
fast and C4 is very slow.

With an implementation
such that channel C3 is very
slow and C4 is very fast.
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Kahn Process Networks (cont’d)

Let us come back to the Kahn process network (slide 28):

p21

p3

p1

I

O

C1 C2

C3 C4

p22

☞ Let us imagine we have to implement the
system on a single processor architecture.

Let’s try the following static schedule:

p1 p21 p3p22

The system will block!
Example:
First token is 4; p1 passes to C1;
p21 passes to C3; p22 waits for ever.
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Kahn Process Networks (cont’d)

Let’s see some other schedules:

p1 p22 p3p21 The system will block!
Example: first token 4.

p1 p21 p3 p22 The system will block!
Example: first token 4.

p1 p21p1 p22
The system will block!
Example: sequence
starting with 4, 8.

p3



Petru Eles, IDA, LiTH

Hardware/Software Codesign Modeling - 33

Kahn Process Networks (cont’d)

☞ Kahn process networks cannot be scheduled statically ⇒  It is
not possible to derive, at compile time, a sequence of process
activations such that the system does not block under any
circumstances.

Kahn process networks have to be scheduled dynamically ⇒  which
process to activate at a certain moment has to be decided, during
execution time, based on the current situation.

There is a (huge) overhead in implementing Kahn process networks.
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Kahn Process Networks (cont’d)

☞ Another problem: memory overhead with buffers.
Potentially, it is possible that the memory need for buffers grows
unlimited (see channel C4 on slide 28).

☞ Kahn process networks are too general; they are strong in their
expressive power but cannot be implemented efficiently.

Introduce limitations so that you can get efficient implementations.
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Synchronous dataflow

☞ Dataflow process networks are a particular case of Kahn process
networks.
A particular kind of dataflow process networks, which can be
efficiently implemented, are synchronous dataflow networks (SDN).

☞ Synchronous dataflow networks are Kahn process networks with
additional restriction:

• At each activation (firing) a process produces and consumes
a fixed number of data tokens on each of its outgoing and
incoming channels respectively.

• For a process to fire, it must have at least as many tokens on
its input channels as it has to consume.
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Synchronous dataflow (cont’d)

B

D

A

1

C

1

1

1

1

1

1

1

1

1

☞ Arcs are marked with the number of
tokens produced or consumed.

☞ This is a simple “single-rate” system:
every process is activated one single
time before the system returns to its
initial state.

Possible static schedule:

A B DC
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Synchronous dataflow (cont’d)

B

D

A C12 4 2

2

1
2

2
1

☞ For a correct synchronous
dataflow network there exists a
sequence of firings which returns
the network in its original state.
This sequence represents a static
schedule which has to be repeated
in a cycle.

☞ The schedule is such that a finite
amount of memory is required (no
infinite buffers)

Problem
How to derive such a cyclic schedule?

2
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Deriving a static schedule for SDF

☞ Along the periodic sequence of firing, on each arc the same number
of tokens has to be produced and consumed.

a, b, c, d: the number of firings, during a period, for process A, B, C, D.

Balance equations:

2a - 4b = 0
  b - 2c = 0
2c -   d = 0
2b - 2d = 0
2d -   a = 0

2 4– 0 0
0 1 2– 0
0 0 2 1–

0 2 0 2–

1– 0 0 2

a

b

c

d

0=
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Deriving a static schedule for SDF (cont’d)

For a certain SDF graph we get an equation:

☞ If there is no q≠0 which satisfies the equation above ⇒  there is no
static schedule (there is a rate inconsistency between processes).

Γq = 0

topology matrix
of the graph

firing vector

vector of zeros
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Deriving a static schedule for SDF (cont’d)

For our SDF graph, this solution is: a=4, b=2, c=1, d=2.

• The numbers above are telling us how often each task is activated
during one period.

• Based on these numbers a periodic static schedule can be
elaborated.

B

D

A C12 4 2

2

1
2

2
1 2

Among several possible solutions for
vector q, we are interested in the
smallest positive integer vector
(smallest in the sense of the sum of the
elements)
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Deriving a static schedule for SDF (cont’d)

A possible schedule:

☞ The schedule is possible, without deadlock, only if 4 initial tokens
are provided on the channel D → A.

A

B

D

A C12 4 2

2

1
2

2

1 2

A A C D DA B B
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Deriving a static schedule for SDF (cont’d)

With this example we have a rate inconsistency ⇒  No static, periodic
schedule with finite buffers is possible.

C

A B1 1

1

1
1

2

1 1– 0
0 1 1–

2 0 1–

a

b

c

0=

• There is no solution for
the equation, different
from a=b=c=0.

• It is easy to observe that
on the arc A → C, tokens
continuously accumulate.
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Treatment of Time

☞ Dataflow systems are asynchronous concurrent.

• Events can happen at any time.

• There exists a a partial order of events:

B

D

A

C

- Producing a token by A strictly pre-
cedes consuming a token by B.

- There is no order between consuming
a token by B and consuming a token
by C.
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Summary

• FSMs are the typical state based model. System states are
explicitly depicted. As response to input events, an FSM reacts
with a transition to a new state and also generates output events.

• FSMs are suitable for modeling control dominated reactive
systems.

• Complex systems can have an extremely large number of states:
state explosion. This is critical in the case of concurrent systems.

• FSMs are synchronous models. The whole system reacts
instantaneously to a set of simultaneous input events.
Events are either simultaneous or strictly ordered.

• FSM models are deterministic. Formal reasoning is possible, as
well as efficient synthesis.
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Summary (cont’d)

• Implementing synchronous systems can be done efficiently under
certain circumstances. However, it is practically impossible for
large systems and, in particular, distributed systems and, even
more, hardware/software systems.

• For many systems and, in particular, larger distributed hardware/
software systems, only GALS is a realistic approach for
implementation.

• Some of the nice features of synchronous FSMs are gone in this
case. Formal reasoning about the global system is not possible
any more.
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Summary (cont’d)

• Dataflow models consist of nodes representing computation and
arcs representing totally ordered sequences of data. They are
particularly suitable for signal-processing applications and, in
general, applications dealing with streams of periodic/regular data
samples.

• Several models of computation based on dataflow have been
defined. They represent different trade-offs between
expressiveness, on the one side, and determinism or potential of
efficient implementation, on the other side.

• Kahn Process Networks: FIFO channels and blocking read.
They are deterministic: For a certain sequence of inputs, there is
only one possible sequence of outputs.
Kahn Process Networks, in general, cannot be scheduled
statically.
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Summary (cont’d)

• Synchronous Dataflow Networks introduce an additional
restriction: at each activation a process produces and consumes a
fixed number of tokens.

• For a correct Synchronous Dataflow Networks a static schedule
can be derived.

☞ Don’t use the “strongest” modeling approach! Go for exactly
that expressive power you need; not more.


