
Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 1

Architectures and Platforms

1. Architecture Selection: The Basic Trade-Offs

2. General Purpose vs. Application-Specific Processors

3. Processor Specialisation

4. ASIP Design Flow

5. Specialisation of a VLIW ASIP

6. Tool Support for Processor Specialisation

7. Application Specific Platforms

8. IP-Based Design (Design Reuse)

9. Reconfigurable Systems

Hardware/Software Codesign Arch&Platf. - 2

Petru Eles, IDA, LiTH

Remember the Design Flow

System model

Prototype

Fabrication

Informal Specification,
Constraints

Functional
Simulation

Modeling

Testing

Arch. Selection

System
architecture Mapping

Estimation

Mapped and
scheduled model

Scheduling

OK

not OK not OK

OK

not OK

Formal
Verification

Softw. model Hardw. model

Simulation
Formal

Verification

Softw. Generation Hardw. Synthesis

Softw. blocks Hardw. blocksSimulation

Simulation

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 3

Architecture Selection and Mapping

• Select the underlying hardware structure on which to run the
modelled system.

• Map the functionality captured by the system over the
components of the selected architecture.
Functionality includes processing and communication.

Hardware/Software Codesign Arch&Platf. - 4

Petru Eles, IDA, LiTH

Architecture Selection

Build a customised architecture strictly
optimised for the particular application.

Use a general purpose, existing platform
and map the application on it.

Use programmable processors
running software.

Use dedicated electronics
fixed

reconfigurable

Monoprocessor

Multiprocessor
single chip

multi chip

or something in-between

or both

General
Purpose
vs.
Application
Specific

Software
vs.
Hardware

Mono vs. Multipr.
Single vs. Multichip

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 5

Architecture Selection (cont’d)

The trade-offs:

• Performance (high speed, low power consumption)

• Flexibility (how easy it is to upgrade or modify)

Application specific

General purpose

Hardware

Software

high

low

high

low

Reconfigurable
hardware

Application specific

General purpose

Hardware

Softwarehigh

low

high

low

Reconfigurable
hardware

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 6

Architecture Selection (cont’d)

flexibility

en
er

g
y

co
n

su
m

ed

low

low

med.

med.

high

high

o
rd

er
 o

f
m

ag
n

it
u

d
e

o
rd

er
 o

f
m

ag
n

it
u

d
e

ASIC

FPGA

ASIP

GP proc.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 7

General Purpose vs. Application Specific Processors

☞ Both GP processors and ASIPs (application specific instruction set
processors) can be RISCs, CISCs, DSPs, microcontrollers, etc.

- One could look at DSPs and microcontrollers as being specific
for DSP and simple control applications respectively.

- An application specific DSP or microcontroller is, however,
more specialised then just for DSP or control applications.

• GP processors
- Neither instruction set nor microarchitecture or memory

system are customised for a particular application or family of
applications

• ASIPs
- Instruction set, microarchitecture and/or memory system are

customised for an application or family of applications.
- What results is better performance and reduced power

consumption.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 8

What Makes an ASIP “Specific”?

What can we specialize in a processor?

☞ Instruction set (IS) specialisation

• Exclude instructions which are not used
- reduces instruction word length (fewer bits needed for encoding);
- keeps controller and data path simple.

• Introduce instructions, even “exotic” ones, which are specific to the
application: combinations of arithmetic instructions (multiply-
accumulate), small algorithms (encoding/decoding, filter), vector
operations, string manipulation or string matching, pixel operations, etc.

- reduces code size ⇒ reduced memory size, memory bandwidth,
power consumption, execution time.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 9

What Makes an ASIP “Specific”?

☞ Function unit and data path specialisation

Once an application specific IS is defined, this IS can be
implemented using a more or less specific data path and more or
less specific function units.

• Adaptation of word length.
• Adaptation of register number.
• Adaptation of functional units

- Highly specialised functional units can be introduced for string
matching and manipulation, pixel operation, arithmetics, and
even complex units to perform certain sequences of
computations (co-processors).

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 10

What Makes an ASIP “Specific”?

☞ Memory specialisation

• Number and size of memory banks.
• Number and size of access ports.

- They both influence the degree of parallelism in memory access.
- Having several smaller memory blocks (instead of one big)

increases parallelism and speed, and reduces power consumption.
- Sophisticated memory structures can increase cost and bandwidth

requirement.

• Cache configuration:
- separate instruction/data?
- associativity
- cache size
- line size

Depends very much on the characteristics
of the application and, in particular, on the
properties related to locality.
Very large impact on performance and
power consumption.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 11

What Makes an ASIP “Specific”?

☞ Interconnect specialization

• Interconnect of functional modules and registers.
• Interconnect to memory and cache.

- How many internal buses?
- What kind of protocol?
- Additional connections increase the potential of parallelism.

☞ Control specialisation

• Centralised control or distributed (globally asynchronous)?
• Pipelining?
• Out of order execution?
• Hardwired or microprogrammed?

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 12

ASIP Design Flow

(It can be seen as a part of the “big” design flow - slide 2)

Algorithm(s)

Simulator

Processor
Architecture

Compiler

Performance
numbers

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 13

A SOC for Multimedia Applications

Glue logic

A/D and D/A

µController
(ASIP)

On-chip
memory

DSP
(GP)

VLIW
processor

(ASIP)

• The application specific
µController performs
master control of the
system and memory
access control.

• The off-the-shelf (GP)
DSP performs less
computation intensive
modem and sound codec
functions.

• The VLIW ASIP performs
computation intensive
functions: discrete cosine
and inverse discrete
cosine transforms,
motion estimation, etc.

☞ This is a typical application specific
platform. Its structure has been
adapted for a family of applications.

☞ Besides GP processor cores, the
platform also consists of ASIP cores
which themselves are specialised.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 14

Specialization of a VLIW ASIP

Crossbar / Bus

Register File 3Register File 1 Register File 2

ALU
A1

MULT
M1

MULT
M2

MULT
M3

MULT
M4

ALU
A2

ALU
A3

MAC
MA1

ALU
A4

MULT
M5

ALU
A5

Datapath

Internal storage & interconnect

Cluster 1 Cluster 2 Cluster 3

To memory system

Instruction fetch & decode From memory system

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 15

Specialization of a VLIW ASIP (cont’d)

That’s how an instruction word looks like:

op4 op5 op6 op7 op8 op9 op10 op11op1 op2 op3

Cluster 1 Cluster 2 Cluster 3

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 16

Specialization of a VLIW ASIP (cont’d)

☞ Traditionally the datapath is organised as single register file shared by
all functional units.

Problem: Such a centralised structure does not scale!

We increase the nr. of functional units in order to increase parallelism

We have to increase the number of registers in the register file

Internal storage and communication between functional units and
registers becomes dominant in terms of area, delay, and power.

☞ High performance VLIW processors are limited not by arithmetic
capacity but by internal bandwidth.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 17

Specialization of a VLIW ASIP (cont’d)

A solution: clustering.

• Restrict the connectivity between functional units and registers, so
that each functional unit can read/write from/to a subset of
registers.

Organise the datapath as clusters of functional units and local
register files.

☞ Nothing is for free!!!
Moving data between registers belonging to different clusters takes
much time and power!
You have to drastically minimise the number of such moves by:

- Carefully adapting the structure of clusters to the application.
- Using very clever compilers.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 18

Specialization of a VLIW ASIP (cont’d)

• Instruction set specialisation: nothing special.

• Function unit and data path specialisation
- Determine the number of clusters.
- For each cluster determine

- the number and type of functional units;
- the dimension of the register file.

• Memory specialisation is extremely important because we need to
stream large amounts of data to the clusters at high rate; one has
to adapt the memory structure to the access characteristics of the
application.

- determine the number and size of memory banks

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 19

Specialization of a VLIW ASIP (cont’d)

• Interconnect specialization

- Determine the interconnect structure between clusters and
from clusters to memory:

- one or several buses,
- crossbar interconnection
- etc.

• Control specialisation:

That’s more or less done, as we have decided for a VLIW
processor.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 20

Tool Support for Processor Specialisation

Look at the design flow on slide 12!

In order to be able to generate a specialised architecture you need:

• Retargetable compiler

• Configurable simulator

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 21

Retargetable Compiler

Retargetable compiler

Algorithm

Object code

Processor
Architecture

Retargetable
Compiler

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 22

Retargetable Compiler (cont’d)

• An automatically retargetable compiler can be used for a range of
different target architectures.

The actual code optimization and code generation is done by the
compiler, based on a description of the target processor architecture.
This description is formulated in a, so called, “architecture description
language”.

• Having a good compiler is not only important for the processor
specialisation process!

Once you have got your specialised ASIP you need a good compiler
in order to efficiently make use of it!

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 23

Configurable Simulator

Simulator

Processor
Architecture

Performance
numbers

Object code

• Such a simulator can be
configured for a particular
architecture (based on an
architecture description)

• In this context, the most
important output produced by
the simulator is performance
numbers:

- throughput
- delay
- power/energy consumption

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 24

Application Specific Platforms

☞ Not only processors but also hardware platforms can be specialised
for classes of applications.

The platform will define a certain communication infrastructure
(buses and protocols), certain processor cores, peripherals,
accelerators commonly used in the particular application area, and
basic memory structure.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 25

Application Specific Platforms (cont’d)

µProc.
Core1

DMA Memory Bridge

Peripheral
Recon-

figurable
logic

System bus

Peripheral bus

CacheµProc.
Core2

µProc.
Core3

Peripheral

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 26

Application Specific Platforms (cont’d)

Design space exploration for platform definition:

Simulator

Platform
Architecture

Mapping/
Compiling

Performance
numbers

Applications

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 27

Instantiating a Platform

☞ Once we have an application, the chip to implement on will not be
designed as a collection of independently developed blocks, but will
be an instance of an application specific platform.

• The hardware platform will be refined by
- determining memory and cache size
- identifying the particular cores, peripherals to be used
- adding specific ASICs, accelerators
- determining the amount of reconfigurable logic (if needed)

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 28

Instantiating a Platform (cont’d)

Simulator

Platform
Instance

Mapping/
Compiling

Performance
numbers

Application

Platform
Architecture

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 29

System Platforms

☞ What we discussed about (see previous slides) are so called
hardware platforms.

☞ The hardware platform is delivered together with a software layer:
hardware platform + software layer = system platform.

• Software layer:
- real-time operating system
- device drivers
- network protocol stack
- compilers

• The software layer creates an abstraction of the hardware
platform (an application program interface) to be seen by the
application programs.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 30

IP-Based Design (Design Reuse)

☞ The key concept in order to increase designers’ productivity is reuse.

In order to manage the complexity of current large designs we do not
start from scratch but reuse as much as possible from previous
designs, or use commercially available pre-designed IP blocks.

IP: intellectual property.

☞ Some people call this IP-based design, core-based design, reuse
techniques, etc.:

Core-based design is the process of composing a new system
design by reusing existing components.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 31

IP-Based Design (cont’d)

What are the blocks (cores) we reuse?
• interfaces, encoders/decoders, filters, memories, timers,

microcontroller-cores, DSP-cores, RISC-cores, GP processor-cores.

Possible(!) definition
• A core is a design block which is larger than a typical RTL

component.

Of course:
We also reuse software components!

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 32

IP-Based Design (cont’d)

What we have designed here can be:
• An application specific SOC
• A platform to be further instantiated for a particular application.

Core 1 Core 2 Core 3

Library
Vendor A

Interconnection bus/switch

Library
Vendor B

Core 4
µprocessor

Library
Vendor C

In
te

rf
ac

e

I/O

glue glue glue

glue

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 33

Types of Cores

• Hard cores: are fully designed, placed, and routed by the supplier.

• Firm cores: technology-mapped gate-level netlists.

A completely validated layout with definite timing

rapid integration low flexibility

less predictability flexibility during
place and route

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 34

Types of Cores (cont’d)

• Soft cores: synthesizable RTL or behavioral descriptions.

Flexibility can provide opportunities like e.g. adding application
specific instructions to a processor core by modifying the
behavioral description.

much work with
integration and
verification.

maximal flexibility

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 35

Reconfigurable Systems

☞ Programmable Hardware Circuits:

• They implement arbitrary combinational or sequential circuits
and can be configured by loading a local memory that determines
the interconnection among logic blocks.

• Reconfiguration can be applied an unlimited number of times.

☞ Main applications:
- Software acceleration
- Prototyping

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 36

Reconfigurable Systems (cont’d)

Dynamic reconfiguration: spacial and temporal partitioning

µProcessor Memory

FPGA
Accelerator

at t1

at t2

at t3

at t 4

temporally

partit
ioned

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 37

Reconfigurable Systems (cont’d)

System on Chip with dynamically reconfigurable datapath

Reconfigurable
datapath

On
chip

mem.

CPU

C code

Profiling &
Kernel

extraction

Hw/Sw
partitioning

Kernels

C codeDatapath
synthesis

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 38

Summary

• Architecture selection is about making trade-offs along the
dimensions of speed, cost, flexibility, and power consumption.

• ASIPs are programmable processors, specialised for a particular
application or for a family of applications.

• Specialisation of an ASIP concerns instruction set, function units
and data path, memory system, interconnect, and control.

• Two design tools are of great importance in order to perform
processor specialisation: retargetable compiler and configurable
simulator.

• Not only processors can be specialised but also platforms. A
Platform is specialised to execute a certain family of applications.
The particular hardware to be used for a given application is a
specialised instantiation of the platform.

Petru Eles, IDA, LiTH

Hardware/Software Codesign Arch&Platf. - 39

Summary (cont’d)

• Reuse is a key technique in order to achieve high design
productivity. Cores to be reused can be from interfaces and
decoders to filters and processors.

• The three types of cores differ in their flexibility, predictability, and
the effort needed for integration: hard, firm, and soft cores.

• Reconfigurable systems can provide good flexibility and, at the
same time, many of the advantages of classical hardware
implementation. They are mainly used for software acceleration
and prototyping.

